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Time evolution of damage under variable ranges of load transfer
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We study the time evolution of damage in a fiber bundle model in which the range of interaction of fibers
varies through an adjustable stress transfer function recently introduced. We find that the lifetime of the
material exhibits a crossover from mean-field to short-range behavior as in the static case. Numerical calcu-
lations showed that the value at which the transition takes place depends on the system’s disorder. Finally, we
have performed a microscopic analysis of the failure process. Our results confirm that the growth dynamics of
the largest crack is radically different in the two limiting regimes of load transfer during the first stages of
breaking.
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I. INTRODUCTION

The phenomenon of fracture in heterogeneous materia
a complex physical problem which has been of great inte
to scientists for quite a long time@1–3#. A disordered system
is understood to be one with random time or/and space
pendent breaking properties@1#. The random nature of this
dependence arises because modeling the fracture of he
geneous materials entails dealing with systems made u
many constituents, each one having mechanical prope
that can be considered as being independent of the prope
of the other constituents, but with many body interactio
among the different parts of the system@1–3#. In heteroge-
neous materials, the evolution of the rupture process is r
cally different from the single crack growth mechanism th
occurs in homogeneous materials. Though there is neith
complete numerical solution nor analytic solution to the fra
ture problem, we have a better understanding of it due
some recent algorithms that have been developed to sim
the fracture process@4–8#.

Fiber bundle models~FBM! form a fundamental class o
approaches to the fracture problem. They arose in close
nection with Daniels’ and Coleman’s seminal works on t
strength of bundles of textile fibers@9,10# and have harbored
an intense research activity in recent years@1–4,11–21#. Re-
cent progresses on load-transfer models are discussed in
@22#. Fiber bundle models are important, despite their v
simple nature, because they exhibit most of the essentia
pects of material breakdown. In addition, the deep und
standing of fracture processes they provide has served
starting point for more complex models@13–15,23–25#. In
FBMs the material is made up of a set of parallel fibers, e
having a statistically distributed threshold strength or li
time. Besides the classical static FBM, one can also in
duce a dynamic version@18#. In the static FBM, the failure
process is simulated according to a quasistatic loading of
material in which the output of the simulation is the ultima
strength of the material, i.e., the maximum load above wh
it breaks down. In the dynamic FBM, a constant load
1063-651X/2003/68~2!/026116~8!/$20.00 68 0261
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maintained on the system and the fibers break by fati
after some time.

After a fiber breaking, the load acting on it is redistribut
among the intact fibers according to the stress redistribu
rule associated with the particular load-transfer model. Th
are two standard load-transfer models comprising the F
and they correspond to the extreme limits of stress redis
bution. The global load sharing~GLS! redistributes the load
of a failed fiber equally among the active fibers remaining
the system. It is known as the global fiber bundle model, a
assumes long-range interaction among the fibers wh
makes it a mean-field approximation that can be solved a
lytically @11,12#. On the other hand, the local load sharin
~LLS! redistributes the load of a failed fiber among the inta
fibers that are nearest neighbors to the failed ones, and is
known as the local fiber bundle model. This assumes sh
range interaction among the fibers and with a few excepti
@26#, models based on LLS rules have not been solved a
lytically. However, in actual heterogeneous materials,
stress redistribution is expected to fall in between the t
regimes of load-transfer. Very recently, some of us have p
posed a load transfer scheme with variable range of inte
tion among the fibers, which interpolates between the t
extreme cases. Since most of the physics of the frac
problem is hidden in the stress redistribution, consider
within the same model the possibility of varying the range
interaction is a relatively greater improvement toward a b
ter understanding of the fracture problem.

Motivated by the results obtained for the static setting,
have studied a stochastic dynamic fiber bundle model
which fibers break by fatigue over a period of time, such t
the range of interaction among fibers is variable through
adjustable stress transfer function. We have observed a c
over from mean-field to short-range behavior for the mac
scopic quantities describing the fracture dynamics as in
static case. In addition, a more detailed inspection of
failure process revealed that the microscopic behavior of
system is also different as the range of interaction var
Finally, we have also studied the effect of heterogeneity
©2003 The American Physical Society16-1
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the failure process from macroscopic as well as microsco
perspectives. The rest of the paper continues with the
scription of the stochastic model in the following sectio
Section III is devoted to studying the lifetime of the bund
and the rate at which fibers break when the range of inte
tion changes. The damage spreading for several load-tran
modalities is addressed in Sec. IV, while the last section
devoted to conclusions rounding off the paper.

