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Time evolution of damage under variable ranges of load transfer
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We study the time evolution of damage in a fiber bundle model in which the range of interaction of fibers
varies through an adjustable stress transfer function recently introduced. We find that the lifetime of the
material exhibits a crossover from mean-field to short-range behavior as in the static case. Numerical calcu-
lations showed that the value at which the transition takes place depends on the system'’s disorder. Finally, we
have performed a microscopic analysis of the failure process. Our results confirm that the growth dynamics of
the largest crack is radically different in the two limiting regimes of load transfer during the first stages of
breaking.
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I. INTRODUCTION maintained on the system and the fibers break by fatigue
after some time.

The phenomenon of fracture in heterogeneous materials is After a fiber breaking, the load acting on it is redistributed
a complex physical problem which has been of great interestmong the intact fibers according to the stress redistribution
to scientists for quite a long tinfd—3]. A disordered system rule associated with the particular load-transfer model. There
is understood to be one with random time or/and space deare two standard load-transfer models comprising the FBM
pendent breaking properti¢&]. The random nature of this and they correspond to the extreme limits of stress redistri-
dependence arises because modeling the fracture of hetetmdtion. The global load sharin@sLS) redistributes the load
geneous materials entails dealing with systems made up aff a failed fiber equally among the active fibers remaining in
many constituents, each one having mechanical propertighe system. It is known as the global fiber bundle model, and
that can be considered as being independent of the propertiassumes long-range interaction among the fibers which
of the other constituents, but with many body interactionsmakes it a mean-field approximation that can be solved ana-
among the different parts of the systéfn-3]. In heteroge- Iytically [11,12. On the other hand, the local load sharing
neous materials, the evolution of the rupture process is radiLLS) redistributes the load of a failed fiber among the intact
cally different from the single crack growth mechanism thatfibers that are nearest neighbors to the failed ones, and is thus
occurs in homogeneous materials. Though there is neither lnown as the local fiber bundle model. This assumes short-
complete numerical solution nor analytic solution to the frac-range interaction among the fibers and with a few exceptions
ture problem, we have a better understanding of it due t$26], models based on LLS rules have not been solved ana-
some recent algorithms that have been developed to simulalgtically. However, in actual heterogeneous materials, the
the fracture procegg—-8§|. stress redistribution is expected to fall in between the two

Fiber bundle model$FBM) form a fundamental class of regimes of load-transfer. Very recently, some of us have pro-
approaches to the fracture problem. They arose in close composed a load transfer scheme with variable range of interac-
nection with Daniels’ and Coleman’s seminal works on thetion among the fibers, which interpolates between the two
strength of bundles of textile fibef9,10] and have harbored extreme cases. Since most of the physics of the fracture
an intense research activity in recent yddrs4,11-21 Re-  problem is hidden in the stress redistribution, considering
cent progresses on load-transfer models are discussed in Refithin the same model the possibility of varying the range of
[22]. Fiber bundle models are important, despite their veryinteraction is a relatively greater improvement toward a bet-
simple nature, because they exhibit most of the essential ater understanding of the fracture problem.
pects of material breakdown. In addition, the deep under- Motivated by the results obtained for the static setting, we
standing of fracture processes they provide has served ashave studied a stochastic dynamic fiber bundle model, in
starting point for more complex model$3—15,23-2% In which fibers break by fatigue over a period of time, such that
FBMs the material is made up of a set of parallel fibers, eaclthe range of interaction among fibers is variable through an
having a statistically distributed threshold strength or life-adjustable stress transfer function. We have observed a cross-
time. Besides the classical static FBM, one can also introever from mean-field to short-range behavior for the macro-
duce a dynamic versiofiL8]. In the static FBM, the failure scopic quantities describing the fracture dynamics as in the
process is simulated according to a quasistatic loading of thstatic case. In addition, a more detailed inspection of the
material in which the output of the simulation is the ultimatefailure process revealed that the microscopic behavior of the
strength of the material, i.e., the maximum load above whictsystem is also different as the range of interaction varies.
it breaks down. In the dynamic FBM, a constant load isFinally, we have also studied the effect of heterogeneity on
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the failure process from macroscopic as well as microscopiavhere o is the initial stress on fiberatt=0 andp is the
perspectives. The rest of the paper continues with the deAeibull index, 2<p=<50. p gives the degree of heterogene-
scription of the stochastic model in the following section.ity of the system; ap increases the system becomes more
Section Il is devoted to studying the lifetime of the bundle homogeneous. In this model, the next element to break is
and the rate at which fibers break when the range of interaexactly the one with the lowest lifetime at tinte

