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Local versus global knowledge in the Baraba´si-Albert scale-free network model
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The scale-free model of Baraba´si and Albert~BA! gave rise to a burst of activity in the field of complex
networks. In this paper, we revisit one of the main assumptions of the model, the preferential attachment~PA!
rule. We study a model in which the PA rule is applied to a neighborhood of newly created nodes and thus no
global knowledge of the network is assumed. We numerically show that global properties of the BA model
such as the connectivity distribution and the average shortest path length are quite robust when there is some
degree of local knowledge. In contrast, other properties such as the clustering coefficient and degree-degree
correlations differ and approach the values measured for real-world networks.
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During the last several years, many scientists have sc
nized the world around us to unravel the complex pattern
interconnections that characterize seemingly diverse so
@1#, biological @2,3#, and technological systems@4,5#. These
systems have been shown to exhibit common features
can be captured using the tools of graph theory or in m
recent terms, network modeling. At the same time, netw
models of diverse kinds have been proposed with the aim
describing and explaining the properties of real webs@6,7#. It
turns out that most real networks are better described
growing models in which the number of nodes~or elements!
forming the net increases with time and that the probabi
that a given node hask connections to other nodes follows
power lawPk;k2g, with g<3. Additionally, the study of
processes taking place on top of these networks has led
reconsider classical results obtained for regular lattices
random graphs due to the radical changes of the syste
dynamics when the heterogeneity of complex networks c
not be neglected@8–11#.

The first scale-free~SF! network model, introduced by
Barabási and Albert~BA!, postulated that there are two fun
damental ingredients of many real networks@12,13#: their
growing character and the preferential attachment~PA! rule.
The preferential attachment rule considers that the proba
ity that an old node links to newly added nodes is prop
tional to its degreek. It summarizes the common belief th
the richer you are, the more likely it is that your richne
grows; that is why the term rich-gets-richer has been use
refer to the PA rule@13#. However, the BA model assume
that one knows the connectivity of all nodes when a n
node links to the network. This is clearly an unrealistic a
sumption. This drawback of the model construction has
passed unnoticed and many models have been introduc
produce scale-free networks and to test whether or not
basic assumptions of the BA recipe are necessary condit
to build up these networks@6,7#.

Growing models which produce scale-free graphs w
arbitrary g exponents, and nonrandom correlations can
found nowadays in the scientific literature. On the oth
hand, there are some models in which the PA rule is limi
to a neighborhood due to geographic constraints@14#, or
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where its linear character is investigated@15#. Recently, Cal-
darelli et al. @16# have shown that one can produce SF n
works without assuming preferential attachment at all. A
by-product, other properties of the network fit well wit
those of real-world graphs. They introduced an intrinsic
ness model in which two nodes are connected with a pr
ability that depends on their fitness. Note, additionally, th
the way in which the fitness parameter was introduced
different from the model in Ref.@17#.

In this paper, we adopt a different perspective. Our aim
to test to what extent the global character of the PA rule
the original BA model is important. We introduce a model
which the PA is applied only to a neighborhood of the new
added node depending on the value of a variable which m
sures the affinity between different nodes. By going do
from the BA limit of the model to the the limit where a
nodes are distinct, we test to what extent the global kno
edge of each node’s connectivity is fundamental to ge
scale-free graph. Through numerical simulations we find t
in a wide range of the model parameters, average quant
such as the connectivity distribution and the shortest p
length are not affected by the use of local knowledge of
network, whereas other properties such as the clustering
efficient are more sensitive to local details.

Our model is defined in two layers. The first discriminat
among all the nodes by assigning to each node at the mom
of its creation a parameterai which measures how close o
distinct a given node is from the rest of the elements t
compose the network. Then, we apply the preferential atta
ment rule in the neighborhood defined by nodes with co
mon affinities. Specifically, the network is constructed
repeated iteration of the following rules.

~i! Start from a small core of nodes,mo , linked together.
Assign to each of thesemo nodes a random affinityai taken
form a probability distribution. In what follows, we will use
for simplicity a uniform distribution between (0,1).

~ii ! At each time step, a new nodej with a random affinity
aj is introduced and linked tom nodes already present in th
network according to the rules specified below.

