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Topology and correlations in structured scale-free networks
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We study a recently introduced class of scale-free networks showing a high clustering coefficient and
nontrivial connectivity correlations. We find that the connectivity probability distribution strongly depends on
the fine details of the model. We solve exactly the case of low average connectivity, providing also exact
expressions for the clustering and degree correlation functions. The model also exhibits a lack of small-world
properties in the whole parameter range. We discuss the physical properties of these networks in the light of the
present detailed analysis.
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I. INTRODUCTION

Recently, a major scientific effort has been devoted to
characterization and modeling of a wide range of social
natural systems that can be described as networks@1,2#. Sys-
tems such as the Internet@3–6# or the World Wide Web@7#,
social communities@8#, food webs@9#, and biological inter-
acting networks@10–13# can be represented as a graph@14#,
in which nodes represent the population individuals and li
the physical interactions among them. Strikingly, many
these networks have complex topological properties and
namical features that cannot be accounted for by class
graph modeling@15#. In particular, small-world propertie
@16# and scale-free degree distributions@17# ~where the de-
gree or connectivity of a node is defined as the numbe
other nodes to which it is attached! seem to emerge fre
quently as dominant features governing the topology of re
world networks. These global properties imply a large co
nectivity heterogeneity and a short average distance betw
nodes, which have considerable impact on the behavio
physical processes taking place on top of the network.
instance, scale-free~SF! networks have been shown to b
resilient to random damage~absence of a percolation trans
tion! @18–20# and prone to epidemic spreading~null epi-
demic threshold! @21–24#.

The detailed scrutiny of the topological properties of n
works has pointed out that small-world and scale-free pr
erties come often along with nontrivial degree correlatio
and clustering properties. Recently, an interesting class
networks has been introduced by Klemm and Eguı´luz by
proposing a growing model in which nodes are progressiv
deactivated with a probability inversely proportional to th
connectivity@25#. Analytical arguments and numerical sim
lations have lead to the claim that, under general conditio
the deactivation model, allowing a core ofm active nodes,
generates a network with average degree^k&52m and de-
gree probability distributionP(k)52m2k23. Interestingly,
the scale-free properties are associated to a high cluste
coefficient. For this reason the deactivation model has b
used to study how clustering can alter the picture obtai
1063-651X/2003/67~4!/046111~10!/$20.00 67 0461
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for the resilience to damage and epidemic spreading in
networks@26,27#.

In this paper, we revisit the analysis of the deactivati
model. We find an analytical solution in the case of minim
values of active nodesm ~low average connectivity!. In ad-
dition, large-scale numerical simulations exhibit a noticea
variability of the degree distribution withm. In particular, the
degree exponent strongly depends onm for the general case
considered in Ref.@25#. The model topology is also suscep
tible to several details of the construction algorithm. B
means of large-scale numerical simulations we study the
activation model topology in the whole range ofm and for
different algorithm parameters. We calculate analytically
clustering coefficient and connectivity correlation function
Also in this case a variability with respect to the model p
rameters is found. Extensive numerical simulations confi
the analytical picture presented here.

In the generated networks, we also report the lack
small-world properties. In the whole parameter range,
find a network diameter increasing linearly with the numb
of nodes forming the network@28#. The networks’ topology
is similar to a chain of dense clusters locally connected. T
networks are thus similar to a one-dimensional lattice
what concerns their physical properties. In particular, dif
sion and spreading processes might be heavily affected
the increasing average distance among nodes that mak
system similar to a one-dimensional chain. In this persp
tive, we discuss the properties of epidemic spreading
resilience to damage in networks generated with the dea
vation model.

