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Epidemic incidence in correlated complex networks
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We introduce a numerical method to solve epidemic models on the underlying topology of complex net-
works. The approach exploits the mean-field-like rate equations describing the system and allows us to work
with very large system sizes, where Monte Carlo simulations are useless due to memory needs. We then study
the susceptible-infected-removed epidemiological model on assortative networks, providing numerical evi-
dence of the absence of epidemic thresholds. Besides, the time profiles of the populations are analyzed. Finally,
we stress that the present method would allow us to solve arbitrary epidemiclike models provided that they can
be described by mean-field rate equations.
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A few years ago, Watts and Strogatz@1# introduced a
model able to produce networks with properties of both re
lar lattices and random graphs with small diameter. Th
model soon led to a burst of activity in the field@2,3#, further
spurred by Baraba´si and co-workers who found that man
seemingly diverse systems share several topological pro
ties such as a power-law behavior in their connectivity d
tributions when represented as networks@4#. These complex
networks are formed by a set of many elements~or nodes!
that are linked together through edges~or links! if they in-
teract directly. Empirical evidence supports that in nota
networks, such as metabolic or communication webs,
probability P(k) that any node hask links to other nodes is
distributed accordingly to a power lawP(k);k2g @5–7#,
with g<3 in most cases.

Networks of this type, called scale-free~SF! networks,
show a noticeable property: the heterogeneity of the conn
tivity distribution cannot be neglected. One of the fundam
tal results derived from this property is that the thresh
characterizing the percolation transition or an epidemic o
break is vanishing in the thermodynamic limit@8–11#. On
the other hand, many real-world networks are also charac
ized by degree correlations@12,13#, which make it necessar
to reconsider the same problems but taking into account
conditional probabilityP(k8uk) that a link emanating from a
node of connectivity~or degree! k leads to a node of connec
tivity k8. Very recently, it has been shown analytically th
the presence of nontrivial correlations does not change
main conclusions drawn for uncorrelated graphs, namely,
absence of percolation and epidemic thresholds@14,15# un-
der very general conditions. However, neither complete ex
solutions nor numerical studies of the system’s dynam
have been reported. From a theoretical side, it seems an
surmountable task to work out such a study. In contrast,
though feasible, numerical simulations using Monte Ca
techniques would be quite arduous since one should
generate a network with the proper correlations and then
form expensive Monte Carlo simulations for large syst
sizes, where memory requirements could seriously limit
size of the networks under study.
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In this paper, we present an efficient numerical meth
that allows the study of epidemiclike models on the under
ing topology of complex networks with arbitrary connecti
ity distributions and degree-degree correlations. The met
solves the mean-field rate equations describing the dynam
of the system, where the topological properties are accou
for. Specifically, we fully analyze the susceptible-infecte
removed~SIR! model in networks with assortative correla
tions, where nodes tend to be linked with their connectiv
peers@16# as for the case of social networks. Our results
compared with those obtained for uncorrelated networks
confirm the previous findings about the absence of any
demic threshold. Besides, we report on the time evolution
the individual populations which allow us to draw interesti
conclusions when confronted to uncorrelated networks.

The SIR model@17,18# considers that individuals are clas
sified in three classes according to their state: suscept
infected, and removed. The epidemic is propagated by c
tacts between infected and susceptible individuals at a ratl.
Thus, once an individual gets infected and recovers he c
not catch the epidemic again. Moreover, in networks w
power-law distributed connectivities one also has to cons
the presence of nodes with different connectivityk within
each category. We consider the time evolution of the mag
tudesrk(t), sk(t), and r k(t), which are the density of in-
fected, susceptible, and removed nodes of connectivityk at
time t, respectively, with the normalization conditionrk(t)
1sk(t)1r k(t)51. Global quantities can be obtained by a
eraging over the connectivity classes. In this way, the fr
tion of infected individuals~or the epidemic incidence! is
given by r (t)5(kP(k)r k(t).

The mean-field rate equations for the evolution of the
densities satisfy the following set of coupled different
equations@17#:

dsk~ t !

dt
52lksk~ t !(

k8
P~k8uk!rk8 , ~1!

drk~ t !

dt
52rk~ t !1lksk~ t !(

k8
P~k8uk!rk8 , ~2!
©2003 The American Physical Society03-1
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drk~ t !

dt
5rk~ t !, ~3!

with the initial conditionss(0)5(N21)/N, r(0)51/N, and
r (0)50. In the above equations, it is considered that
fected individuals recover with unitary rate. Moreover, t
creation term in Eq.~2! is proportional to the density o
susceptible individuals,sk(t), times the spreading ratel, the
number of emanating linksk, and the probability that any
neighboring node is infected. This probability is given by t
average over all degrees of the probabilityP(k8uk)rk8 that a
link emanated from a node with connectivityk points to an
infected node with degreek8 @15,19#.

