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Topology and correlations in structured scale-free networks

Alexei Vazquez: Marian Bogura,? Yamir Moreno® Romualdo Pastor-Satorrasnd Alessandro Vespignani
linternational School for Advanced Studies and INFM, Via Beirut 4, Trieste 1-34014, ltaly
2Departament de Bica Fonamental, Universitat de Barcelona, Av. Diagonal 647, 08028 Barcelona, Spain
%The Abdus Salam International Centre for Theoretical Physics, P.O. Box 586, Trieste 1-34014, Italy
“Departament de Bica i Enginyeria Nuclear, Universitat Politaica de Catalunya, Campus Nord, 08034 Barcelona, Spain
SLaboratoire de Physique Theique (UMR du CNRS 8627),"Baent 210, Universitele Paris-Sud, 91405 Orsay Cedex, France
(Received 7 September 2002; published 21 April 2003

We study a recently introduced class of scale-free networks showing a high clustering coefficient and
nontrivial connectivity correlations. We find that the connectivity probability distribution strongly depends on
the fine details of the model. We solve exactly the case of low average connectivity, providing also exact
expressions for the clustering and degree correlation functions. The model also exhibits a lack of small-world
properties in the whole parameter range. We discuss the physical properties of these networks in the light of the
present detailed analysis.
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[. INTRODUCTION for the resilience to damage and epidemic spreading in SF
networks[26,27].

Recently, a major scientific effort has been devoted to the In this paper, we revisit the analysis of the deactivation
characterization and modeling of a wide range of social andnodel. We find an analytical solution in the case of minimal
natural systems that can be described as netwdr®s Sys-  Vvalues of active nodes (low average connectivily In ad-
tems such as the Interng8—6] or the World Wide Wel 7], dition, large-scale numerical simulations exhibit a noticeable
social communitie$8], food webs[9], and biological inter- Vvariability of the degree distribution witim. In particular, the
acting network§10—13 can be represented as a graf],  degree exponent strongly dependsroffior the general case
in which nodes represent the population individuals and linksonsidered in Ref.25]. The model topology is also suscep-
the physica| interactions among them. Striking|y, many oftib|e to several details of the construction algorithm. By
these networks have Comp|ex topo|ogica| properties and dymeans of Iarge-scale numerical simulations we StUdy the de-
namical features that cannot be accounted for by classicactivation model topology in the whole range mfand for
graph modeling[15]. In particular, small-world properties different algorithm parameters. We calculate analytically the
[16] and scale-free degree distributiofis7] (where the de- clustering coefficient and connectivity correlation functions.
gree or connectivity of a node is defined as the number of\lso in this case a variability with respect to the model pa-
other nodes to which it is attachedeem to emerge fre- rameters is found. Extensive numerical simulations confirm
quently as dominant features governing the topology of realthe analytical picture presented here.
world networks. These global properties imply a large con- In the generated networks, we also report the lack of
nectivity heterogeneity and a short average distance betwed&fnall-world properties. In the whole parameter range, we
nodes, which have considerable impact on the behavior dfnd a network diameter increasing linearly with the number
physical processes taking place on top of the network. Fopf nodes forming the network28]. The networks’ topology
instance, scale-fre€SP) networks have been shown to be is similar to a chain of dense clusters locally connected. The
resilient to random damagebsence of a percolation transi- Networks are thus similar to a one-dimensional lattice in
tion) [18—20 and prone to epidemic spreadirigull epi-  What concerns their physical properties. In particular, diffu-
demic threshold[21—24. sion and spreading processes might be heavily affected by