II. THE STOCHASTIC MODEL

We assign each fiber to the sites of a square lattice, w
periodic boundary conditions. Assuming elastic interact
among the fibers, we may state that the stress redistribu
obeys a power law@25#,

s inc;
1

r i j
g

, ~1!

where s inc is the load increment on an intact fiberi at a
distancer i j from the failed fiberj andg is a variable param-
eter that controls the effective range of interaction among
fibers @27#. g50 corresponds to GLS since the addition
load on each intact fiber as a result of a fiber breaking is
same irrespective of its distance from the broken fiber.
the other hand,g5` corresponds to LLS since in this lim
only the nearest neighbors get equal portions of the load
failed fiber ands inc50 for r .1. Assuming that there is no
dissipation of the load of a failed fiber, Eq.~1! leads us to the
normalized stress transfer function

S~g,r i j !5
1

r i j
g

1

(
i PA

r i j
2g

, ~2!

wherer i j being the distance between an active fiberi, with
coordinates (xi ,yi), and a failed fiberj, with coordinates
(xj ,yj ), andA denotes the set of intact fibers.

One can consider two equivalent approaches to the
namic FBM @30–32#. The time elapsed until the final co
lapse of the system is the lifetime or time to failure of t
bundle. In the first approach@30#, the lifetime of each ele-
ment is an independent identically distributed random v
able, i.e., each fiber has a different random lifetime, tak
from the same statistical distribution~the Weibull distribu-
tion is a good empirical distribution in materials science a
is adopted henceforth! and each one breaks if the tim
elapsed exceeds its individual lifetime. This is aquenched
model of fracture where the disorder is introduced once
all at the beginning of the process and thus the gro
mechanism is deterministic. In this version, the effect of
increase in stress for a particular fiberi due to the redistri-
bution of load from failed fibers is the reduction of its in
tially assigned lifetimet i to a new lifetimet i given by

t i5E
0

t i S s i~ t !

s0
D r

dt, ~3!
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wheres0 is the initial stress on fiberi at t50 andr is the
Weibull index, 2<r<50. r gives the degree of heterogen
ity of the system; asr increases the system becomes mo
homogeneous. In this model, the next element to brea
exactly the one with the lowest lifetime at timet.

In the probabilistic approach@31,32#, it is considered that
in a time step all the intact elements have the same m
time to failure. The element that breaks in the time inter
between two successive failures is selected by chance
thus the fiber whose probability of breaking~a function of
the load it bears! is the largest is more likely to fail. The
probabilistic approach is an example of the so calledan-
nealeddisorder since the algorithm is stochastic and th
randomness is uncorrelated in time. Thus, we start at timt
50 with N fibers loaded with an initial common stress
s i(t)5s i(0)51. The mean time intervald for an individual
element to break by fatigue is

d5
1

(
i PA

s i
r~ t !

, ~4!

whereA is the set of intact fibers andt is the time elapsed up
to k21 breaking, i.e.,t5(p51

k21dp . In the first time interval,
where s i51 ; i , with all the N elements active,d1

51/Ns i
r so that the first fiber breaking is completely ra

dom. This changes with time due to stress transfers and fi
failures. The probability of a particular fiber breakingj in
one sweep of the lattice in the time intervaldk , is given by

Pj~ t !5s j
r~ t !dk . ~5!

When a fiber breaks, its load is transferred and as a c
sequence, the probability of failure of the receptors is
creased. In this sense there are no weak or strong fibers
the fibers are equivalent but carry different loads~except for
mean-field approaches! and thus have different breakin
probabilities. The two approaches described above have b
shown to be equivalent at least within the FBM context
GLS, LLS, and hierarchical load sharing rules@18,31#. The
spirit of the annealed approximation, that will be adopt
here, can be intuitively understood by noting that in bo
models the load history plays a key role. For thequenched
setting, the fiber the one breaks is that with the lowest li
time which in its turn depends on the load history. Since
individual times to failure are reduced each time a fiber
ceives load from a failed element, the more stressed a fi
is, the more likely its lifetime is the lowest. On the oth
hand, for theannealedversion the magnitude that is mod
fied by the load redistribution is the probability of breakin
and the load history affects the failure process just as in
deterministic version: the more stressed a fiber is, the m
likely it breaks. Additionally, we note that this algorithm
the same as the one used in polymer failure@33# and in
describing dielectric breakdown@34# with the main distinc-
tion that here the broken fibers need not be connected to
single growing cluster as in dielectric breakdown.
6-2