tion changes. The damage spreading for several load-transfer In the probabilistic approacf81,32, it is considered that
modalities is addressed in Sec. IV, while the last section isn a time step all the intact elements have the same mean

devoted to conclusions rounding off the paper. time to failure. The element that breaks in the time interval
between two successive failures is selected by chance and
Il. THE STOCHASTIC MODEL thus the fiber whose probability of breakirig function of

the load it bearsis the largest is more likely to fail. The
We assign each fiber to the sites of a square lattice, witlprobabilistic approach is an example of the so cabed
periodic boundary conditions. Assuming elastic interactiomealed disorder since the algorithm is stochastic and thus
among the fibers, we may state that the stress redistributioandomness is uncorrelated in time. Thus, we start at time
obeys a power lai25], =0 with N fibers loaded with an initial common stress of
oi(t)=0;(0)=1. The mean time interval for an individual
1 element to break by fatigue is
Oinc™ 7 (1)
1) 1

where g, is the load increment on an intact fiberat a o= ) ' “)
distancer;; from the failed fibej andy is a variable param- g i (t)

eter that controls the effective range of interaction among the

fibers [27]. y=0 corresponds to GLS since the additional ) ) , ,

load on each intact fiber as a result of a fiber breaking is thé/NereA is the set of mtactkfl?ers artds the time elapsed up
same irrespective of its distance from the broken fiber. OfC K—1 breaking, i.e.t=%,_;5,. In the first time interval,

the other handy=c> corresponds to LLS since in this limit Where o;=1 Vi, with all the N elements active,é,

only the nearest neighbors get equal portions of the load of & 1/No{ so that the first fiber breaking is completely ran-
failed fiber ando;,.=0 for r>1. Assuming that there is no dom. This changes with time due to stress transfers and fiber
dissipation of the load of a failed fiber, EQ) leads us to the failures. The probability of a particular fiber breakingn

normalized stress transfer function one sweep of the lattice in the time inten&l, is given by
11 P;(t)=o?(t) b (5)
S(y.rij)= - ) (2
! EA rify When a fiber breaks, its load is transferred and as a con-

sequence, the probability of failure of the receptors is in-
creased. In this sense there are no weak or strong fibers; all
the fibers are equivalent but carry different loddgcept for
mean-field approachgsand thus have different breaking
robabilities. The two approaches described above have been
hown to be equivalent at least within the FBM context for
GLS, LLS, and hierarchical load sharing rulgs8,31. The

wherer;; being the distance between an active fibewith
coordinates X;,y;), and a failed fibelj, with coordinates
(x;,y;), andA denotes the set of intact fibers.

One can consider two equivalent approaches to the d)}S?
namic FBM[30-32. The time elapsed until the final col-

lapse of the system is the lifetime or “”.”e foNialltre ol thespirit of the annealed approximation, that will be adopted

krjnuenn(ikias; [:ntihn?:i(falgr)sgnz2?1:0izgr?tciﬂéltlr;/edIig,(tartim(taegfrgiggrﬁk\a/:ari—here’ can be intuitively understood by noting that in both

able, i.e., each fiber has a different random lifetime takenmoqIeIS the Ipad history plays a I_<ey roIe._For theanched_

from, tr.we.,same statistical distributigthe Weibull distriiou- setting, _the_flb_er the one breaks is that Wlth. the Iovv_est life-