II. DEACTIVATION MODEL

The deactivation model introduced by Klemm and Eg´-
luz @25# is defined as follows: Consider a network with d
rected links. Each node can be in two states, either activ
inactive. The model starts from a completely connec
graph ofm active nodes and proceeds by adding new no
one by one. Each time a node is added,~1! it is connected to
all active nodes in the network;~2! one of the active nodes i
©2003 The American Physical Society11-1
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selected and set inactive with probability

pd~ki
in!5

F (
j PA

~a1kj
in!21G21

a1ki
in

; ~1!

and ~3! the new node is set active. The sum in Eq.~1! runs
over the set of active nodesA, a is a model parameter, an
ki

in denotes the in-degree of thei th node.
As we shall show below, this model is quite sensitive

the order in which steps~2! and~3! are performed and, there
fore, it is better to discriminate the following cases: ModelA,
step~2! is performedbeforestep~3!, and modelB, step~2! is
performedafter step ~3!. For m→`, both models can be
solved analytically in the continuouskin approximation, after
introducing the probability density that an active node h
in-degreekin @25#. Moreover in this limit, the order of steps
and 3 is irrelevant, obtaining the same in-degree distribu
P(kin);(a1kin)2g with

g521
a

m
. ~2!

The model is usually simulated by usinga5m. In this way
the deactivation probability is inversely proportional to t
total connectivity of the nodes (m1kin)21 and the connec-
tivity distribution results to beP(k)52m2k23. Interestingly,
due to the deactivation mechanism, the networks sho
high clustering coefficient that approaches a constant v
in the infinite size limit@25#.

At lower values ofm, it has been claimed that finite siz
effects set in and the connectivity distribution shows dev
tions from the predicted behavior. We shall see in the follo
ing section that fora5m<10 the model presents a ver
different analytical solution that yields a connectivity dist
bution very far from them→` limit. In addition, the deac-
tivation model topology is very sensible to changes in
details of the growing algorithms.

III. DEGREE DISTRIBUTION

A. Model A

Let us first focus on modelA with m52, i.e., the smalles
value of m for which the model is nontrivial. In this case
after adding a new node we have only two nodes at
deactivation step. One of them will be set inactive and
placed by the new added node that has in-degree 0. In
worst case, the other node will have in-degree 011, the 0
coming from its initial in-degree and the 1 from the conne
tion to the newly added node, and in general, it will ha
in-degree larger than or equal to 2. Later on, at the n
deactivation step, the in-degrees of both nodes will have
creased by one resulting in one active node with in-degre
and another with in-degreeK>2, whereK is the in-degree
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of the active node with largest in-degree that coincides w
the oldest node. Then, following Eq.~1!, one of them will be
deactivated with probability

pd~K !5
11a

112a1K
, pd~1!512pd~K !. ~3!

Each time the oldest node is not deactivated, its in-deg
increases by one and, therefore, the probability that the
est node has in-degreeK is just the probability that it is not
deactivated in K22 steps, with running in-degre
2,3, . . . ,K21. Thus, the probabilityP̃(K) of creating a de-
activated node of in-degreeK is equal to the probability tha
the largest node is not deactivated inK22 steps and is de
activated in the last step, i.e.,

P̃~K !5 )
,52

K21

@12pd~, !#pd~K !

5
G~312a!

G~11a!

G~a1K !

G~212a1K !
, ~4!

where G(x) is the standard gamma function@29#. On the
other hand, every time that the oldest node is not deactiva
the other, with in-degree 1, is deactivated. Hence, in theK
21 deactivation steps leading to the generation of a n
with in-degreeK, K22 nodes with in-degree 1 are create
The average number of nodes with in-degree 1 created in
process is then

P̃15 (
K52

`

~K22!P̃~K !5
21a

a
. ~5!

Therefore, the in-degree distribution will be given by

P~kin!5C21H P̃1 , kin51

P̃~kin!, kin.1,
~6!

whereC is a constant, obtained from the normalization co
dition (kinP(kin)51, which has the value

C5 P̃11 (
K52

`

P̃~K !5
2a12

a
. ~7!

From this equation, we obtain the analytic expression for
in-degree distribution

P~kin!55
21a

212a
, kin51

G~212a!

G~a!

G~a1kin!

G~212a1kin!
, kin.1.

~8!