is
l

e
f
.
e

as
-

th

th
e
o
s-

is
n

,
th
co
:

th
iv
fro

In
e
an
at

ic
s
e
h
m
te
n

e
rs is
pa-
ad
-
lly

the
l
tion
uc-
to
at
ri-

s
ge-
at
ter-
g-

ior

c-
rve

the
the

re-
the

the
e-
not-
of

-
ior
(

TIME EVOLUTION OF DAMAGE UNDER VARIABLE . . . PHYSICAL REVIEW E 68, 026116 ~2003!
Now, the load borne by the fiber that has just failed
redistributed according to Eq.~1! such that in a time interva
Dt5tk2tk215(p51

k dp2(p51
k21dp5dk , the load increase on

the active fiberi reads as

s i~ tk!5s j~ tk21!S~g,r i j !1s i~ tk21!, ~6!

wheres j is the load of the element that has failed in the tim
interval Dt after k fiber failures. After the redistribution o
load, the rupture process continues by applying again Eq~5!
that will point to the next fiber to break. The lifetime of th
material is then given by the sum of all theN ds, Tf

5( i 51
N d i .

The complete analytic solution to the dynamic FBM
defined above in the GLS (g50) case is feasible. The life
time of the material can be computed as

Tf5E
1

N ~N112x!r21

Nr
dx5

1

r F12
1

NrG , ~7!

which includes also the dependence of the lifetime on
system sizeN giving the mean-field result 1/r in the thermo-
dynamic limit.

We should note that there is no avalanche here, unlike
static case@25#, since there is no external driving on th
system. Once the fibers start breaking by fatigue, they c
tinue breaking with time until the final collapse of the sy
tem, but within a time intervaldk , only one fiber may break
in a single sweep of the lattice.

We note that both Eqs.~3! and ~5! assume a power-law
breaking rule kp(s)5n0(s/s0)r. This stems from the
former assumption that the lifetimes satisfy the Weibull d
tribution. An alternative breaking rule could be an expone
tial hazard rate of the formke(s)5f exp@h(s/s0)# mainly
used for thermally activated processes. On the other handkp
has the same functional form as the Charles power law
describes the subcritical crack growth induced by stress
rosion in geological materials at constant temperaturev
5AKI

n , wherev is the crack velocity andKI is the stress
intensity factor for modeI fracture. Sometimes,n is known
as the stress corrosion index. Moreover, we emphasize
Eq. ~4! is not a real measure of time so that a quantitat
comparison between the results here shown and those
experiments is not feasible. Additionally, Eq.~4! is a simple
form one can consider for the probability of breaking.
principle, one could also include more realistic rules. Nev
theless, as we shall see, this simple model is very rich
might help understand physical effects present in real m
rials.

III. LIFETIME OF THE BUNDLE

We simulate the failure process by large scale numer
simulations. We first explore the behavior of the lifetime a
function of the stress transfer range for a fixed level of h
erogeneity (r52). Then, we vary the Weibull index suc
that we get a more homogeneous system with smaller ti
to failure. The results obtained for the lifetime are depic
in Fig. 1 for different values of the range of interactio
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among the fibers and several system sizes up toN56400
fibers. A crossover from mean-field behavior to a regim
dominated by the short-range interactions among the fibe
clearly appreciated. Furthermore, the critical value of the
rametergc defines a region where the results for global lo
sharing models hold beyondg50, the true mean-field re
gime for which the load of a failed element is shared equa
among the surviving elements. Forg<gc , the material be-
haves macroscopically as forg50, that is, the lifetime is
independent of the system size and does not depend on
actual value of the exponentg. It is not a simple numerica
task to determine accurately the exact value of the transi
point due to the stochastic nature of the model and the fl
tuations of the lifetime of the system. In fact, the time
failure of the bundle follows a Gaussian distribution in wh
concerns its frequency distribution. The width of the dist
bution depends on the level of heterogeneity~controlled by
the Weibull index! that in turn also influences the lifetime
that become shorter as we move to high levels of homo
neity. Within this numerical uncertainty we have found th
gc;2. Interestingly, the same value was found to charac
ize the transition of the bundle’s ultimate strength from lon
to short-range behavior in the static setting of the model@25#.

