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A number of problems in communication systems demand the distributed allocation of network resources in
order to provide better services, sampling, and distribution methods. The solution to these issues is becoming
more challenging due to the increasing size and complexity of communication networks. We report here on a
heuristic method to find near-optimal solutions to the covering problem in real communication networks,
demonstrating that whether a centralized or a distributed design is to be used relies upon the degree correlations
between connected vertices. We also show that the general belief that by targeting the hubs one can efficiently
solve most problems on networks with a power-law degree distribution is not valid for assortative networks.
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The allocation of network resources to satisfy a giventwo vertices in the graph is the minimum number of hops
service with the least use of resources, is a frequent problemecessary to go from one vertex to the other. Each server will
in communication networks. For instance, a highly topicalthen provide service to or monitor those vertices within a
problem is the development and deployment of a digital imdistanced. Using a heuristic algorithm that targets high-
mune system to prevent technological networks from spreadjegree vertices, we compute an upper bound to the minimum
ing viruses. In this case, it is worthwhile to characterizefraction of servers needed to cover these graphs. We find out
whether a centralized organization or a distributed approacthat the solution to the distanckeovering problem strongly
is the best choic¢l]. Clearly, this is the first decision, and depends on the degree of similarity between the connected
perhaps one of the fundamental ones, that must be takgRytices. As a consequence, we show that when designing
before proceeding with other technical issues. Another natus o\ orked systems, whether a centralized or distributed de-

ral ground includes the placement of Web mirror servers. Th%ign is to be used relies upon the network properties at a

solution to such problems is becoming more challenging du‘f‘ocal level. Our primary intent is not to develop an optimal

to the increasing size of social and technological networks.I ithm. Instead in f o ing the i ¢
Heuristic approaches that provide hints and pave the way fop Jorthm. Instead, our main focus 1s In assessing the impac
more elaborated strategies would be welcome. For this pu2f Correlations on the design of networked systems, and
pose we must identify which individuals are the ideal candi-"€Nce provide motivations, or lack thereof, for moving to

dates to transmit, collect, monitor, or prevent information™ore complex heuristics in the context of covering problems

and virus spreading across the netwptk6]. inreal nets. _ o
The solution to this and similar problems may be compu- The communication networks considered in this work are

tationally easy or hard depending on the topological properthe following: AS, autonomous system-level graph represen-
ties of the underlying grapf7—11]. In particular, communi- tations of the Internet as of April 16, 2001. Gnutella, snap-
cation and many other real-world graphs are characterized bghot of the Gnutella peer-to-peer network, provided by Clip2
wide fluctuations in the vertex degregs2—14, where the Distributed Search Solutions. Router, router-level graph rep-
degree of a vertex is the number of edges attached to it. Thisentations of the Internet. All these graphs are sparse with
means that, in addition to a high number of small degreen average degree around 3, small wofltig with an aver-
vertices, there are hubs connected to a large number of othege distance between vertices less than 10, and they are char-
vertices. The existence of hubs has been exploited to develdgsterized by a power-law degree distributipg~k™, with
strategies aimed at enhancing network resilience to damage~2.2. A detailed characterization of these graphs is pre-
[2], virus spreading3,4,6, and searching algorithm&].  sented in Refs[18] (Gnutellg and [15,19,2Q (AS and
Additionally, real-world networks are characterized by de-Router graphs They differ, however, in their degree corre-
gree correlations between connected vert{dgs16. These lations between nearest-neighbor vertices. The AS and Gnu-
degree correlations have been shown to affect the computéella graphs exhibit disassortative degree correlations, with a
tional complexity of hard problems on graphs with wide tendency to have connections between vertices with dissimi-
fluctuations in the vertex degrefkl]. lar degree$Fig. 1(a)]. In contrast, the Router graph displays
We report here on a heuristic method that allows us to findssortative degree correlations, with a tendency to establish
near-optimal solutions to the covering problem in real-worldconnections between vertices with similar degr¢eg.
networks. Specifically, we are interested in the problem ofl(b)]. In this paper we are interested in covering problems
computing the minimum set of covered vertidesferred to  beyondd=1; therefore we also analyze the degree correla-
henceforth as serversuch that every vertex is covered or tions ford>1 [21]. For the disassortative graphs, the aver-
has at least one covered vertex at a distance at mosge degree of distanakneighbors(K@),, restricted to root
d (distanced covering problen where the distance between vertices with degree, follows the same trend a&®),,
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FIG. 1. Average degreék@), of the distancet neighbors of a
vertex with degree, for d=1 (circles, d=2 (squarey d=3 (dia-
mondsg, andd=4 (triangles. Note that the average neighbor degree