For largekin, we can expand the previous expression us
Stirling’s approximation to obtain that the in-degree distrib
tion follows the asymptotic behavior:
1-2
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P~kin!;kin2g, g521a. ~9!

Moreover, since the out-degree of all nodes ism, the degree
k of a node~in-degree plus out-degree! is m1kin and will
follow the same distribution shifted bym. For the particular
casea5m52, the degree distribution takes the form

P~k!55
2

3
, k53

120

k~k11!~k12!~k13!
, k.3.

~10!

In Fig. 1, we plot the degree distribution obtained fro
numerical simulations of modelA for a5m. For m52, the
numerical points are in very good agreement with the ex
distribution given in Eq.~10! with a power law decay with
exponentg521a54. In the limiting case of largem, the
continuous approach predicts the exponent 3@25# @see Eq.
~2!#, giving us a lower bound. Hence,

modelA with a5m ⇒ 3,g<4 ~11!

and, therefore, the degree distribution has always a boun
second moment. For largerm the distribution follows a
power law decay but with an exponentg that depends onm.
In order to show that the degree distribution approaches
eachm an asymptotic power law behavior withg.3 we
performed large-scale simulations of networks withN5107

nodes. In Fig. 1, we report the behavior of the exponentg as
a function ofm. For all values ofm,10, the degree expo
nents strongly deviates from them→` limit.

B. Model B

Using similar arguments we can compute the degree
tribution of modelB for m51. In this case we also have tw
nodes at the deactivation process, the one just added an
one surviving from the previous deactivation step. T

FIG. 1. Degree distribution of modelA for a5m, network size
of N5107, and different values ofm. The continuous line is the
exact distribution form52 given by Eq.~10!. The inset shows the
value of the exponentg as a function ofm obtained from numerica
simulations.
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former has in-degree 0, while the latter~the oldest! has in-
degreeK>1, and one of them is deactivated with probabili

pd~K !5
a

2a1K
, pd~0!512pd~K !. ~12!

The probability that when the oldest node is deactivated
has degreeK is given by

P̃~K !5 )
,51

K21

@12pd~, !#pd~K !5
G~112a!

G~a!

G~a1K !

G~112a1K !
.

~13!

In the process of creating a node of in-degreeK, K21 nodes
of in-degree 0 have been created. The average numbe
nodes with in-degree 0 created is

P̃05 (
K51

`

~K21!P̃~K !5
a11

a21
. ~14!

Thus, the analytic expression for the normalized in-deg
distribution is given by

P~kin!5C21H P̃0 , kin50

P̃~kin!, kin.0,
~15!

with the normalization constant

C5 P̃01 (
k51

`

P̃~K !5
2a

a21
. ~16!

From here follows the expression for the degree distribut
~wherek5m1kin)

P~k!55
11a

2a
, k51

G~2a!

G~a21!

G~a1k21!

G~2a1k!
, k.1.

~17!

For largek the degree distribution follows the asymptot
behavior:

P~k!;k2g, g511a. ~18!

In Fig. 2, we show the degree distribution obtained fro
numerical simulations of model B witha5m. For a5m
51, we recover the predicted exponentg522. Also in this
case, we provide large-scale numerical simulationsN
5107) of networks with larger values ofm. The obtained
distributions still follow a power law decay but with an ex
ponentg that is a continuously increasing function ofm. It is
worth remarking that form,10, the degree exponent i
stable and strongly differs from the valueg53.