The influence of the disorder on the crossover behav
can be studied by changing the value ofr. Figure 2 shows
the time to failure of the material as a function of the effe
tive range of interaction for several system sizes. We obse
that the transition is still present but the range where
mean-field regime applies is reduced. In particular, as
system gets more homogeneousgc shifts leftwards to
smaller values. Additionally, the true local load sharing
gime appears to be also slightly shifted to the left. When
range of interactiong is above a second-transition pointgc2,
the lifetime of the bundle becomes again independent of
effective interaction among the fibers but it is still size d
pendent. This later behavior can be easily understood by
ing that for local load sharing schemes, the time to failure

FIG. 1. Dimensionless lifetimeTf versus effective range of in
teractiong. The crossover from mean-field to short-range behav
is obtained at the same transition point as in the static caser
52).
6-3
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the system in the thermodynamic limit is zero@35#. We have
checked that in our model this is actually verified, althou
the drop of the lifetime as the system size is increase
slow. On the other hand, wherever the GLS regime aris
the time to failure of the system is not size dependent
largeN @see Eq.~7!#.

Another way to characterize the evolution of the fractu
process is to inspect the rate at which fibers fail. We exp
two different asymptotic regimes. For long-range interacti
i.e., belowgc the system should behave in a mean-field m
ner. This means that damage is gradually accumulated in
material up to a point in which the load is too high as to
carried by the remaining fibers. Only at this stage of
damage process, the rate of fiber failures will speed up ow
to the small values of the very lastds. On the contrary, in the
region where short-range interaction prevails, the sys
does not accumulate damage uniformly. In this case, th
appear regions within the material in which stress enhan
ment takes place making the fibers along the crack tips
support much more load than other active fibers placed
from the clusters of broken fibers. Accordingly, theds would
be modified and there would be more breaking for thesame
time interval. In other words, the breakdown of the mate
occurs suddenly for the very localized regime where ab
50% of the fibers break in a time interval of the order
0.1Tf . In Fig. 3, we have represented the evolution with tim
of the number of broken fibersNf for different values ofg.
Two distinct groups of curves corresponding to the extre
cases can be clearly seen. For intermediate values of
effective range of interaction, the behavior is more like t
case of long-range interaction and may correspond to o
load sharing schemes such as the hierarchical fiber bu
model @18,36#.

Consider that the breaking rate of the bundle is defined

FIG. 2. Comparison of the time to failure~dimensionless! ob-
tained for different heterogeneity levelsr as the range of interaction
varies. The inset corresponds tor55 while the main figure has
been drawn consideringr510. Clearly, the crossover behavior
still present although the value of the transition point depends or.
As the system gets more homogeneous,gc shifts leftward.
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r ~ t !5
dNf~ t !

dt
, ~8!

with Nf(0)50 andNf(Tf)5N. Upon approaching the com
plete failure, the breaking rate scales with the lifetime of t
material as@37#

r ~ t !;~Tf2t !2z, ~9!

where the exponentz depends on both the range of intera
tion and the Weibull index. However, we can again ident
two limiting groups of curves for the same value ofr. Figure
4 shows the rate of fiber breaking for several load-trans
ranges and a Weibull indexr52. These results confirm th
behavior observed for the evolution of the number of brok
fibers, namely, that there is a sharp increase in the failure
when approaching the lifetime for the case where short-ra
interaction dominates the damage spreading. The fit to
curves givesz'1/2 for g<gc andz'2/3 wheng is in the
range where the effective interaction among the fibers can
assumed to be very localized. Note that the curves for in
mediate values ofg and for the GLS regime have bee
shifted for the sake of clarity. The numerical results are
very smooth because of fluctuations but the general tren
r (t) confirms the validity of relation~9!. As to the depen-
dence of the above results on the heterogeneity level,
have observed that the less heterogeneous the material is
sharper the failure acceleration is in all cases. The inse
Fig. 4 shows the breaking rate for the case of long-ran
interaction andr510. The higher value ofz'0.86 indicates
that much of the fibers break in a very small time interv
close to the lifetime of the material. As the range of intera
tion gets more localized, the exponentz approaches unity.