~iii ! Search through all nodes of the network verifyin
whether or not the conditionai2m<aj<ai1m is fulfilled,
©2004 The American Physical Society03-1
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wherem is a parameter that controls the affinity tolerance
the nodes. The nodes that satisfy the affinity condition
grouped in a setA as potential candidates to gain new link

~iv! Apply the preferential attachment rule to the setA
@18#, i.e., when choosing the nodes to which the new ver
links, we impose that the probability that vertexi connects to
the new node depends on its connectivity such that

P~ki !5
ki

(
sPA

ks

. ~1!

~v! Repeat steps~ii !–~iv! such that the final size of th
network isN5mo1t.

Thus, aftert time steps a network made up ofN nodes
builds up. It is worth mentioning that the inclusion of th
affinity parametera is not a mere artifact. Indeed, most re
systems are formed by nonidentical elements and thus
natural to assume that although a given node could ha
large connectivity, a newly created element will not link
that node because they have very little in common. T
feature is clearly manifested in social networks such as
WWW—where individuals bookmark different web pag
according to their ‘‘affinity’’—or the scientist citation net
work @19#. In this way, it is very unlikely to find a citation in
a condensed matter paper referring to a paper written b
psychologist. Additionally, the same argument can be tra
lated to biological networks such as predator-prey webs
protein-protein interaction networks.

Obviously, whenm is large enough as to dilute the fir
layer of the model, we recover the BA model. The proble
then consists of determining to what extent the local pre
ential attachment will give the same results, or in oth
words, does the knowledge of the entire network subs
tially contribute to the properties observed in the BA n
works?

We have performed extensive numerical simulations
the model described in the preceding section. In all cases
numerical results have been obtained after averaging ov
least 500 iterations varying the system size from 103 up to
1.23104 nodes. We first generate the BA network by setti
the parameterm to its maximum value such that the prefe
ential attachment applies to the entire set of nodes and
tunem in order to systematically reduce its value and the
fore the size of the setA to which the second choice Eq.~1!
is applied.

Figure 1 shows the number of nodes with connectivityk
for several values ofm. It turns out that irrespective of th
range to which the preferential attachment is applied the
tionary probability of having a node with connectivityk is
the same as for the BA model, namely,Pk;k2g with g'3 .
This result could be intuitively understood by noting that t
rules for the network generation have been changed only
local level, but seeing from a global perspective the aver
properties should not change radically. To realize this po
think of the network as being made up of different sm
components, as given by the affinity constraint, each
which is constructed following the BA algorithm. It is the
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clear that for large system sizes, each graph will follow t
power-law distributionPk;k23 and so will be for the entire
network.

The above argument applies only to average global pr
erties, but there is nothing that guaranteesa priori that the
components of the network will link together in such a w
that other properties will not be affected. This is the case
the average shortest path lengthL. The average shortest pat
length of a graph is defined as the minimum number of no
one has to pass by to go from one node of the network
another randomly chosen node averaged over all poss
pairs of nodes. Complex networks show the noticeable pr
erty, known as small-world property, that the average p
length increases only with the logarithm of its size. We e
pect that for high values ofm the network is composed by
unique giant component and no fragmentation arises. W
the range to which the affinity criterion is applied decreas
the network will gradually lose its compactness and w
stretch approaching a one-dimensional structure with so
small components. Further reduction ofm provokes the
breakdown of the network in many isolated clusters.

Figures 2 and 3 substantiate this picture. Figure 2 rep
sents the ratio between the average path length obtaine
different values ofm and that of the BA network, for severa
system sizes. Asm restricts the PA range, the network unde
goes a transition characterized by a growth ofL(m) and
eventually becomes fragmented giving rise to an infin
shortest path length. We note here that although the res
shown in the figure have been obtained for a uniform dis
bution of affinity valuesai , the qualitative behavior does no
change for other probability distributions and only the val
at which the transition is observed slightly shifts to the rig
The shape of the network as the parameterm is varied can be
observed in Fig. 3, where we have represented how the
work looks like for the limiting values ofm. It is clear that
when the PA range reduces too much, the structure of
network radically changes while keeping the same deg
distribution.