It is worth noticing that fora5m51, the analytic solu-
tion, Eq. ~17!, is singular, as can be readily seen from t
G(a21) factor in the denominator. In fact, the solution
this case isP(k)5dk,1 , that is, in the thermodynamic limi
1-3
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~infinitely large network!, the weight of the nodes with de
gree 1 is overwhelming with respect to the nodes with d
ferent connectivity. This singularity is rooted in the fact th
the distribution, with exponentg522, lacks a finite first
moment in the thermodynamic limit, while we know that, b
definition, modelB has average connectivitŷk&52. This
necessarily implies that there must be an implicit depende
on the network sizeN in the degree distribution fora5m
51, dependence that cannot be assessed by our analyt
lution since we are already working in the infinite netwo
limit. We can nevertheless estimate the functional form
the degree distribution for a finite network composed byN
nodes, which has a maximum connectivitykc , such that
there are no nodes with degree larger thankc . Assuming that
the distribution fork.1 follows the same functional form a
Eq. ~17!, we have that fora51,

PN~k!5H C1 , k51

C2

k~k11!
, 1,k<kc ,

~19!

whereC1 andC2 are constants to be determined by the n
malization conditions(k51

` PN(k)51 and (k51
kc kPN(k)52

~the upper limit in the first normalization condition can b
taken to be infinite, since the corrections stemming fromkc
are of lower order!. From these two conditions we obtain,
the continuousk approximation that replaces sums by int
grals,

C1512
2 ln~3/2!

lnS 11kc

2 D , C25
2

lnS 11kc

2 D . ~20!

For finite SF networks with degree distributionP(k);k2g,
the maximum degreekc scales with the number of nodes
kc;N1/(g21) @2#. In the present case, we havekc;N, and
thus, for largeN,

FIG. 2. Degree distribution of modelB for a5m, network size
of N5107, and different values ofm. The inset shows the value o
the exponentg as a function ofm obtained from numerical simu
lations.
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ln N
, C2;

1

ln N
. ~21!

Therefore, in the limitN→`, we recover a singular degre
distribution withC1→1 andC2→0. We can check numeri
cally this result by noticing that, from Eqs.~19! and~21!, the
degree distribution at fixedk should scale as

12PN~1!;
1

ln N
, PN~k!;

1

ln N
, k.1. ~22!

We have verified this scaling form in Fig. 3. Therefore,
modelB with a5m51 we obtain a degree distribution tha
decays ask22, but with a normalization constant fork.1
that decays with the network size as 1/lnN. Finally, it is
worth mentioning that the second moment of the distribut
is diverging aŝ k2&;N/ ln N. Despite this singular behavio
for a5m51, however, Eq.~17! remains exact for any value
of aÞ1.

From the results of Fig. 2, together with the upper bou
g53 obtained from the largem approximation@25#, we have
that

model B with a5m ⇒ 2<g,3, ~23!

FIG. 3. Scaling of the degree distributionPN(k) for theB model
with a5m51 at fixedk, as a function of the network sizeN, for ~a!
k51 and~b! k.1. The solid lines are least-squares fits to the fo
@12PN(1)#21; ln N in ~a! andPN(k)21; ln N in ~b!, as predicted
by Eq. ~22!.
1-4
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and, therefore, the degree distribution has a divergent se
moment.

The analysis made above has shown that the deactiva
model is quite sensitive to the order in which steps~2! and
~3! are performed, yielding degree distributions with a fin
or divergent second moment, depending on the order. In
dition, the exponentg is rather sensible to the value ofa
5m, showing a wide range of variation. This fact has n
been noticed in previous works where this model has b
considered@25–27#, prompting that some of the conclusion
obtained in those works should be reconsidered in this
spective.

IV. CLUSTERING COEFFICIENT

We can go beyond the degree distribution and comp
the clustering coefficientc(k) as a function of the node de
greek @6,28#. For this quantity we can perform an analyt
calculation for any value ofa andm and for both modelsA
andB. In order to compute the clustering coefficient, we w
consider the network as undirected and denote byki5ki

in

1m the total degree of the nodei.
The clustering coefficient of the nodei is defined by@16#

ci5
2ei

ki~ki21!
, ~24!

whereei is the number of edges between the neighbors
node i and it is divided by its maximum possible valu
ki(ki21)/2. In the deactivation model, new edges are c
ated between the active nodes and the added node. Henei
remains constant for inactive nodes and increases only
the active ones. Moreover, all the active nodes are connec
Hence, each time we add a node, the degreeki of each active
node, i increases by one andei increases bym21, where
m21 are just the new links between the new neighbor oi
~the added node! and the remaining active nodes. Therefo
the dynamics ofei is given by