FIG. 3. Normalized number of broken fibers as a function
dimensionless time~also normalized to the lifetime of the bundle!.
Two groups of curves can be clearly distinguished correspondin
the long-range and short-range regimes. The results have bee
tained for a system ofN52500 fibers andr52.
6-4
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IV. CRACK GROWTH

A further characterization of what is going on in the fra
ture process can be carried out by focusing on the prope
of the clusters of broken fibers. Specifically, we have mo
tored the growth of the cracks inside the bundle. Cracks
defined as connected clusters or regions of broken fib
Here, we consider a coordination numberq58, that is, each
fiber has eight neighbors. Similar results are obtained if
take into account only nearest neighbors (q54). At the very
initial stages, regardless of the range of interaction am
the fibers, the failure of fibers can be assumed to be rand
that is, the initial cracks are randomly nucleated inside
material. This situation changes with time for different loa
transfer schemes. By studying the growth of the largest cr
areaCm at each time step, one could distinguish the differ
mechanisms leading to the rupture of the material as
range of interaction varies. It is worth noting that this is ju
a way that allows to discern between different ranges of
teraction and levels of heterogeneity. For instance, one
consider instead the linear size of the largest crack and s
the fractal dimension of the crack distribution for differentr.

Figure 5 shows a microscopic aspect of the mate
breakdown with time for the two limiting cases of load r
distribution and a system consisting ofN5900 fibers (r
52). Initially, it can be seen that cracks are randomly nuc
ated in the material. At later times, the individual micr
cracks coalesce thereby causing a jump in the largest c
area. For long-range interaction, the nucleation of cra
continues to be random because all the fibers carry the s
load and thus they break by chance. Therefore, the lar

FIG. 4. Scaling of the breaking rater (t) ~as defined in the text!
when approaching the time of material’s breakdown~in dimension-
less units!. The values ofg are, from right to left, 0, 4, 5, and 20
With the exception ofg520, the curves have been shifted to t
right for the sake of clarity. The least square fit to the data gives
the exponent the valuesz(g50)50.560.02, z(g54)5z(g55)
50.5860.02, andz(g520)50.6660.02. The values ofN and r
are as of Fig. 3. The inset shows the same quantity forg50 and
r510. The scaling exponent is in this casez50.8660.02.
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broken cluster does not grow linearly with the number
broken fibers. In this case, there are isolated cracks inside
material that grow essentially by coalescence when t
meet each other. This is the reason why sudden jumps in
area of the largest crack are observed in the intermed
stages of the damage spreading. At the end of the proc
the material has accumulated many of these cracks giv
rise to the linear crack growth shown in the inset.

For localized range of interaction, the mechanism of da
age spreading is radically different. Again, at small times,
cracks are randomly nucleated inside the material. Howe
as time goes on and more fibers get broken, the load is
distributed to the fibers located along the crack tips prov
ing the accumulation of stress in these fibers and the app
ance of regions where fibers bear a huge amount of load.
thus expected that the newly broken fibers add to alre
existing cracks and that a dominant crack appears. From
perspective, the largest crack area should scale linearly
the number of broken fibers, i.e.,Cm'Nf . This is indeed the
case forg520 as represented in Fig. 5. The straight line i
linear fit to a time window in which more than 150 fibe
have been broken. The value 0.90 of the slope confirms
above picture. Note that in this case the number of coa
cence events is smaller than for the GLS regime and
after one of such events the linear growth of the largest cr
is recovered. We also note that, up to the intermediate sta
of the rupture process, the number of broken fibers in
largest crack for a given number of failed fibers is mu
higher in the localized case than in the global one indicat
the formation of a~few! dominant crack~s! in the former
case. Additionally, at the end of the process there are
differences between the two extreme load-transfer sche
since more than half of the material is already broken an

r

FIG. 5. Growth of the largest crack areaCm with increasing
number of failed fibersNf for the two extreme load sharing rule
here illustrated forg50 ~long-range interaction! andg520 ~short-
range interaction!. The bundle consists ofN5900 fibers andr
52. The straight line is a fit to the formCm5aNf with a50.90
60.04. The inset shows the evolution ofCm up to the macroscopic
breakdown of the system for the same set of parameters.
6-5
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very unlikely to find a region where isolated cracks can
formed and grow. Thus, at the final stage each additio
breaking event occurs at the crack tips of existing sin
dominant cracks. Nevertheless, as stated in the prece
section, the rate of fiber failures is quite different in bo
asymptotic regimes. We shall note here that the same be
ior as for the mean-field regime is observed for any value
g provided it is below the transition pointgc52.