neighbor, and all their incident edgeds.) If no vertex with
degree one is found, then cover the vertex with the larger
. . ) degree(hub), set dominated its neighbors, and then remove
() (d) ' o : T .
;ﬂzo'g;ce;";]R?:][el?iggt":ﬁgvc\’lgﬁgvgﬁ}(onh' g)tgi(neijk ;’rz;f?r:e the hub and all its incident edges. Finally, if some vertices
grapn. Poned with degree zero remain, they are covered if they are not

best fit to the power lawK@),=Ak™ in the rangek>1. Similar . . )
results are obtained for the Gnutella graph, but with more fluctua-dommawd’ and removed from the graph. Since $iepl-

tions due to its small sizéb) (K@), vsk for the Router graph. The ways provides af? optimal solutlon,-the erl"\lor n qomputlng
inset shows the exponeny obtained from the best fit to the power the average fraction of cov_ered Vert'dfﬁzzﬁlxi/N is less .
law (K@), =Ak" in the range 16<k= 100. than (o; equal to the fraction of vertices covered applying
Step(ii).
tending to be less correlated for largefFig. 1(a)]. For the The comparison between the local and leaf-removal algo-
assortative graph, however, the degree correlations are ass@ithms is shown in Fig. 2. First, notice that the solutions
tative up tod=2, becoming disassortative fat>2 [Fig.  obtained with the leaf-removal algorithm are almost exact
1(b)]. Finally, for d>6 the degree correlations in the origi- for the networks considered here add1. The local algo-
nally assortative graph show a similar trend than in the disrithm yields satisfactory, though nonoptimal, solutions to the
assortative graphs. covering problem, with some differences depending on cor-
We propose the following heuristic algorithm to obtain anrelations between connected vertices. For the AS and the
upper bound to the distanckeovering problem. Gnutella graphs, which exhibit disassortative degree correla-
Local algorithm For every vertex in the graph, cover the tions, the local algorithm gives a good estimate, quite close
highest-degree vertex at a distance at nadsbm the vertex. to the optimal one for the AS graph. In contrast, for the
In case there is more than one vertex with the highest degreRouter graph we observe a larger deviation from the optimal
one of them is selected at random and covered. To test thisolution. The origin of this difference is due to the fact that
algorithm we first consider the casb=1, known as the the local algorithm exploits the degree fluctuations among
dominating set problerfi7]. In this case we can use a leaf- connected vertices. Indeed, these fluctuations are bigger in
removal algorithm as a reference method, which yields alisassortative graphs as connected vertices likely have differ-
nearly optimal solution together with an error estimi@2].  ent degrees. In contrast, in assortative graphs, although there
The leaf-removal algorithm is defined as follows. To eachmay be high-degree fluctuations between two vertices se-
vertexi we assign two state variablesandy;, wherex;=0  |ected at random, connected vertices tend to have similar
(x;=1) if the vertex is uncoveredcovered and y;=0 (y; degrees, resulting in poorer solutions. These results indicate
=1) if the vertex is undominate@ominatedl. Here a vertex that the general belief that heuristic algorithms targeting the
is said to be dominated if it has at least one neighbor covhubs may be sufficient to solve computational problems on
ered. Starting with all vertices uncovered and undominategraphs with wide degree fluctuations may not be the case for
(x=y;=0 for alli), iteratively, (i) select a vertex with degree assortative graphs.
one (leaf). If it is not dominated, cover its neighbor, set Thed=1 covering problem results in a distributed archi-
dominated its second neighbors, and then remove the leaf, itecture because a finite fraction of the vertices is covered. Let
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FIG. 3. (a) Average fraction of servex&) covering the graph for Much slower with increasing, being almost zero up td
different values ofd. The continuous lines are the best fits to an =3 [Fig. 3b)]. These results are the signature of a phase
exponential decayb) Average fraction of vertice&) served by a  transition. There is a threshold distargiesuch that the av-
server for different values ofl. The inset shows the graph size €rage fraction of vertices served by a covered vertex is very
dependence ofn) for the AS graph and=1,2. small ford=<d,, going to zero with increasindyl, while it is