The numerical approach introduced here is based o
different interpretation of the mean-field rate equatio
~1!–~3! and is implemented as follows. Indeed, these eq
tions describe a process in which individuals are decay
from one state to another. Hence, one can speak in te
of transition probabilities from the class of susceptible o
infected and finally onto removed individuals, i.e.,

sk ——→
Wsr

k

rk ——→
Wrr

k

r k .

From Eqs.~1!–~3! we get the transition probabilities at eac
time stept,

Wsr
k ~ t !5lkNP~k!sk~ t !(

k8
P~k8uk!rk8~ t !, ~4!

Wrr
k ~ t !5NP~k!rk~ t !, ~5!

where all the topological information is contained. The me
time intervalt for one transition to occur afteri 21 decays is

t5
1

Wsr~ t !1Wrr~ t !
, ~6!

with Wsr(t)5(kWsr
k (t), Wrr(t)5(kWrr

k (t), and t
5( j

i 21t j . That is, at any instantt of the decaying process,t
represents the mean time for the next individual decay. O
the transition probabilities~4! and~5! are calculated, we sto
chastically decide what transition takes place. Nodes are
vided in three classes according to their state and, wi
each of these classes, they are also characterized by
connectivityk. Hence, the identification of both what trans
tion occurs and which classk is affected after onet is done
by deciding that the probabilities that precisely a node w
connectivityk changes its state at timet are given by

Psr
k ~ t !5Wsr

k ~ t !t, Prr
k ~ t !5Wrr

k ~ t !t, ~7!

materializing the choice by generating a random number
tween 0 and 1. In other words, the individual decays wit
each connectivity classk proceeds by chance with the pro
abilities dictated by Eq.~7! until the end of the spreadin
process, i.e., when the conditionrk50 is verified; k. It is
worth mentioning that the present stochastic approach
been successfully applied to the study of time-depend
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models of fracture@20,21#. Besides, we remark that the ma
advantage of the method lies in the fact that we do not h
to know explicitly the connectivity matrix, but only a func
tional form for P(k8uk). Therefore, in contrast to Monte
Carlo simulations, we do not generate any network. Inste
we generate a sequence of integers distributed according
power lawP(k);k2g for the node’s connectivities.

In order to compare the SIR dynamics in uncorrelated a
correlated networks, we set henceforthg53. For uncorre-
lated networks, the two-point degree correlation functi
P(k8uk) is of the form

P~k8uk!5qk85
k8P~k8!

^k&
. ~8!

Furthermore, consider the case in which the degree corr
tions can be decomposed into two components

P~k8uk!5~12a!qk81adkk8 , ~9!

with 0<a,1. Varying the parametera one interpolates be
tween the uncorrelated graphs (a50) and a graph with posi-
tive degree correlations@14,22#.

We have studied the effects introduced by assortative
relations given by Eq.~9! in the spreading of a disease. S
cial networks are the capital example of assortative netwo
and, although positively correlated, do not have high cor
lation coefficients@16#, hence, we have used small values
a in our simulations. Figure 1 shows the epidemic inciden
R5r (t`)5(kP(k)r k(t`), averaged over many realization
wheret` is the lifetime of an epidemic outbreak. The resu
indicate that the epidemic incidence in networks with ass
tative correlations is smaller than that for uncorrelated o
with the same degree distribution. However, the epidem
threshold in the thermodynamic limit is not modified by th
presence of positive correlations and is vanishing whenN
→`. The inset in Fig. 1 is a plot ofR as a function of 1/l for
an uncorrelated network witĥk&56. The behavior nicely
fits the theoretical predictionR;e22/̂ k&l @17#, being the

FIG. 1. Epidemic incidence in scale-free networks withg53
and N5105 with ~full squares! and without correlations~full
circles! as a function of the spreading ratel. The assortative cor-
relations are given by Eq.~9! with a50.1. The inset is a fit to the
analytic relationR;e22/̂ k&l. See the text for details.
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slope of the straight line equal to 0.36(1). This constitutes a
further test of the validity of the approach presented here
to the correlated networks, they satisfy the same functio
form R;e2C/l but approach zero more slowly. Thus, th
numerical findings confirm some theoretical arguments
cently pointed out about the absence of any epidemic thr
old in SF correlated networks withg<3 @14,15#. Moreover,
we note that in finite size networks with assortative corre
tions the effective threshold is larger, suggesting that th
networks are more robust than uncorrelated ones.