tion is a q irical distribution i . ; anme which in its turn depends on the load history. Since the
good empirical distribution in materials science an

is adopted henceforthand each one breaks if the time md_ividual times to fai!ure are reduced each time a fiber re-

elapsed exceeds its individual lifetime. This isqaenched Cceves load frqm a fallgd glemgnt, the more stressed a fiber
model of fracture where the disorder is introduced once fo#s’ the more likely its I|fet!me is the onvest. on t_he otht_ar
hand, for theannealedversion the magnitude that is modi-

all at the beginning of the process and thus the growth: P o ;
mechanism is deterministic. In this version, the effect of th(ra}led by the load redistribution is the probability of breaking

increase in stress for a particular fidedue to the redistri- and thg Ipqd histo_ry affects the failure process jL.JSt as in the
bution of load from failed fibers is the reduction of its ini- cjeterm|n|st|c version. the more stressed a f!ber 'S, .the more
tially assigned lifetime; to a new lifetimer, given by likely it breaks. Additionally, we note that this algorithm is

! ! the same as the one used in polymer failli38] and in
_ ) describing dielectric breakdowii84] with the main distinc-
t = ff'<0‘(t)) dt 3 tion that here the broken fibers need not be connected to the
"o\ oo ’ single growing cluster as in dielectric breakdown.
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Now, the load borne by the fiber that has just failed is  0.55 -
redistributed according to E€l) such that in a time interval e—eL=40

At=tkftk,_1=.E,‘;:l&p—zgjﬁpz 8¢, the load increase on '—'I]:fzg
the active fibel reads as 05 L=

ai(t) = oj(t- 1) S(y,rij) + oi(t-1), (6)

whereg; is the load of the element that has failed in the time e 045 |
interval At after k fiber failures. After the redistribution of
load, the rupture process continues by applying again&q.
that will point to the next fiber to break. The lifetime of the
matﬁrial is then given by the sum of all th¢ &s, T; 04 |
= Ei =15i .

The complete analytic solution to the dynamic FBM as
defined above in the GLSy=0) case is feasible. The life-

. . 0.35 : ‘ : :
time of the material can be computed as 0 2 4 6 8 10
v
N(N+1-x)"t 1 1 o o _ _
T= —dx=—| 1— —|, (7) FIG. 1. Dimensionless lifetim@&; versus effective range of in-
NP p NP teractiony. The crossover from mean-field to short-range behavior

L o is obtained at the same transition point as in the static case (
which includes also the dependence of the lifetime on the- ).

