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Epidemic incidence in correlated complex networks
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We introduce a numerical method to solve epidemic models on the underlying topology of complex net-
works. The approach exploits the mean-field-like rate equations describing the system and allows us to work
with very large system sizes, where Monte Carlo simulations are useless due to memory needs. We then study
the susceptible-infected-removed epidemiological model on assortative networks, providing numerical evi-
dence of the absence of epidemic thresholds. Besides, the time profiles of the populations are analyzed. Finally,
we stress that the present method would allow us to solve arbitrary epidemiclike models provided that they can
be described by mean-field rate equations.
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A few years ago, Watts and Strogdt¥] introduced a In this paper, we present an efficient numerical method
model able to produce networks with properties of both reguthat allows the study of epidemiclike models on the underly-
lar lattices and random graphs with small diameter. Theiing topology of complex networks with arbitrary connectiv-
model soon led to a burst of activity in the fidi,3], further ity distributions and degree-degree correlations. The method
spurred by Barals and co-workers who found that many solves the mean-field rate equations describing the dynamics
seemingly diverse systems share several topological propepf the system, where the topological properties are accounted
ties such as a power-law behavior in their connectivity disfor. Specifically, we fully analyze the susceptible-infected-
tributions when represented as netwof#s These complex €émoved(SIR) model in networks with assortative correla-
networks are formed by a set of many elemefatsnode$ tions, where nodes tend to be linked with their connectivity

that are linked together through edges links) if they in- peers[16] as_for the case (_)f social networks. Our results are
teract directly. Empirical evidence supports that in notablecompared with those obtained for uncorrelated networks and

neor, such s metaboic o communcaton webs, 0T 1 PEELS FINGS st e absence oy o
probability P(k) that any node hak links to other nodes is ' ' P

L . - the individual populations which allow us to draw interesting
distributed accordingly to a power la®(k)~k™” [5-7], conclusions when confronted to uncorrelated networks.

with y<3 in most cases. The SIR mode[17,18 considers that individuals are clas-
Networks of this type, called scale-fre{s_F) networks,  sjfied in three classes according to their state: susceptible,
show a noticeable property: the heterogeneity of the connegnfected, and removed. The epidemic is propagated by con-
tivity distribution cannot be neglected. One of the fundamentacts between infected and susceptible individuals at arate
tal results derived from this property is that the thresholdrhus, once an individual gets infected and recovers he can-
characterizing the percolation transition or an epidemic outnot catch the epidemic again. Moreover, in networks with
break is vanishing in the thermodynamic linl8—-11. On  power-law distributed connectivities one also has to consider
the other hand, many real-world networks are also charactethe presence of nodes with different connectivitywithin
ized by degree correlatio2,13, which make it necessary each category. We consider the time evolution of the magni-
to reconsider the same problems but taking into account theidesp,(t), si(t), andr(t), which are the density of in-
conditional probabilityP(k’|k) that a link emanating from a fected, susceptible, and removed nodes of connectiviy
node of connectivityor degregk leads to a node of connec- time t, respectively, with the normalization conditign(t)
tivity k’. Very recently, it has been shown analytically that +Sk(t) +r(t)=1. Global quantities can be obtained by av-
the presence of nontrivial correlations does not change theraging over the connectivity classes. In this way, the frac-
main conclusions drawn for uncorrelated graphs, namely, théon of infected individuals(or the epidemic incidenges
absence of percolation and epidemic threshlds15 un-  given byr(t) == P(K)r(t).
der very general conditions. However, neither complete exact The mean-field rate equations for the evolution of these
solutions nor numerical studies of the system's dynamicslensities satisfy the following set of coupled differential
have been reported. From a theoretical side, it seems an u@quationg17]:
surmountable task to work out such a study. In contrast, al-

though feasible, numerical simulations using Monte Carlo dsg(t) ,

techniques would be quite arduous since one should first dt :_)‘ksk(t)%: Pk [K)pic @)
generate a network with the proper correlations and then per-

form expensive Monte Carlo simulations for large system dp(t)

sizes, where memory requirements could seriously limit the e —pk(t)+)\k5k(t)2 P(k'|K)pkr (2)
size of the networks under study. dt K’
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with the initial conditionss(0)=(N—1)/N, p(0)=1/N, and
r(0)=0. In the above equations, it is considered that in- | & 107
fected individuals recover with unitary rate. Moreover, the 03 1
creation term in Eq(2) is proportional to the density of v I
susceptible individuals,(t), times the spreading ralg the oz | 107

number of emanating linkg, and the probability that any
neighboring node is infected. This probability is given by the
average over all degrees of the probabiftfk’|k) p,, that a 0.1 -
link emanated from a node with connectivitypoints to an
infected node with degrele’ [15,19.