The detailed scrutiny of the topological properties of net-the increasing average distance among nodes that make the
works has pointed out that small-world and scale-free propsystem similar to a one-dimensional chain. In this perspec-
erties come often along with nontrivial degree correlationdive, we discuss the properties of epidemic spreading and
and clustering properties. Recently, an interesting class desilience to damage in networks generated with the deacti-
networks has been introduced by Klemm and Hguby Vvation model.
proposing a growing model in which nodes are progressively
deactivated with a probability inversely proportional to their
connectivity[ 25]. Analytical arguments and numerical simu-
lations have lead to the claim that, under general conditions, The deactivation model introduced by Klemm and Egui
the deactivation model, allowing a core of active nodes, luz [25] is defined as follows: Consider a network with di-
generates a network with average degfke=2m and de- rected links. Each node can be in two states, either active or
gree probability distributionP(k)=2m?k 3. Interestingly, inactive. The model starts from a completely connected
the scale-free properties are associated to a high clusterirggaph ofm active nodes and proceeds by adding new nodes
coefficient. For this reason the deactivation model has beeone by one. Each time a node is addgdl,it is connected to
used to study how clustering can alter the picture obtainedll active nodes in the network2) one of the active nodes is

II. DEACTIVATION MODEL
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selected and set inactive with probability of the active node with largest in-degree that coincides with

the oldest node. Then, following EfLL), one of them will be

. deactivated with probability

{ (a+ k}”)l}
jeA

P 1+a
: (1) Pa(K) = T5a7k Pa(D)=1=pg(K). ()

iny _
pd(k: )_ a-}—k:n
Each time the oldest node is not deactivated, its in-degree
increases by one and, therefore, the probability that the old-

over the set of active nodes, a is a model parameter, and est node has in-degré€is just the probability that it is not
ki denotes the in-degree of thth node deactivated in K—2 steps, with running in-degree
i .

As we shall show below, this model is quite sensitive to2:3 - - - K—1. Thus, the probabilit>(K) of creating a de-
the order in which step&®) and(3) are performed and, there- activated node of in-degré€is equal to the probability that
fore, it is better to discriminate the following cases: Modgl the largest node is not deactivatedin-2 steps and is de-
step(2) is performedbeforestep(3), and modeB, step(2) is ~ activated in the last step, i.e.,
performedafter step (3). For m—oo, both models can be

and (3) the new node is set active. The sum in E%). runs

. K—-1
solved analytically in the continuos® approximation, after ~
introducing Xche p)rlobability density tha?F;in active node has P(K):{EZ [1—pg(€)]pa(K)
in-degreek™ [25]. Moreover in this limit, the order of steps 2
and 3 is irrelevant, obtaining the same in-degree distribution ~I'(3+2a) TI'(a+K) 4
P(k™~ (a-+k™) "7 with “T(1ta) T(2+2a+K)’ @

where I'(x) is the standard gamma functid29]. On the

@) other hand, every time that the oldest node is not deactivated,
the other, with in-degree 1, is deactivated. Hence, inkhe
—1 deactivation steps leading to the generation of a node
with in-degreeK, K—2 nodes with in-degree 1 are created.

The model is usually simulated by usiag=m. In this way  The average number of nodes with in-degree 1 created in the
the deactivation probability is inversely proportional to the process is then

total connectivity of the nodest(+ k™) ~* and the connec-
tivity distribution results to bé (k) =2m?k 3. Interestingly, _F B ta
due to the deactivation mechanism, the networks show a P.= E (K=2)P(K)=——. (5)
high clustering coefficient that approaches a constant value K=2 a
in the infinite size limit[25].

At lower values ofm, it has been claimed that finite size
effects set in and the connectivity distribution shows devia- ~

2+ a
Y= m:

Therefore, the in-degree distribution will be given by

in_
tions from the predicted behavior. We shall see in the follow- . . Py, kKP=1
ing section that fora=m=10 the model presents a very P(k")=C - i (6)
different analytical solution that yields a connectivity distri- P(k™), k"™>1,

bution very far from then—-oc limit. In addition, the deac- ) ) o
tivation model topology is very sensible to changes in thevhereC is a constant, obtained from the normalization con-

details of the growing algorithms. dition 2inP(k™ =1, which has the value
e i ~ . 2a+2
Ill. DEGREE DISTRIBUTION €= P1+K=2 PK=—3 ™

A. Model A
] ) ) From this equation, we obtain the analytic expression for the
Let us first focus on modei with m=2, i.e., the smallest jn-degree distribution

value of m for which the model is nontrivial. In this case,

after adding a new node we have only two nodes at the 2+a .
deactivation step. One of them will be set inactive and re- >12a’ k=1
placed by the new added node that has in-degree 0. In the 0

worst case, the other node will have in-degree1d the 0 P(k™) = in ®
coming from its initial in-degree and the 1 from the connec- I'(2+2a) T'(a+k" Kin>1.