Figure 6 further substantiates our previous arguments
showing how the largest crack area varies as a function
the number of broken fibers for several levels of heteroge
ity. While for g50 the picture is always the same~inset!, for
g510, that is, in the localized regime, the time taken
cracks to become dominant decreases with increasingr. Fur-
thermore, when the system is very homogeneous (r510)
and local interactions prevail, a dominant crack which gro
until the material collapses is formed almost instantaneou
confirming that the mechanism of rupture and crack grow
for homogeneous materials is radically different from that
heterogeneous systems. Nevertheless, for the global
case, the change in system’s homogeneity does not alte
way dominant cracks appear and grow~see the inset, where
no changes, apart from statistical fluctuations, can be
served!. The reason this happens is given by the way
system gets broken. Equation~5! tell us that the more
stressed a fiber is, the more likely it is to break. This alwa
holds except for the global load sharing case, where the
bers share the same amount of load and thus all of them
the same probability to break. As the system is more hom
geneous~largerr), for local load sharing schemes, the pro
ability of breaking for the same load is higher so that t
appearance of a dominant crack is enhanced. Therefore
long-range interaction there is no correlated crack grow
while for short-range regimes this is precisely the domin
mechanism since the first stages of the damage spreadi

FIG. 6. Growth of the largest crack areaCm with increasing
number of failed fibersNf for the local load sharing regime her
illustrated forg510 and several heterogeneity levels. The bun
consists ofN5900 fibers. The inset shows the evolution ofCm for
the long-range interaction regime (g50) and the same levels o
heterogeneity.
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V. CONCLUSIONS

We have extended the fiber bundle model with varia
range of interaction between fibers to the dynamic setting
for the static version, two very different regimes are iden
fied as the exponent of the stress transfer function varies.
lifetime of the material forg,gc does not depend on bot
the system size andg qualifying for a mean-field behavior
On the contrary, for the short-range regime, the time to f
ure of the system systematically decreases when increa
the size of the bundle. There is a region in between wh
critical indices depend ong as found in other related mode
@38#. The analysis performed also showed that the crosso
region depends on the level of heterogeneity of the syst
Besides, we investigated how the material approaches
point of total breakdown in the two limiting cases. The cros
over from one regime to the other also influences the beh
ior of the rate at which fibers break, explicitly manifested
a power-law divergence asTf is approached, but with an
exponent that depends on the range of interaction. This re
is relevant from a practical point of view since for the loca
ized regime the acceleration of the failure process takes p
at the very final stages of the rupture process. Although fib
break by fatigue, one by one, they do break in very differ
time intervals according to the range of interaction. In th
sense, a global load sharing regime is safer, since we
more warnings before the material breakdown. On the ot
hand, the precursory activity when the range of interact
gets localized is almost absent leading to a sudden br
down of the bundle in a very short time interval.

The numerical exploration of the damage spread
mechanisms under different load-transfer regimes furt

e

FIG. 7. Snapshots of the clusters when nearly 40% of the s
tem is broken. The bundle consists of 900 fibers and the param
of the model are as follows: top panel,r52, andg510 ~left! and
g50 ~right!; bottom panel,r510, and g510 ~left! and g50
~right!. Note that varying the heterogeneity level forg50 does not
alter the way in which nucleation and crack growth take place.
localized regimes, as the system gets more homogeneous, the d
nant crack appears at early stages and drives the whole break
of the material.
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supported the results obtained for the lifetime of the syst
Regardless of the range of interaction, the breaking of fib
is a completely random process at the initial stages of
failure process. After some time, the mechanism of fail
propagation radically changes when the exponentg varies.
In the limiting case of global load sharing there is no cor
lated crack growth in the system, whereas for the short-ra
regime the damage spreading is driven by a dominant cr
and thus, the crack growth is strongly correlated with h
stress concentration at the fibers located along the perim
of the dominant cluster of broken fibers.

These differences are clearly appreciated in Fig. 7, wh
we represent snapshots of the lattice when nearly 40% o
system is broken for several values ofg and r. For the
long-range interaction limit, the material’s level of heterog
neity does not influence the random nucleation and growt
cracks and there are no clearly distinguishable domin
cracks. This continues to be so until coalescence drives
further breaking of the material. On the contrary, for loc
ized regimes~left column in Fig. 7!, when the system get
more homogeneous the dominant crack appears at e
stages and damage spreading is strongly correlated re
bling a single crack growth mechanism typical of homog
neous materials. When the bundle is heterogeneous, c
ed

y

e
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growth is still correlated, but in this case we can ident
more than one large and dominant crack. Finally, our res
suggest that actually there are two limiting cases relevan
experiments@39#. The one in which mean-field assumption
apply could be of great importance since this will allow t
extension of known analytic results to ranges of interact
beyondg50.
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