. The numencal approach mtroduced_ here is based ona 0-%.00- MY 0.10 015 020
different interpretation of the mean-field rate equations
(1)—(3) and is implemented as follows. Indeed, these equa-
tions describe a process in which individuals are decaying FIG. 1. Epidemic incidence in scale-free networks wijtk 3
from one state to another. Hence, one can speak in terned N=10° with (full square$ and without correlations(full
of transition probabilities from the class of susceptible ontocircles as a function of the spreading rate The assortative cor-

infected and finally onto removed individuals, i.e., relations are given by Eq9) with «=0.1. The inset is a fit to the
analytic relationR~e~ 2k See the text for details.

S o . P . models of fracturg¢20,21]. Besides, we remark that the main
advantage of the method lies in the fact that we do not have

to know explicitly the connectivity matrix, but only a func-
tional form for P(k’|k). Therefore, in contrast to Monte
Carlo simulations, we do not generate any network. Instead,
we generate a sequence of integers distributed according to a
W';p(t) =NkNP( k)sk(t)E P(k’|k)pr (), (4) power lawP (k) ~k™? for the node’s connectivities.

K In order to compare the SIR dynamics in uncorrelated and

From Egs.(1)—(3) we get the transition probabilities at each
time stept,

. correlated networks, we set hencefoth-3. For uncorre-
W, (1) =NP(K) p(t), (5 lated networks, the two-point degree correlation function

. . ) P(k'|Kk) is of the form
where all the topological information is contained. The mean

time intervalr for one transition to occur aftér- 1 decays is kK'P(k")
g P(K'[K) =t =~ ®
L (k)
T= 07 o o (6) Furthermore, consider the case in which the degree correla-
W, (1) + W, (1) ] .
tions can be decomposed into two components
with W, () =S Wa (1), W, () =S, W (1), and t P(K'|K)=(1—a)qu + a e , 9)

= E}’lrj . That is, at any instaritof the decaying process, _ _ _

represents the mean time for the next individual decay. Onc#ith 0<a<1. Varying the parameter one interpolates be-
the transition probabilities4) and(5) are calculated, we sto- tween the uncorrelated graphs£ 0) and a graph with posi-
chastically decide what transition takes place. Nodes are dfive degree correlations4,22.

vided in three classes according to their state and, within We have studied the effects introduced by assortative cor-

each of these classes, they are also characterized by thé@lations given by Eq(9) in the spreading of a disease. So-
connectivityk. Hence, the identification of both what transi- Cial networks are the capital example of assortative networks
tion occurs and which cladsis affected after one is done  and, although positively correlated, do not have high corre-
by deciding that the probabilities that precisely a node withlation coefficient§16], hence, we have used small values of

connectivityk changes its state at tinteare given by a in our simulations. Figure 1 shows the epidemic incidence,
R=r(t.)=2P(K)r.(t.), averaged over many realizations,
ITE, (1) = WE (1) 7, 5 () =W- (07, (7)  wheret,, is the lifetime of an epidemic outbreak. The results

indicate that the epidemic incidence in networks with assor-
materializing the choice by generating a random number betative correlations is smaller than that for uncorrelated ones
tween 0 and 1. In other words, the individual decays withinwith the same degree distribution. However, the epidemic
each connectivity clads proceeds by chance with the prob- threshold in the thermodynamic limit is not modified by the
abilities dictated by Eq(7) until the end of the spreading presence of positive correlations and is vanishing wNen
process, i.e., when the conditign=0 is verifiedV k. Itis = —oo. Theinset in Fig. 1 is a plot d® as a function of Iy for
worth mentioning that the present stochastic approach han uncorrelated network wittk)=6. The behavior nicely
been successfully applied to the study of time-dependerfits the theoretical predictiolR~e~2K* [17], being the
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FIG. 3. Epidemic incidence as a function of the connectivity of
the initial seed folx =0.15. The dependency on the initial seed is
stronger for uncorrelated networks. The network’s parameters are as
of Fig. 1. See the text for further details.