]ei

]t
5~m21!, ~25!

while the connectivity obeys the relationki(t)5m1t. Here,
t50 corresponds to the time at which the nodei was created.
Besides, when the node is added it has degreem, thus
ei(0)5m(m21)/2 and, therefore,ci(0)51. Integrating Eq.
~25! with this initial condition and substituting the result
Eq. ~24!, taking into account thatt5ki2m, we obtain

c~k!5
m~m21!

k~k21!
1

2~m21!~k2m!

k~k21!

5
2~m21!

k
2

~m21!~m22!

k~k21!
, ~26!

where the last expression in Eq.~26! is obtained after some
algebraic manipulations. Equation~26! recovers the results
previously obtained in Ref.@28#. For m51, the network is a
tree, and therefore we obviously recoverc(k)50. For m
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52, we obtain the exact behaviorc(k)52/k. For m.2, the
asymptotic behavior for largek is c(k);1/k @25#. Interest-
ingly, we recover in this model the same behavior ofc(k)
found in other systems in Ref.@30#.

In Fig. 4, we plot the clustering coefficient as a functio
of the node degree obtained for modelsA andB and different
values ofm from numerical simulations. As it can be see
the numerical dependency coincides with the analytical
pression in Eq.~26!.

V. DEGREE CORRELATION FUNCTION

Degree correlations can be characterized by analyzing
nearest neighbor average degree introduced in Refs.@5,6#,
defined as

knn,i5
Di

ki
, ~27!

whereDi is the sum of the degrees of the neighbors of no
i. In uncorrelated networks, the quantityknn,i does not show
any dependence on the degree of the nodei. This is not the
case when degree correlations are present. In this case,knn,i
is a function of the degree of the node whose nearest ne
bors are analyzed. In particular, we can face two poss

FIG. 4. Clustering coefficient as a function of the node deg
for different values ofm. The points were obtained from numeric
simulations of~a! modelA and ~b! modelB, up to a network size
N5105. The continuous lines correspond with the analytical so
tion given in Eq.~26!
1-5
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kinds of correlation. In the first situation, nodes with hig
connectivity will connect more preferably to highly con
nected nodes; a property referred to as ‘‘assortative mixin
On the opposite side, it is possible to have ‘‘dissortative m
ing’’; i.e., highly connected nodes are preferably connec
to nodes with low connectivity@31#.

In the deactivation model, when the node is added it
degreem andDi5m^k&A , where^k&A is the average degre
among active neighbors. Then, if the nodei is active, it is, by
construction, neighbor of them21 remaining active nodes
Thus, every time a new node is added,ki increases by one
and Di increases by (m21)1m, m21 because the degre
of the remainingm21 neighbors have also increased by o
andm because the new neighbor has degreem. Hence,

]Di

]t
5~2m21! ~28!

for each active nodei. Integrating this equation, taking int
account the initial conditionDi(0)5m^k&A and the relation
t5ki2m, we obtain that

Di85~2m21!~ki2m!1m^k&A ~29!

when the nodei is deactivated. Now, when an active no
becomes inactive, its degree remains fixed but the degre
its active neighbor nodes will still increase until they g
deactivated. Therefore, in the infinite time limit, we have

Di5Di81DDi , ~30!

whereDDi is the increase ofDi , since nodei was set inac-
tive until all its neighbors are set inactive.

Hence, from Eqs.~27!, ~29!, and~30!, it follows that

knn,i52m211
m^k&A1DDi2m~2m21!

ki
. ~31!