tion to the newly added node, and in general, it will have I'(a)  r@2+2a+k")’

in-degree larger than or equal to 2. Later on, at the next

deactivation step, the in-degrees of both nodes will have inFor largek™, we can expand the previous expression using
creased by one resulting in one active node with in-degree Stirling’s approximation to obtain that the in-degree distribu-
and another with in-degrel€=2, whereK is the in-degree tion follows the asymptotic behavior:
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10’ former has in-degree 0, while the lattghe oldesk has in-
degreeK=1, and one of them is deactivated with probability
a
107 Pa(K) =57 Pa(0)=1—pu(K). (12
P rﬁz B The probability that when the oldest node is deactivated it

= has degre& is given by

=3 5 KI:I1 . . < I'(1+2a) [(a+K)

<o m= = —_ f—

exact solution (K) =1 [ Pa(€)1Pa(K) I'a) TI'(1+2a+K)’
10° — 5 (13
10 10 10 10

k In the process of creating a node of in-degke&k — 1 nodes
of in-degree 0 have been created. The average number of

FIG. 1. Degree distribution of modé| for a=m, network size ) = .
nodes with in-degree O created is

of N=10’, and different values ofn. The continuous line is the

exact distribution fom=2 given by Eq.(10). The inset shows the w +1
i ; ; - - a
\S/ﬁ:]uuelac:ifotrr:: exponeng as a function ofn obtained from numerical Bo= E (K-1)P(K)= —. (14)
. K=1 a—1
P(kM~kn=7, y=2+a. (9)  Thus, the analytic expression for the normalized in-degree
distribution is given by
Moreover, since the out-degree of all nodesnisthe degree ~ o
k of a node(in-degree plus out-degreés m+k™ and will _ Po., k=0
follow the same distribution shifted by. For the particular P(km=cCc! ' (15
casea=m=2, the degree distribution takes the form P(kM, k™>0,
2 k=3 with the normalization constant
3’ - 5
P(k)= (10 C=Ppt S B(K)= - 16
120 . ot 2 P(K)=7=5 (16)
k(k+1)(k+2)(k+3)’ '

From here follows the expression for the degree distribution

In Fig. 1, we plot the degree distribution obtained from (Wherek=m-+k™)
numerical simulations of mod&l for a=m. Form=2, the 1+a

numerical points are in very good agreement with the exact — k=1
distribution given in Eq(10) with a power law decay with 2a
exponenty=2+a=4. In the limiting case of largen, the P(k)= (17
continuous approach predicts the exponeri3)| [see Eq. I'(2a) I'(a+k-1) Kk>1
(2)], giving us a lower bound. Hence, I'a—1) I'(2a+k) ’ '
modelA with a=m = 3<y=<4 (11)  For largek the degree distribution follows the asymptotic
behavior:
and, therefore, the degree distribution has always a bounded
second moment. For largen the distribution follows a P(k)~k™7, y=1+a. (18)

power law decay but with an exponepthat depends om. . o .
In order to show that the degree distribution approaches for In F_'g' 2,_we Sh_OW the degree d|str_|bu_t|on obtam(id from
eachm an asymptotic power law behavior with>3 we rlumerlcal simulations of. model B wita=m. For a=m
performed large-scale simulations of networks whitk-107 ~ — L We recover the predicted exponent —2. Also in this

nodes. In Fig. 1, we report the behavior of the exponeas case7, we provide Igrge-scale numerical simulatiqms (
a function ofm. For all values ofm<10, the degree expo- —19) ©of networks with larger values ah. The obtained
nents strongly deviates from tima—oc limit distributions still follow a power law decay but with an ex-

ponenty that is a continuously increasing functionrof It is
worth remarking that fom<10, the degree exponent is
stable and strongly differs from the valye=3.