FIG. 2. Likelihood of an epidemic outbreak as a function of the
connectivity of the initial seed. The value bfhas been set to 0.15.
Note that the introduction of correlations does not change the pro
ability of having an outbreak. The figure is in log-linear scales for

clarity. The network’s parameters are as of Fig. 1. o .
to a hub. In other words, the random mixing leads to a higher

slope of the straight line equal to 03§. This constitutes a R and favors the propagation of the outbreak.
further test of the validity of the approach presented here. As The method introduced here also allows the exploration of
to the correlated networks, they satisfy the same functionahe time dependency of the quantities characterizing the epi-
form R~e~© but approach zero more slowly. Thus, the demic spreading. Note that the time profiles, in contrast to
numerical findings confirm some theoretical arguments reMonte Carlo simulations, are in units af * and thus they
cently pointed out about the absence of any epidemic threslean be used as a real quantitative measure. Figure 4 plots the
old in SF correlated networks with=<3 [14,15. Moreover, time evolution of the fraction of removed individuals and
we note that in finite size networks with assortative correlathat of the infected nodes for the two networks under study
tions the effective threshold is larger, suggesting that theseshen the initial infected individual has the largest connectiv-
networks are more robust than uncorrelated ones. ity kmax- Here, as before, by simple inspection one would
The high heterogeneity of SF networks also causes thaiot be able to distinguish the behavior of these magnitudes in
the relative incidence of an outbreak strongly depends on thieoth networks as they show the same functional dependency
connectivity of the first infected noddd7]. First, we ex- on time. However, a more careful look at the plateau of
plored the likelihood of an epidemic outbreaR,,; as a R(\t) reveals that the epidemic lifetime is longer for assor-
function of the connectivityk; of the initial infected node. tative correlations than for uncorrelated networks. This is a
This probability is obtained by dividing the number of times

an epidemic developed by the total attempts made. The re- 0.35 ‘ . —
sults are summarized in Fig. 2. As can be observed, no mat- -
ter whether or not correlations are present, the probability of 0.30 | 8

—— uncorrelated

having an epidemic outbreak is the same for both kind of :
----- assortative _

networks. This behavior changes when coarse graining the 0.25
results of Fig. 1. The results shown in Fig. 3 have been I
obtained by simulating the SIR dynamics when the initial
infected node has a connectiviiy and recording the epi-
demic incidence in each case. Now, the number of individu- |
als within the removed class at the end of the spreading 0.10
process significantly depends on the correlations. Note that i
this is not a consequence of the smaller value of the epidemic 0.05
incidence for assortative correlations. In fact, the first part of :
the curves, up to intermediate valueskpf follows a loga- 0.00
rithmic dependency on the connectivity, but the number of
removed individuals for uncorrelated networks grows faster
than for correlated ones. This behavior can be intuitively F|G. 4. Time evolution of the epidemic incidengmain figure
understood since in assortative networks, nodes are mainihd of the density of infected individualinsey when the initial
connected with their connectivity peefaven for small val-  infected individual has the largest connectivitys, for both uncor-
ues of @), whereas in uncorrelated networks it is alwaysrelated and correlated networks.is equal to 0.15. The network’s
possible that a poorly connected node transmits the diseaparameters are as of Fig.1.
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direct consequence of the correlations. Starting from the verthe inclusion of correlations in current studies meaningful. In
hub of the network, as time goes on, the epidemic is propaparticular, while the likelihood of an epidemic outbreak is
gated, on average, from highly connected nodes down to leset modified when taking into account positive correlations,
connected individuals such that when the end of the procegske epidemic incidence is smaller than in networks with no
is approaching, the mean time for individual decays is longecorrelations. In large social networks this may lead to a dif-
and longer leading to an effective deceleration of the epiference of 15%—-20% of infected people for moderate values
demic spreading process. This is not the case any more whai \. On the other hand, we have found that the diseases are
random mixing rules out any correlated spreading. A furthellongest lived in assortative networks. Additionally, we stress
evidence of this mechanism is provided in the inset where ithat the method employed here can be used to solve other
can be clearly noted that the two density profiles cross welepidemiclike models in networks with any correlations such
before the final death of the disease. as the susceptible-infected-susceptit®S) [11] and rumor

In summary, we have introduced an efficient numericalspreading 23] models, provided that they can be described
method that allows us to explore the spreading of epidemithrough mean-field rate equations. Finally, we point out that
diseases in complex correlated networks without generatingesults for disassortative networks will appear elsewhere.
explicitly the network with the proper correlations. We have
studied the SIR epidemiological model in assortative net- Y.M. thanks A. Vaquez for useful discussions. Y.M. ac-
works and found that its qualitative behavior is the same aknowledges financial support from the Secretate Estado
for uncorrelated networks. However, from a more practicalde Educacio y UniversidadegSpain, Grant No. SB2000-
perspective, there are some important quantitative differ0357. This work was partially supported by the Spanish
ences that deserve to be considered more carefully and makesICYT Project No. BFM2002-01798.
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