It remains now the task to assess the possible dependen
DDi on the connectivityki ~it is clear that the long time
average of̂ k&A must be independent of the connectivity
any deactivated node!. For the minimumm (m52 for model
A andm51 for modelB), the degree of an active node s
inactive is not correlated with the degree of the remain
active nodes, since those remaining nodes have always
grees 2 and 3 in modelA with m52, and degree 1 in mode
B with m51, independent of the degree of the last dea
vated node. Therefore, in this caseDDi cannot depend onki .
This lack of correlations is also clear form@1, where the
sum( j PA(a1kj )

21 in Eq. ~1! is a constant@25# and, there-
fore, the degree of the active nodes in not correlated with
degree of the inactive nodes. For intermediate values om,
however, the degree of the active nodes may be correlate
such a way thatDDi depends onki .

In Fig. 5, we plot the dependency of the average nea
neighbors degreek̄nn(k) as a function of the degreek for
modelsA and B and different values ofm. In the case of
model A, k̄nn(k)2(2m21);1/k even formÞ2, in agree-
ment with Eq.~31!. In the case of modelB, k̄nn(k)2(2m
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21);1/k for m51 andm510 but decays faster for interme
diate values ofm, a behavior that we are not able to expla
Thus, in this case the correlations between the active n
degrees introduce stronger deviations for intermediate va
of m. In all cases, however, we find that correlations in t
deactivation model are of ‘‘disassortative’’ nature; i.e., high
connected nodes are preferably connected with poorly c
nected nodes. It is also worth stressing that the results
model B withm51 must be taken with a grain of salt, give
the singular nature of the model exposed in Sec. III B.

In the deactivation model, eitherA or B, for a fixed net-
work size N and assuming thatDDi does not grow faster
than ki , we have that in the limitki→`, knn,i→2m21.
That is, the average nearest neighbor degree of the h
~nodes with largestki) equalŝ k&21, as previously pointed
out in Ref.@26#. However, this fact does not necessarily im
ply that DDi is independent ofN. One way to check this
point is to compute the average ofknn,i over all nodes,

^ k̄nn&N5(kP(k) k̄nn(k). Let us assume thatk̄nn;^k&21
1a/k, wherea is depending onDDi . If DDi is approach-
ing a constant value, we should obtain^k̄nn&N;const, inde-
pendently ofN. In Fig. 6, we show hoŵk̄nn&N behaves with
increasingN for a5m. For modelA, where 3,g<4, it

FIG. 5. Average nearest neighbor degree as a function of
degreek for different values ofm. The points were obtained from
numerical simulations of~a! model A and ~b! model B, up to a
network sizeN5105, averaging over 1000 realizations. The co

tinuous lines correspond with the analytical dependencyk̄nn(k)
2(2m21);1/k.
1-6
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approaches a stationary value forN@1. Moreover, the
asymptotic limit of ^ k̄nn&N increases with increasingm. In
fact, with increasingm the exponentg decreases approach
ing the limit g53 for m@1, where^knn& diverges logarith-
mically with N. On the contrary, for modelB, where 2<g

,3, ^ k̄nn&N is growing withN following a power law. This
implies thatDDi is a diverging function ofN and that in the
thermodynamic limit~in which we perform first the limitN
→`), the average nearest neighbor connectivity curve
progressively shifting to larger and larger values. This fina
points out that the average nearest neighbor connectivit
hubs is not a well-defined quantity since theki→` limit
must be performed only after theN→` limit. The diver-
gence of̂ k̄nn&N with N is related to a general property of S
networks with diverging connectivity fluctuations and it
dictated by the detailed balance of connectivity@32,33#.

VI. DIAMETER AND SHORTEST PATH LENGTH

Another fundamental topological feature of complex n
works is identified by the scaling of the average path len
among nodes and the network’s diameter. The minimum p
between two nodes is given by the minimum number of
termediate nodes that must be traversed to go from nod
node. The average minimum path length^d& is thus defined

FIG. 6. Average nearest neighbor degree as a function of
network sizeN for different values ofm. The points were obtained
from numerical simulations of~a! modelA and ~b! modelB, up to
a network sizeN5105, averaging over 1000 realizations.
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as the minimum path distance averaged over all the poss
pairs of nodes in the network. Similarly, the network diam
eter is defined as the largest among the shortest paths
tween any two nodes in the network.