system sizeéN giving the mean-field result a/in the thermo-
dynamic limit. among the fibers and several system sizes upl 066400
We should note that there is no avalanche here, unlike théibers. A crossover from mean-field behavior to a regime
static casg[25], since there is no external driving on the dominated by the short-range interactions among the fibers is
system. Once the fibers start breaking by fatigue, they corslearly appreciated. Furthermore, the critical value of the pa-
tinue breaking with time until the final collapse of the sys-rametery, defines a region where the results for global load
tem, but within a time intervad, , only one fiber may break sharing models hold beyongi=0, the true mean-field re-
in a single sweep of the lattice. gime for which the load of a failed element is shared equally
We note that both Eqg3) and (5) assume a power-law among the surviving elements. Fo y., the material be-
breaking rule xp(0)=vo(0o/og)?. This stems from the haves macroscopically as far=0, that is, the lifetime is
former assumption that the lifetimes satisfy the Weibull dis-independent of the system size and does not depend on the
tribution. An alternative breaking rule could be an exponen-actual value of the exponent It is not a simple numerical
tial hazard rate of the formx (o) = ¢ exd n(c/oy)] mainly  task to determine accurately the exact value of the transition
used for thermally activated processes. On the other hand, point due to the stochastic nature of the model and the fluc-
has the same functional form as the Charles power law thdtiations of the lifetime of the system. In fact, the time to
describes the subcritical crack growth induced by stress cofailure of the bundle follows a Gaussian distribution in what
rosion in geological materials at constant temperatwre: concerns its frequency distribution. The width of the distri-
=AK]', wherev is the crack velocity and, is the stress bution depends on the level of heterogengigntrolled by
intensity factor for mode fracture. Sometimes) is known the Weibull index that in turn also influences the lifetimes
as the stress corrosion index. Moreover, we emphasize thitat become shorter as we move to high levels of homoge-
Eqg. (4) is not a real measure of time so that a quantitativeneity- Within this numerical uncertainty we have found that
comparison between the results here shown and those from~2. Interestingly, the same value was found to character-
experiments is not feasible. Additionally, E@) is a simple  ize the transition of the bundle’s ultimate strength from long-
form one can consider for the probability of breaking. Into short-range behavior in the static setting of the mg28].
principle, one could also include more realistic rules. Never- The influence of the disorder on the crossover behavior
theless, as we shall see, this simple model is very rich angan be studied by changing the valuegofFigure 2 shows
might help understand physical effects present in real matghe time to failure of the material as a function of the effec-
rials. tive range of interaction for several system sizes. We observe
that the transition is still present but the range where the
IIl. LIEETIME OF THE BUNDLE mean-field regime applies is reduced. In particular, as the
system gets more homogeneoys shifts leftwards to
We simulate the failure process by large scale numericadmaller values. Additionally, the true local load sharing re-
simulations. We first explore the behavior of the lifetime as agime appears to be also slightly shifted to the left. When the
function of the stress transfer range for a fixed level of hetrange of interactiory is above a second-transition poipt,,
erogeneity p=2). Then, we vary the Weibull index such the lifetime of the bundle becomes again independent of the
that we get a more homogeneous system with smaller timesffective interaction among the fibers but it is still size de-
to failure. The results obtained for the lifetime are depictedpendent. This later behavior can be easily understood by not-
in Fig. 1 for different values of the range of interaction ing that for local load sharing schemes, the time to failure of
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FIG. 2. Comparison of the time to failutglimensionlessob- YT,

tained for different heterogeneity levglsas the range of interaction

varies. The inset corresponds pe=5 while the main figure has

been drawn considering=10. Clearly, the crossover behavior is
still present although the value of the transition point depends. on
As the system gets more homogeneoysshifts leftward.

FIG. 3. Normalized number of broken fibers as a function of
dimensionless timéalso normalized to the lifetime of the bunglle
Two groups of curves can be clearly distinguished corresponding to
the long-range and short-range regimes. The results have been ob-
tained for a system dfl=2500 fibers angh=2.

the system in the thermodynamic limit is z¢®5]. We have dNi(t)
checked that in our model this is actually verified, although r(t)= ar
the drop of the lifetime as the system size is increased is
slow. On the other hand, wherever the GLS regime arises, )
the time to failure of the system is not size dependent foMith N¢(0)=0 andN(Ts)=N. Upon approaching the com-
large N [see Eq.(7)]. plete fa|lure, the breaking rate scales with the lifetime of the
Another way to characterize the evolution of the fracturem"’lterlal aq37]
process is to inspect the rate at which fibers fail. We expect
two different asymptotic regimes. For long-range interaction, r()~(Ti—1) %, €)
i.e., belowy, the system should behave in a mean-field man-
ner. This means that damage is gradually accumulated in th&here the exponent depends on both the range of interac-
material up to a point in which the load is too high as to betion and the Weibull index. However, we can again identify
carried by the remaining fibers. Only at this stage of thetwo limiting groups of curves for the same valuepofFigure
damage process, the rate of fiber failures will speed up owing shows the rate of fiber breaking for several load-transfer
to the small values of the very lags. On the contrary, in the ranges and a Weibull indgx=2. These results confirm the
region where short-range interaction prevails, the systerbehavior observed for the evolution of the number of broken
does not accumulate damage uniformly. In this case, theribers, namely, that there is a sharp increase in the failure rate
appear regions within the material in which stress enhancewxhen approaching the lifetime for the case where short-range
ment takes place making the fibers along the crack tips tinteraction dominates the damage spreading. The fit to the
support much more load than other active fibers placed facurves gives~1/2 for y< vy, and {~2/3 whenv is in the
from the clusters of broken fibers. Accordingly, thewould  range where the effective interaction among the fibers can be
be modified and there would be more breaking forshene  assumed to be very localized. Note that the curves for inter-
time interval. In other words, the breakdown of the materialmediate values ofy and for the GLS regime have been
occurs suddenly for the very localized regime where aboushifted for the sake of clarity. The numerical results are not
50% of the fibers break in a time interval of the order of very smooth because of fluctuations but the general trend of
0.1T; . In Fig. 3, we have represented the evolution with timer (t) confirms the validity of relatior(9). As to the depen-
of the number of broken fibens; for different values ofy. dence of the above results on the heterogeneity level, we
Two distinct groups of curves corresponding to the extremédnave observed that the less heterogeneous the material is, the
cases can be clearly seen. For intermediate values of treharper the failure acceleration is in all cases. The inset in
effective range of interaction, the behavior is more like theFig. 4 shows the breaking rate for the case of long-range
case of long-range interaction and may correspond to othenteraction angh=10. The higher value af~0.86 indicates
load sharing schemes such as the hierarchical fiber bundibat much of the fibers break in a very small time interval
model[18,36]. close to the lifetime of the material. As the range of interac-
Consider that the breaking rate of the bundle is defined ason gets more localized, the exponghtipproaches unity.