Using similar arguments we can compute the degree dis- It is worth noticing that fora=m=1, the analytic solu-
tribution of modelB for m=1. In this case we also have two tion, Eq. (17), is singular, as can be readily seen from the
nodes at the deactivation process, the one just added and théa— 1) factor in the denominator. In fact, the solution in
one surviving from the previous deactivation step. Thethis case isP(k)= 4y, that is, in the thermodynamic limit

B. Model B

046111-3



VAZOUEZ et al. PHYSICAL REVIEW E 67, 046111 (2003

10" z
° 3
- <
10° ~
P(k) =
=¥
|
107 =
10° 2 3 " S 6
10° 10° 10 10 10 10 10
N
400

FIG. 2. Degree distribution of mod@& for a=m, network size
of N=10’, and different values ah. The inset shows the value of

the exponenty as a function ofm obtained from numerical simu- 300
lations.

(infinitely large network, the weight of the nodes with de- gz 200
gree 1 is overwhelming with respect to the nodes with dif- &

ferent connectivity. This singularity is rooted in the fact that 100 4
the distribution, with exponeny=—2, lacks a finite first
moment in the thermodynamic limit, while we know that, by
definition, modelB has average connectivitik)=2. This vy
necessarily implies that there must be an implicit dependence 10 10
on the network sizeN in the degree distribution foa=m N

=1, dependence that cannot be assessed by our analytic So-FIG. 3. Scaling of the degree distributiéi,(k) for theB model
lution since we are already working in the infinite network with a=m=1 at fixedk, as a function of the network si2¢ for (a)
limit. We can nevertheless estimate the functional form ofk=1 and(b) k>1. The solid lines are least-squares fits to the form
the degree distribution for a finite network composedNy [1—Py(1)]"~ InNin (&) andPy(k) ~~ InNin (b), as predicted
nodes, which has a maximum connectivity, such that by Eq.(22).

there are no nodes with degree larger tkanAssuming that

L
5 6

10

the distribution fork>1 follows the same functional form as 1 1
Eq. (17), we have that foa=1, l—Cpm, C2~m. (21
Cl’ k: 1 . .. .
Therefore, in the limitN—o, we recover a singular degree
Pn(k)= C (19 distribution withC;—1 andC,—0. We can check numeri-
2 . 1<k=k, cally this result by noticing that, from Eg&l9) and(21), the
k(k+1) degree distribution at fixeld should scale as

whereC; andC, are constants to be determined by the nor- 1 1
malization conditionsS;_;Py(k)=1 and Et‘;lk Pn(k) =2 1-Pn(D)~ N’ PN(k)~m, k>1. (22)
(the upper limit in the first normalization condition can be
taken to be infinite, since the corrections stemming fiqm
are of lower order From these two conditions we obtain, in
the continuousk approximation that replaces sums by inte-
grals,

We have verified this scaling form in Fig. 3. Therefore, in

model B with a=m=1 we obtain a degree distribution that

decays ak 2, but with a normalization constant fdr> 1

that decays with the network size as MnFinally, it is
21n(3/2) 2 yvor‘_[h me_ntioning that the second_ moment_ of the distribl_Jtion

C,=1- A = (200 Is diverging agk?)~N/In N. Despite this singular behavior
In( ¢

n 1+ke fora=m=1, however, Eq(17) remains exact for any value
of a#1.

From the results of Fig. 2, together with the upper bound
For finite SF networks with degree distributiét(k)~k~», ~ ¥=3 obtained from the large approximatior{25], we have
the maximum degrek. scales with the number of nodes as that
ko~NY(=1) [2]. In the present case, we hakg~N, and
thus, for largeN, model B with a=m = 2<y<3, (23
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and, therefore, the degree distribution has a divergent second 10°
moment.

The analysis made above has shown that the deactivation 3
model is quite sensitive to the order in which stépsand L8

(3) are performed, yielding degree distributions with a finite
or divergent second moment, depending on the order. In ad- g, -
dition, the exponenty is rather sensible to the value af T
=m, showing a wide range of variation. This fact has not

been noticed in previous works where this model has been 107
considered25—-27, prompting that some of the conclusions

obtained in those works should be reconsidered in this per-
spective. 10

10

IV. CLUSTERING COEFFICIENT

We can go beyond the degree distribution and compute
the clustering coefficient(k) as a function of the node de-
greek [6,28]. For this quantity we can perform an analytic
calculation for any value oA andm and for both modelg\
andB. In order to compute the clustering coefficient, we will
consider the network as undirected and denotekjsyk"
+m the total degree of the node