The high heterogeneity of SF networks also causes
the relative incidence of an outbreak strongly depends on
connectivity of the first infected nodes@17#. First, we ex-
plored the likelihood of an epidemic outbreak,Pout as a
function of the connectivityki of the initial infected node.
This probability is obtained by dividing the number of tim
an epidemic developed by the total attempts made. The
sults are summarized in Fig. 2. As can be observed, no m
ter whether or not correlations are present, the probability
having an epidemic outbreak is the same for both kind
networks. This behavior changes when coarse graining
results of Fig. 1. The results shown in Fig. 3 have be
obtained by simulating the SIR dynamics when the init
infected node has a connectivityki and recording the epi
demic incidence in each case. Now, the number of indivi
als within the removed class at the end of the spread
process significantly depends on the correlations. Note
this is not a consequence of the smaller value of the epide
incidence for assortative correlations. In fact, the first par
the curves, up to intermediate values ofki , follows a loga-
rithmic dependency on the connectivity, but the number
removed individuals for uncorrelated networks grows fas
than for correlated ones. This behavior can be intuitiv
understood since in assortative networks, nodes are ma
connected with their connectivity peers~even for small val-
ues of a), whereas in uncorrelated networks it is alwa
possible that a poorly connected node transmits the dis

FIG. 2. Likelihood of an epidemic outbreak as a function of t
connectivity of the initial seed. The value ofl has been set to 0.15
Note that the introduction of correlations does not change the p
ability of having an outbreak. The figure is in log-linear scales
clarity. The network’s parameters are as of Fig. 1.
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to a hub. In other words, the random mixing leads to a hig
R and favors the propagation of the outbreak.

The method introduced here also allows the exploration
the time dependency of the quantities characterizing the
demic spreading. Note that the time profiles, in contras
Monte Carlo simulations, are in units ofl21 and thus they
can be used as a real quantitative measure. Figure 4 plot
time evolution of the fraction of removed individuals an
that of the infected nodes for the two networks under stu
when the initial infected individual has the largest connect
ity kmax. Here, as before, by simple inspection one wou
not be able to distinguish the behavior of these magnitude
both networks as they show the same functional depende
on time. However, a more careful look at the plateau
R(lt) reveals that the epidemic lifetime is longer for ass
tative correlations than for uncorrelated networks. This i

b-
r

FIG. 3. Epidemic incidence as a function of the connectivity
the initial seed forl50.15. The dependency on the initial seed
stronger for uncorrelated networks. The network’s parameters a
of Fig. 1. See the text for further details.

FIG. 4. Time evolution of the epidemic incidence~main figure!
and of the density of infected individuals~inset! when the initial
infected individual has the largest connectivitykmax for both uncor-
related and correlated networks.l is equal to 0.15. The network’s
parameters are as of Fig.1.
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direct consequence of the correlations. Starting from the v
hub of the network, as time goes on, the epidemic is pro
gated, on average, from highly connected nodes down to
connected individuals such that when the end of the proc
is approaching, the mean time for individual decays is lon
and longer leading to an effective deceleration of the e
demic spreading process. This is not the case any more w
random mixing rules out any correlated spreading. A furt
evidence of this mechanism is provided in the inset wher
can be clearly noted that the two density profiles cross w
before the final death of the disease.

In summary, we have introduced an efficient numeri
method that allows us to explore the spreading of epide
diseases in complex correlated networks without genera
explicitly the network with the proper correlations. We ha
studied the SIR epidemiological model in assortative n
works and found that its qualitative behavior is the same
for uncorrelated networks. However, from a more practi
perspective, there are some important quantitative dif
ences that deserve to be considered more carefully and m
om

v.
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the inclusion of correlations in current studies meaningful.
particular, while the likelihood of an epidemic outbreak
not modified when taking into account positive correlation
the epidemic incidence is smaller than in networks with
correlations. In large social networks this may lead to a d
ference of 15%–20% of infected people for moderate val
of l. On the other hand, we have found that the diseases
longest lived in assortative networks. Additionally, we stre
that the method employed here can be used to solve o
epidemiclike models in networks with any correlations su
as the susceptible-infected-susceptible~SIS! @11# and rumor
spreading@23# models, provided that they can be describ
through mean-field rate equations. Finally, we point out t
results for disassortative networks will appear elsewhere
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