While regular networks~for instance hypercubic lattices!
have a diameter scaling with the sizeN as the inverse of the
Euclidean dimension, many complex networks show strik
small-world properties; i.e., in an average one can go fr
one node to any other node in the system by passing thro
a very small number of intermediate nodes@16#. In this case
the graph diameter grows logarithmically, or even slow
with the system’s number of nodesN.

In Ref. @28#, it has been noticed that for largem values,
^d& scales linearly with the network sizeN. In the deactiva-
tion model (A andB), we measured both the diameter a
the average minimum path distance^d& as a function ofN
for values ofa5m ranging from 1 to 4. In all cases we fin
that after a small size transient, both metrics approach a
ear scaling withN. In Fig. 7, we report the results obtained
the case of the deactivation model with ruleB. This evidence
implies that the topology of the generated networks is
proaching those of a one-dimensional lattice. In other wor

e

FIG. 7. Scaling of the diameter~a! and the average shortest pa
^d& ~b! in the modelB for different values ofm. The reference lines
have slope 1. For the sake of clarity, the curve form51 in ~a! has
been shifted by a factor 5.
1-7
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the deactivation model does not exhibit small-world prop
ties.

In order to provide a visual representation of the dea
vation model topology, we report in Fig. 8 the illustration
a network generated with modelB anda5m53. The linear
topology of the network with some local highly connect
clusters forming a chain is evident. The linear structure
made up of groups of nodes connected to a node which
been active for longer times and has had the possibility
develop a high number of connections. Once these hubs
deactivated, they do not receive any further connection.
network grows by adding bridge nodes that are rapidly
activated until a new dense cluster is developed by a n
that is active long enough. The growth mechanism, howe

FIG. 8. Illustration of a typical network generated with the d
activation modelB with a5m53 ~the size isN5103). The linear
topology with some local highly connected clusters forming a ch
is evident.
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does not allow the formation of shortcuts between the de
tivated region of the network and the new active nodes, h
dering the development of small-world properties. The line
chain is therefore reflecting the time evolution of the stru
ture: recently added nodes are separated from the orig
core of active nodes by a sequence of deactivated nodes
increases proportionally to the network size. By inspect
networks with largerm, we find very similar structures, with
an increasing size of the dense clusters forming the lin
chain. As we shall discuss in the following section, the a
sence of small-world properties might have a relevant eff
in many physical properties of the network.

VII. DISCUSSION AND CONCLUSIONS

In the present work, we have provided a detailed analy
of the deactivation model introduced in Ref.@25#. The model
shows a rich behavior, being very sensible to the value of
parameters used in the model and slight variations of
growing algorithm. The most striking result is that the degr
distribution is depending on the value of the number of
multaneously active nodesm and also in the case in whic
a5m; i.e., when the deactivation probability is related to t
nodes’ total degree. The degree exponent is asymptotic
approaching the valueg53 only for m→`, and the SF
properties of networks suffer large variations in the range
<m<10. Along with the high clustering observed in prev
ous works, we find that the model exhibits interesting deg
correlation properties. In particular, we find marked disass
tative mixing properties; i.e., highly connected nodes li
preferably to poorly connected nodes. The analytical exp
sion for the degree correlation is obtained and recovered
numerical simulations. Strikingly, the SF and correlati
properties are not associated with small-world propert
The numerical analysis shows that for all values ofm, the
network diameter is increasing linearly with the number
nodes. The network thus approaches a linear structure, l
ing long-range shortcuts.