The clustering coefficient of the nodes defined by 16]

B 2€i
Cki(ki—1)’

Ci (24)

whereeg,; is the number of edges between the neighbors of
nodei and it is divided by its maximum possible value

ki(ki—1)/2. In the deactivation model, new edges are Crés,. igerent values ofn. The points were obtained from numerical
ated between the active nodes and the added node. HENCe g ations of(a) model A and (b) modelB, up to a network size

remain; constant for inactive nOdeS_ and increases only fQ(= 105 The continuous lines correspond with the analytical solu-
the active ones. Moreover, all the active nodes are connecteglyn given in Eq.(26)
Hence, each time we add a node, the degred each active

node,i increases by one ang increases byn—1, where = e obtain the exact behaviotk)=2/k. Form>2, the
m—1 are just the new links between the new neighbor of asymptotic behavior for largk is c(k)~1/k [25]. Interest-
(the added_ nodeaqd the remaining active nodes. Therefore,ingly, we recover in this model the same behaviorc¢k)
the dynamics of; is given by found in other systems in Ref30].
In Fig. 4, we plot the clustering coefficient as a function

ﬁ =(m-1) (25) of the node degree obtained for modalandB and different

at ' values ofm from numerical simulations. As it can be seen,
the numerical dependency coincides with the analytical ex-
pression in Eq(26).

FIG. 4. Clustering coefficient as a function of the node degree

while the connectivity obeys the relatidg(t)=m+t. Here,
t=0 corresponds to the time at which the nodeas created.
Besides, when the node is added it has degreethus
e (0)=m(m—1)/2 and, therefore;;(0)=1. Integrating Eq.
(25) with this initial condition and substituting the result in
Eq. (24), taking into account that=k;—m, we obtain

V. DEGREE CORRELATION FUNCTION

Degree correlations can be characterized by analyzing the
nearest neighbor average degree introduced in RBf§],

defined as
) m(m—1) 2(m—1)(k—m)
c(k)=——— - D
k(k—1) k(k—1) k,m,i=?', (27)
_2(m-1)  (m—1)(m-2) '
B k a k(k=1) ' (26 whereD; is the sum of the degrees of the neighbors of node

i. In uncorrelated networks, the quantiky,; does not show
where the last expression in E@6) is obtained after some any dependence on the degree of the niodéis is not the
algebraic manipulations. Equatid@6) recovers the results case when degree correlations are present. In this kgse,

previously obtained in Ref28]. Form=1, the network is a
tree, and therefore we obviously recougk)=0. For m

is a function of the degree of the node whose nearest neigh-
bors are analyzed. In particular, we can face two possible
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kinds of correlation. In the first situation, nodes with high 102 o
connectivity will connect more preferably to highly con- g
nected nodes; a property referred to as “assortative mixing.”
On the opposite side, it is possible to have “dissortative mix-
ing”; i.e., highly connected nodes are preferably connected
to nodes with low connectivity31].

In the deactivation model, when the node is added it has
degreem andD;=m(k) 4, where(k) 4 is the average degree
among active neighbors. Then, if the nads active, it is, by
construction, neighbor of then—1 remaining active nodes.
Thus, every time a new node is addégd,increases by one
andD; increases byri—1)+m, m—1 because the degree
of the remainingn—1 neighbors have also increased by one
andm because the new neighbor has degreddence,

k (k)-(2m-1)

nn
—_
o

aD;
—=(2m-1) (28)

for each active node Integrating this equation, taking into
account the initial conditio®;(0)=m(k) 4 and the relation
t=k;—m, we obtain that

nn

k (k)-2m-1)
)
T

D/ =(2m—1)(kj—m)+m(k) 4 (29 | = ol
102F © m=I P ™
when the node is deactivated. Now, when an active node S mto st
becomes inactive, its degree remains fixed but the degree of °°°<',° :
its active neighbor nodes will still increase until they get 107 Lol sl 9B
deactivated. Therefore, in the infinite time limit, we have 0 19 LI 19 1
D;=D/+AD;, (30) FIG. 5. Average nearest neighbor degree as a function of the