finite for d>d.. For disassortative graphd,=1, while for
us now extend the method and discuss the results obtain@$sortative onesj,>1. Note that the valuel;~3 for the
with the local algorithm for the more general and complexRouter graph coincides with the distance where the degree
problemd>1. In Fig. 3a) we show that, with increasing, correlations become disassortative, indicating that the phase
the average fraction of servers decays exponentially fast, irffansition is determined by the change in the degree correla-
dicating that if we allow the servers to be more distant, ations. Furthermore, this transition gives a practical measure
substantial decrease in the number of required servers is of2 get the desired trade-off betweér) and(n).
tained. This exponential decay is a consequence of the small- Since the graphs considered here are characterized by
world property of these networks, characterized by an avemwide fluctuations in the vertex degrees, we have also com-
age distance between vertices that grows as slow, or sloweputed the average number of covered vertigeg restricted
than the logarithm of the number of vertices. The decrease ito vertices with the same degrkeln all cases we observe an
(X) is, however, achieved at the expense of an increase in thiacreasing tendency dh), with k, as it is expected from the
average fraction of verticeé) covered by a servelFig.  definition of the local algorithm, which targets high-degree
3(b)]. This is a key metric as it marks the trade-off betweenvertices. Two distinct behaviors are once again observed de-
the number of servers needed and their capacity. pending on the degree correlations. In the disassortative

Again, a remarkable difference depending on the grapigraphsn) is already as large as 10% of the vertices dor
assortativities is appreciated. For the Gnutella and AS=2 and k>10 [Fig. 4@)]. In contrast, in the assortative
graphs, with disassortative correlatiofis) increases signifi- graphs, only beyond=4, one observes that large value of
cantly fromd=1 to d=2. Indeed, a finite-size study for the (N
AS graph, with a growing tendency from 1997 to 2003, The striking differences between disassortative and assor-
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tative correlations have important consequences regarding local knowledge of the networfonly requiring informa-

how resources are allocated. For disassortative graphs, etien about the graph topology up to a distarale a key

cept for the casel=1, one would need servers with a vast property of utmost importance for most real applications.
capacity, covering a large fraction of vertices. The most efindeed, all the graphs considered here are incomplete repre-
ficient strategy is, therefore, the allocation of resources in &entations of the systems they are aim to reprd3it as it

few servers with a large capacity. The scalability of thegenerally happens in graph representations of large systems.
server system would, in this case, be determined by the Finally, the present study shows that the general belief
single server capacities, which should be increased as thgat py targeting the hubs one can efficiently solve most
graph size grows. In the assortative case, we have a differeftoplems on networks with a power-law degree distribution
scenario. The decrease of the number of servers with increagsercolation, spreading, searching, covering,) ésaot valid

ing d is not as dramatic as for the disassortative graphs. Iff the degree correlations are assortative. This conclusion is
compensation, each server covers a small fraction of verticegs special relevance in the analysis of social systems where
Hence, the most efficient strategy is to allocate the resourcegssortative networks are the general rule. Furthermore, we
in a large number of servers with a limited capacity. Thepaye shown that whether the degree correlations are assorta-
scalability of the system would be driven by the number ofijye or disassortative may depend on the distance between
required servers, which augments with increasing the grapfhe connected vertices, indicating that different strategies

size. In turn, regarding the design of communication netyay he used depending on the characteristic distance of the
works, we can decide between disassortative or assortau\(%vering problem.

topologies depending on the available resources. A disassor-

tative topology will be more appropriate for a centralized P. E. and J. G-G acknowledge financial support of the

design, with a few servers having a large capacity, while aMECyD through FPU grants. Y. M. is supported by a BIFI
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