We now focus our attention on other properties with

FIG. 1. ~Color online! Number of nodes with connectivityk for
different values ofm. The size of the network isN5104 nodes and
mo5m53. The power-law distribution has an exponent equal to
Note that the BA limit corresponds tom51.
3-2
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local character. This is the case of the clustering coeffic
ci . The clustering coefficient of a nodei is defined as the
ratio between the number of edgesei among theki neighbors
of i and its maximum possible value,ki(ki21)/2, i.e., ci

52ei /ki(ki21). In this way, the average clustering coef
cient c is given by the average ofci over all nodes of the
network. The clustering coefficient is of local character a
gives the probability that two nodes with a common neigh
are also linked together. Thus, it is expected that this ma
tude, in our model, depends on the affinity of each node
the range of preferential attachment given bym. Figure 4
shows the average clustering coefficient of nodes with
given connectivityk, for different values of the parameterm.
The BA limit exhibits almost no correlations with the degr
k of the vertices and the smallest value for the cluster
coefficient. Asm is reduced, the first selection of nodes
their affinity values plays a more dominant role contributi
to the rising ofci for small and large connectivities. Near th
transition,m;0.04, the average coefficient is about one or
of magnitude greater than that of the BA network.

Recently, a lot of attention has been given to netwo
motifs @20,21#, which can be defined as graph compone

FIG. 2. ~Color online! Ratio between the average shortest p
length for differentm values,L(m), and that of the BA network
@L(1)# for several system sizes. The horizontal line marks the
limit. A transition from graphs fulfilling the small-world property t
a regime in which networks break down in many small pieces r
ing the value ofL(m) is observed. See the text for further detail

FIG. 3. Graph representations of two networks produced w
different values ofm. From left to right,m51, andm50.04. Each
network is made up ofN5500 nodes.
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that are observed in a given network more frequently than
a completely random graph with identicalPk . Triangles and
rectangular loops are among these graph components,
known as cycles. They are important because they exp
the degree of redundancy and multiplicity of paths amo
nodes in the topology of the network. The results obtain
for ck indicate that as the region where the PA applies
reduced, the number of cycles increases and nonrandom
relations arise. This is illustrated in Fig. 5, where the avera
nearest neighbor degree,kNN(k) of a node with connectivity
k is depicted. While the BA model exhibits no correlations
manifests the tendency that networks generated with sm
values ofm display disassortative mixing at both ends of t
connectivity range.

In this paper, we have studied a version of the Barab´si
and Albert scale-free model that allows to tune the range
which the preferential attachment is applied. The model c

-

h

FIG. 4. ~Color online! Average clustering coefficientck of nodes
with degreek for five different values of the parameterm. Note that
asm decreases, the clustering coefficient departs from the BA li
~m51!. The parameters used for the generation of the networks
as in Fig. 1.

FIG. 5. ~Color online! Average nearest neighbor connectivi
kNN againstk for several values ofm. Results are averaged over 10
network realizations for eachm value. Other parameters are as
Fig. 1.
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BRIEF REPORTS PHYSICAL REVIEW E69, 037103 ~2004!
siders that all nodes are different such that they are, in p
ciple, unable to link to very distinct nodes. By introducing
affinity selection before applying the preferential attachm
rule, we tested whether or not the knowledge of the en
network is an essential requisite to get scale-free netwo
Our results seem to support the idea that having at least s
degree of preferential attachment is enough to get an
growing network. We found that the connectivity distributio
is not affected by the affinity constraints while the network
unable to link together if the tolerance range is reduced
much. On the other hand, local properties such as the c
tering coefficient do change and reach values higher t
those expected for random networks with the same de
distribution. However, the growth of the clustering coef
cient due to the differentiation of nodes produces at the s
time a rising in the value of the average shortest path len
Eventually the network breaks down in small pieces a
loses its small-world character.
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Finally, we point out that although the values found f
several magnitudes cannot be directly associated with
data, there are some regions of the parameter spacem where
nontrivial properties arise. In this sense, it would be intere
ing to perform the same analysis in more realistic grow
network models looking for more similarities with real-wor
networks. For example, the exponent of the connectivity d
tribution can be tuned to small values by incorporating
first level of selection of the present model in the generaliz
BA model @6#, which is known to give arbitraryg values in
the interval~2,3!.
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