) _ ) ) ) degreek for different values ofm. The points were obtained from
whereAD; is the increase ob;, since nodé was set inac- numerical simulations ofa) model A and (b) model B, up to a

tive until all its neighbors are set inactive. network sizeN=10°, averaging over 1000 realizations. The con-
Hence, from Eqs(27), (29), and(30), it follows that tinuous lines correspond with the analytical dependekgy(k)
—(2m—1)~ 1k.

m(k) 4+AD;—m(2m—1)

knn‘i=2m—l+ ki

3D —1)~1/k for m=1 andm= 10 but decays faster for interme-

diate values ofn, a behavior that we are not able to explain.
It remains now the task to assess the possible dependenceTHus, in this case the correlations between the active node
AD; on the connectivityk; (it is clear that the long time degrees introduce stronger deviations for intermediate values
average of k) , must be independent of the connectivity of of m. In all cases, however, we find that correlations in the
any deactivated nodleFor the minimunm (m=2 for model  deactivation model are of “disassortative” nature; i.e., highly
A andm=1 for modelB), the degree of an active node set connected nodes are preferably connected with poorly con-
inactive is not correlated with the degree of the remainingnected nodes. It is also worth stressing that the results for
active nodes, since those remaining nodes have always deodel B withm=1 must be taken with a grain of salt, given
grees 2 and 3 in modé& with m=2, and degree 1 in model the singular nature of the model exposed in Sec. Il B.
B with m=1, independent of the degree of the last deacti- In the deactivation model, eithéx or B, for a fixed net-
vated node. Therefore, in this cas8®; cannot depend ok; . work size N and assuming thaAD; does not grow faster
This lack of correlations is also clear fon>1, where the thank;, we have that in the limikj—, k,,j—2m—1.
sumz;_ 4(a+ kj)*l in Eq. (1) is a constanf25] and, there- That is, the average nearest neighbor degree of the hubs
fore, the degree of the active nodes in not correlated with thénodes with largesk;) equals(k)—1, as previously pointed
degree of the inactive nodes. For intermediate values,of out in Ref.[26]. However, this fact does not necessarily im-
however, the degree of the active nodes may be correlated ply that AD; is independent oN. One way to check this
such a way tha\D; depends ork; . point is to compute the average &f,; over all nodes,

In Fig. 5, we plot the dependency of the average nearegl ), == ,P(k)k,n(k). Let us assume thak,,~(k)—1
neighbors degre&, (k) as a function of the degrele for + al/k, wherea is depending oAD; . iADi is approach-
modelsA and B and different values of. In the case of jng a constant value, we should obtgk, )y~ const, inde-

model A, kno(k) —(2m—1)~1/k even form#2, in agree- pendently ofN. In Fig. 6, we show howk, )y behaves with
ment with Eq.(31). In the case of modeB, k,,(k)—(2m increasingN for a=m. For modelA, where 3<y=<4, it
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FIG. 6. Average nearest neighbor degree as a function of the 10 10

network sizeN for different values ofn. The points were obtained
from numerical simulations ofa) model A and (b) modelB, up to

a network sizeN=1CP, averaging over 1000 realizations. FIG. 7. Scaling of the diametéa) and the average shortest path

(d) (b) in the modelB for different values ofn. The reference lines
have slope 1. For the sake of clarity, the curverfor 1 in (a) has

approaches a stationary value fbf>1. Moreover, the been shifted by a factor 5

asymptotic limit of (k,,)y increases with increasing. In
fact, with increasingn the exponenty decreases approach-
ing the limit y=3 for m>1, where(k"") diverges logarith-
mically with N. On the contrary, for modeB, where 2<y
<3, (knn)n is growing withN following a power law. This
implies thatAD; is a diverging function oN and that in the
thermodynamic limit(in which we perform first the limitN . . . . .
— ), thye average nearest neigEbor connectivity curve i%ave_ a d'a”?eter spalmg with the sidleas the inverse of the.
progressively shifting to larger and larger values. This finally=uclidean dimension, many complex networks show striking
points out that the average nearest neighbor connectivity ofmall-world properties; i.e., in an average one can go from
hubs is not a well-defined quantity since tke—o limit one node to any other npde in thg system by passing through
must be performed only after thd—o limit. The diver- @ Very small number of intermediate nodé$)]. In this case