®

026116-4



TIME EVOLUTION OF DAMAGE UNDER VARIABLE . .. PHYSICAL REVIEW E 68, 026116 (2003

10° ‘ . : : : 500
1000
10* | 3 400 750 |
o500 f
10° | :
300 | 250 |
—~ £ 0 L
S U 7O 0 500 1000
200 N,
10 | .
100 |
10° : —
o——o =20
_ 0 - " . L
10" L 5 - - L - 0 100 200 300 400 500
10 10 10 10 10 10 N
f_t) !

FIG. 5. Growth of the largest crack ar€z, with increasing
number of failed fiberdN; for the two extreme load sharing rules
here illustrated fory=0 (long-range interactionand y= 20 (short-

FIG. 4. Scaling of the breaking ratét) (as defined in the text
when approaching the time of material's breakddimndimension-
Iegs units. The v_alues ofy are, from right to left, 0, 4, 5_’ and 20. range interaction The bundle consists oN=900 fibers andp
With the exception ofy=20, the curves have been shifted to the _ 5" 1o straight line is a fit to the for@,,=aN; with a=0.90

. m .

right for the sake of clarity. The least square fit to the data gives forJ_ro 04. The inset shows the evolution®f, up to the macroscopic

the exponent the values(y=0)=0.50.02, {(y=4)=4(¥=5)  preakdown of the system for the same set of parameters.
=0.58+0.02, and{(y=20)=0.66+0.02. The values oN andp

are as of Fig. 3. The inset shows the same quantityyfel0 and

p=10. The scaling exponent is in this case 0.86+0.02. broken cluster does not grow linearly with the number of
broken fibers. In this case, there are isolated cracks inside the
IV. CRACK GROWTH material that grow essentially by coalescence when they