One of the most interesting issues related to SF netwo
is the effects of their complex topological features on t
dynamics of spreading phenomena@21,22,24,34# and the on-
set of percolation transitions@18–20#. In the case of random
SF networks, where degree correlations are absent, it
been found that the epidemic threshold is proportional
^k&/^k2& @21,22#. Uncorrelated SF networks allow the ons
of large epidemics whatever the spreading rate of the in
tion. This is a noticeable result that has a large impact
immunization as well as control and design policies in r
networks @35,36#. On the other hand, most real networ
show nontrivial degree correlations and clustering proper
as it is the case in the present deactivation model. Simila
the random removal of nodes does not destroy the con
tivity of SF networks withg<3. In other words, the perco
lation transition is absent, and the networks are extrem
robust to random damages@18–20#. A natural question is to
know whether or not the clustering properties of SF netwo
plus their correlations alter the general results obtained
uncorrelated networks. For this reason, several recent w
have addressed the effect of such correlations in the

n

1-8
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demic spreading occurring on these networks@26,27,32,37#.
In particular, in Ref. @26# the existence of an epidemi
threshold in the case of the deactivation model for ruleB has
been claimed.

The presence of a finite threshold in the deactivat
model has been traced back to the high clustering coeffic
and the finite limit of the average nearest neighbor conn
tivity of the largest hubs@26#. On the other hand, we hav
shown here that the average nearest neighbor connectivi
the system is diverging with the system size. What appear
more fundamental for the properties of spreading in the
activation model is its linear structure with a diameter th
increases withN. In a coarse grained picture, the epidem
spreading is dominated by the diffusion of the disease o
linear chain. In order to check this point, we have simula
a standard random walk in theB model withm53. In Fig. 9,
we plot the mean-square displacement of the random wa
^R2(t)&1/25^@r (t)2r (0)#2&1/2, where the brackets denote a
average over 250 realizations of the random walk on 2
different networks. For a purely diffusive system, as wou
be the case of a one-dimensional lattice, we would expe

FIG. 9. Mean-square displacement of a random walker on
deactivation model withm53, a one-dimensional lattice, and th
Barabási-Albert model withN5105 nodes, as well as an Interne
snapshot map from 1999 with 6301 nodes.
om
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scaling ^R2(t)&1/2;t1/2. For the deactivation model we ob
serve a slightly subdiffusive behavior with a mean-squ
displacement scaling aŝR2(t)&1/2;t0.46. We thus conclude
that dynamics on the deactivation model, is almost pur
diffusive, as expected from its non-small-world charact
The analysis of spreading and percolation properties in
network cannot therefore be performed at the mean-fi
level @21,22#, but must include diffusion and most probab
fluctuations, leading to a much more complex formalis
based on a field theory@38#. For the sake of comparison, w
have also plotted in Fig. 9 the mean-square displacement
random walker on a Baraba´si-Albert network@17# and on a
Internet snapshot map from 1999, collected by the Natio
Laboratory for Applied Network Research@39#. As we ob-
serve, in these last two networks,^R2(t)&1/2 saturates very
quickly to a constant value, proportional to the network
diameter, indicating the presence of a strong small-wo
component. The essential difference of the diffusive prop
ties between the Internet and the deactivation model does
allow to extend the conclusions obtained from the mode
the spreading in the real system.

The same applies to percolation properties that natur
exhibit a finite threshold in this case. The fact that spread
and percolation properties on the deactivation model
similar to those of regular lattices because of the absenc
small-world features is corroborated by the analysis of R
@27# that shows how the introduction of a small amount
shortcuts restores the usual absence of a percolation th
old. In this perspective, it would be extremely interesting
have a detailed study of the epidemic spreading propertie
the case of the deactivation model with random rewiri
@28#, in order to assess the effect of clustering and deg
correlations in spreading processes in SF networks w
small-world properties.
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@36# Z. Dezsöand A.-L. Baraba´si, Phys. Rev. E65, 055103~R!

~2002!.
@37# C.P. Warren, L.M. Sander, and I.M. Sokolov, Phys. Rev. E66,

056105~2002!.
@38# J. Marro and R. Dickman,Nonequilibrium Phase Transitions

in Lattice Models~Cambridge University Press, Cambridg
1999!.

@39# The National Laboratory for Applied Network Researc
~NLANR!, sponsored by the National Science Foundati
provides Internet routing related information based on bor
gateway protocol data~see http://moat.nlanr.net/!.
1-10