gence of(?nn)N with N is related to a general property of SF th_fhgzrr]aph dtlam,eter grk())ws ]loge:jrl;r;mmally, or even slower,
networks with diverging connectivity fluctuations and it is wi € system's number of no

dictated by the detailed balance of connectiB®,33. In Ref. [28], it has been noticed that for large values,
(d) scales linearly with the network si2¢ In the deactiva-

tion model A andB), we measured both the diameter and
the average minimum path distan(@) as a function ofN
Another fundamental topological feature of complex net-for values ofa=m ranging from 1 to 4. In all cases we find
works is identified by the scaling of the average path lengttihat after a small size transient, both metrics approach a lin-
among nodes and the network’s diameter. The minimum patkear scaling withN. In Fig. 7, we report the results obtained in
between two nodes is given by the minimum number of in-the case of the deactivation model with rBeThis evidence
termediate nodes that must be traversed to go from node implies that the topology of the generated networks is ap-
node. The average minimum path lengdth) is thus defined proaching those of a one-dimensional lattice. In other words,

as the minimum path distance averaged over all the possible
pairs of nodes in the network. Similarly, the network diam-
eter is defined as the largest among the shortest paths be-
tween any two nodes in the network.

While regular networkgfor instance hypercubic lattices

VI. DIAMETER AND SHORTEST PATH LENGTH
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does not allow the formation of shortcuts between the deac-
tivated region of the network and the new active nodes, hin-
dering the development of small-world properties. The linear
chain is therefore reflecting the time evolution of the struc-
ture: recently added nodes are separated from the original
core of active nodes by a sequence of deactivated nodes that
increases proportionally to the network size. By inspecting
networks with largem, we find very similar structures, with

an increasing size of the dense clusters forming the linear
chain. As we shall discuss in the following section, the ab-
sence of small-world properties might have a relevant effect
in many physical properties of the network.

VIl. DISCUSSION AND CONCLUSIONS

In the present work, we have provided a detailed analysis
of the deactivation model introduced in REZ5]. The model
shows a rich behavior, being very sensible to the value of the
parameters used in the model and slight variations of the
growing algorithm. The most striking result is that the degree
distribution is depending on the value of the number of si-
multaneously active nodes and also in the case in which
a=m; i.e., when the deactivation probability is related to the
nodes’ total degree. The degree exponent is asymptotically
approaching the valug=3 only for m—«, and the SF
properties of networks suffer large variations in the range 1
=m=10. Along with the high clustering observed in previ-
ous works, we find that the model exhibits interesting degree
correlation properties. In particular, we find marked disassor-
tative mixing properties; i.e., highly connected nodes link
preferably to poorly connected nodes. The analytical expres-
sion for the degree correlation is obtained and recovered by
numerical simulations. Strikingly, the SF and correlation
properties are not associated with small-world properties.
The numerical analysis shows that for all valuesngfthe
network diameter is increasing linearly with the number of
nodes. The network thus approaches a linear structure, lack-
ing long-range shortcuts.

One of the most interesting issues related to SF networks
is the effects of their complex topological features on the

FIG. 8. lllustration of a typical network generated with the de- dynamics of spreading phenomej24.,,22,24,34and the on-
activation modeB with a=m=3 (the size isN=10%). The linear  Set of percolation transitiof48—20. In the case of random
topology with some local highly connected clusters forming a chainSF networks, where degree correlations are absent, it has
is evident. been found that the epidemic threshold is proportional to

(k)/(k?) [21,22. Uncorrelated SF networks allow the onset
the deactivation model does not exhibit small-world proper-of large epidemics whatever the spreading rate of the infec-
ties. tion. This is a noticeable result that has a large impact in