meet each other. This is the reason why sudden jumps in the

A further characterization of what is going on in the frac- area of the largest crack are observed in the intermediate
ture process can be carried out by focusing on the propertiestages of the damage spreading. At the end of the process,
of the clusters of broken fibers. Specifically, we have monithe material has accumulated many of these cracks giving
tored the growth of the cracks inside the bundle. Cracks arése to the linear crack growth shown in the inset.
defined as connected clusters or regions of broken fibers. For localized range of interaction, the mechanism of dam-
Here, we consider a coordination numiget 8, that is, each age spreading is radically different. Again, at small times, the
fiber has eight neighbors. Similar results are obtained if wecracks are randomly nucleated inside the material. However,
take into account only nearest neighbogs=(4). At the very  as time goes on and more fibers get broken, the load is re-
initial stages, regardless of the range of interaction amongistributed to the fibers located along the crack tips provok-
the fibers, the failure of fibers can be assumed to be randonmg the accumulation of stress in these fibers and the appear-
that is, the initial cracks are randomly nucleated inside thence of regions where fibers bear a huge amount of load. It is
material. This situation changes with time for different load-thus expected that the newly broken fibers add to already
transfer schemes. By studying the growth of the largest crackxisting cracks and that a dominant crack appears. From this
areaC, at each time step, one could distinguish the differentperspective, the largest crack area should scale linearly with
mechanisms leading to the rupture of the material as théhe number of broken fibers, i.&€€,,~N;. This is indeed the
range of interaction varies. It is worth noting that this is justcase fory= 20 as represented in Fig. 5. The straight line is a
a way that allows to discern between different ranges of inlinear fit to a time window in which more than 150 fibers
teraction and levels of heterogeneity. For instance, one canave been broken. The value 0.90 of the slope confirms the
consider instead the linear size of the largest crack and studgbove picture. Note that in this case the number of coales-
the fractal dimension of the crack distribution for different  cence events is smaller than for the GLS regime and that

Figure 5 shows a microscopic aspect of the materiakfter one of such events the linear growth of the largest crack
breakdown with time for the two limiting cases of load re- is recovered. We also note that, up to the intermediate stages
distribution and a system consisting df=900 fibers p of the rupture process, the number of broken fibers in the
=2). Initially, it can be seen that cracks are randomly nucledargest crack for a given number of failed fibers is much
ated in the material. At later times, the individual micro- higher in the localized case than in the global one indicating
cracks coalesce thereby causing a jump in the largest cracke formation of a(few) dominant cracts) in the former
area. For long-range interaction, the nucleation of cracksase. Additionally, at the end of the process there are no
continues to be random because all the fibers carry the sandifferences between the two extreme load-transfer schemes
load and thus they break by chance. Therefore, the largesince more than half of the material is already broken and is
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FIG. 6. Growth of the largest crack aréa, with increasing FIG. 7. Snapshots of the clusters when nearly 40% of the sys-

number of failed fibers\; for the local load sharing regime here (o js broken. The bundle consists of 900 fibers and the parameters
illustrated fory=10 and several heterogeneity levels. The bundieqt the model are as follows: top panel=2, andy=10 (left) and