In order to provide a visual representation of the deactiimmunization as well as control and design policies in real
vation model topology, we report in Fig. 8 the illustration of networks[35,36. On the other hand, most real networks
a network generated with modBlanda=m=3. The linear show nontrivial degree correlations and clustering properties
topology of the network with some local highly connectedas it is the case in the present deactivation model. Similarly,
clusters forming a chain is evident. The linear structure ishe random removal of nodes does not destroy the connec-
made up of groups of nodes connected to a node which ha#wity of SF networks withy<3. In other words, the perco-
been active for longer times and has had the possibility tdation transition is absent, and the networks are extremely
develop a high number of connections. Once these hubs arebust to random damagés8—20. A natural question is to
deactivated, they do not receive any further connection. Th&now whether or not the clustering properties of SF networks
network grows by adding bridge nodes that are rapidly deplus their correlations alter the general results obtained for
activated until a new dense cluster is developed by a nodencorrelated networks. For this reason, several recent works
that is active long enough. The growth mechanism, howevehave addressed the effect of such correlations in the epi-
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10° . . . . scaling(R?(t))Y?~tY2, For the deactivation model we ob-
Model B serve a slightly subdiffusive behavior with a mean-square
————— 1d lattice - displacement scaling a&R?(t))Y?~t%46. We thus conclude
e BA model e that dynamics on the deactivation model, is almost purely
0 T 1999 Internet map o7 diffusive, as expected from its non-small-world character.
e The analysis of spreading and percolation properties in this
7 network cannot therefore be performed at the mean-field
e level [21,22], but must include diffusion and most probably
. fluctuations, leading to a much more complex formalism
-7 based on a field theofy38]. For the sake of comparison, we
] have also plotted in Fig. 9 the mean-square displacement of a
10° 47 ) ) ) ) random walker on a BarabbAlbert network[17] and on a
Internet snapshot map from 1999, collected by the National
t Laboratory for Applied Network Resear¢B9]. As we ob-
serve, in these last two networkéR?(t))Y? saturates very
%uickly to a constant value, proportional to the network’s
diameter, indicating the presence of a strong small-world
component. The essential difference of the diffusive proper-
ties between the Internet and the deactivation model does not
allow to extend the conclusions obtained from the model to
the spreading in the real system.

<R1 (t)>1 173

FIG. 9. Mean-square displacement of a random walker on th
deactivation model witm=3, a one-dimensional lattice, and the
Barabai-Albert model withN= 10 nodes, as well as an Internet
snapshot map from 1999 with 6301 nodes.

demic spreading occurring on these netwdrk8,27,32,3T.

In particular, in Ref.[26] the existence of an epidemic : ; .
threshold in the case of the deactivation model for &ileas The same applies to percolation properties that naturally
been claimed. exhibit a finite threshold in this case. The fact that spreading

The presence of a finite threshold in the deactivatior@nd percolation properties on the deactivation model are

model has been traced back to the high clustering coefficierﬁ'm"ar to those of regular lattices because of the absence of

and the finite limit of the average nearest neighbor Connecg,mall-world features is corroborated by the analysis of Ref.

tivity of the largest hub$26]. On the other hand, we have [27] that shows how the introduction of a small amount of

shown here that the average nearest neighbor connectivityg’ortcms restores the usual absence of a percolation thresh-

the system is diverging with the system size. What appears d. In this perspective, it WOUIQ be 'extremely interesting tq
more fundamental for the properties of spreading in the de'2ve @ detailed study of the epidemic spreading properties in
the case of the deactivation model with random rewiring

activation model is its linear structure with a diameter that[zs] in order to assess the effect of clustering and degree

increases withN. In a coarse grained picture, the epidemic lati . di i SF ks with
spreading is dominated by the diffusion of the disease on gorrelations in spreading processes in networks wit
dsmall-world properties.

linear chain. In order to check this point, we have simulate
a standard random walk in tleemodel withm=3. In Fig. 9,
we plot the mean-square displacement of the random walker,

(R%(1))¥2=([r (t)—r(0)]?)2, where the brackets denote an  This work has been partially supported by the European
average over 250 realizations of the random walk on 25@ommission FET Open project COSIN under Project No.
different networks. For a purely diffusive system, as wouldIST-2001-33555. R.P.-S. acknowledges financial support
be the case of a one-dimensional lattice, we would expect rom the Ministerio de Ciencia y Tecnolag(Spain.
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