consists 0fN=900 fibers. The inset shows the evolution@f for ., —q (right): bottom panel,p=10, and y=10 (left) and y=0
the long-range interaction regimey{0) and the same levels of (yjght). Note that varying the heterogeneity level fpe=0 does not
heterogeneity. alter the way in which nucleation and crack growth take place. For
localized regimes, as the system gets more homogeneous, the domi-
very unlikely to find a region where isolated cracks can benant crack appears at early stages and drives the whole breakdown
formed and grow. Thus, at the final stage each additionadf the material.
breaking event occurs at the crack tips of existing single
dominant cracks. Nevertheless, as stated in the preceding V. CONCLUSIONS
section, the rate of fiber failures is quite different in both
asymptotic regimes. We shall note here that the same behav- We have extended the fiber bundle model with variable
ior as for the mean-field regime is observed for any value ofange of interaction between fibers to the dynamic setting. As
v provided it is below the transition point.=2. for the static version, two very different regimes are identi-
Figure 6 further substantiates our previous arguments bfied as the exponent of the stress transfer function varies. The
showing how the largest crack area varies as a function dffetime of the material fory<y. does not depend on both
the number of broken fibers for several levels of heterogenethe system size ang qualifying for a mean-field behavior.
ity. While for =0 the picture is always the sarfiase), for ~ On the contrary, for the short-range regime, the time to fail-
v=10, that is, in the localized regime, the time taken forure of the system systematically decreases when increasing
cracks to become dominant decreases with incregsifigir-  the size of the bundle. There is a region in between where
thermore, when the system is very homogenequs X0)  critical indices depend o as found in other related models
and local interactions prevail, a dominant crack which growq38]. The analysis performed also showed that the crossover
until the material collapses is formed almost instantaneouslyegion depends on the level of heterogeneity of the system.
confirming that the mechanism of rupture and crack growttBesides, we investigated how the material approaches its
for homogeneous materials is radically different from that ofpoint of total breakdown in the two limiting cases. The cross-
heterogeneous systems. Nevertheless, for the global loamer from one regime to the other also influences the behav-
case, the change in system’s homogeneity does not alter ther of the rate at which fibers break, explicitly manifested in
way dominant cracks appear and grésee the inset, where a power-law divergence ag; is approached, but with an
no changes, apart from statistical fluctuations, can be obexponent that depends on the range of interaction. This result
served. The reason this happens is given by the way thés relevant from a practical point of view since for the local-
system gets broken. Equatiof®) tell us that the more ized regime the acceleration of the failure process takes place
stressed a fiber is, the more likely it is to break. This alwaysat the very final stages of the rupture process. Although fibers
holds except for the global load sharing case, where the fibreak by fatigue, one by one, they do break in very different
bers share the same amount of load and thus all of them havine intervals according to the range of interaction. In this
the same probability to break. As the system is more homosense, a global load sharing regime is safer, since we get
geneouslargerp), for local load sharing schemes, the prob- more warnings before the material breakdown. On the other
ability of breaking for the same load is higher so that thehand, the precursory activity when the range of interaction
appearance of a dominant crack is enhanced. Therefore, fgets localized is almost absent leading to a sudden break-
long-range interaction there is no correlated crack growthdown of the bundle in a very short time interval.
while for short-range regimes this is precisely the dominant The numerical exploration of the damage spreading
mechanism since the first stages of the damage spreadingmechanisms under different load-transfer regimes further
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supported the results obtained for the lifetime of the systemgrowth is still correlated, but in this case we can identify
Regardless of the range of interaction, the breaking of fibermore than one large and dominant crack. Finally, our results
is a completely random process at the initial stages of thguggest that actually there are two limiting cases relevant to
failure process. After some time, the mechanism of fai|urQ3xperiment5{39], The one in which mean-field assumptions
propagation radically changes when the expongmaries.  apply could be of great importance since this will allow the

In the limiting case of global load sharing there is no corre-extension of known analytic results to ranges of interaction
lated crack growth in the system, whereas for the short-ranggeyondy=0.

regime the damage spreading is driven by a dominant crack,
and thus, the crack growth is strongly correlated with high
stress concentration at the fibers located along the perimeter
of the dominant cluster of broken fibers.

These differences are clearly appreciated in Fig. 7, where One of the authorgY.M.) would like to thank A. F.
we represent snapshots of the lattice when nearly 40% of theacheco and J. B. ‘@wez for valuable comments on this
system is broken for several values ¢fand p. For the  work. O.E.Y. thanks the ICTP and UNESCO for their finan-
long-range interaction limit, the material’'s level of heteroge-cial support and hospitality as well as S. Shenoy, C.
neity does not influence the random nucleation and growth oMicheletti, and A. Vespignani for discussions. Y.M. acknowl-
cracks and there are no clearly distinguishable dominantdges financial support from the Secretade Estado de
cracks. This continues to be so until coalescence drives théducacim y UniversidadegSpain, Grant No. SB2000-0357
further breaking of the material. On the contrary, for local-and of the Spanish DGICYT Project No. BFM2002-01798.
ized regimegleft column in Fig. 7, when the system gets F.K. acknowledges financial support of thélfg Janos Fel-
more homogeneous the dominant crack appears at earlgwship of the Hungarian Academy of Sciences and of the
stages and damage spreading is strongly correlated resefResearch Contracts Nos. FKFP 0118/2001 and T037212.
bling a single crack growth mechanism typical of homoge-This work was partially supported by the project SFB381
neous materials. When the bundle is heterogeneous, craekd by the NATO Grant No. PST.CLG.977311.
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