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Up to now, the effects of having heterogeneous networks of contacts have been studied mostly for diseases
which are not persistent in time, i.e., for diseases where the infectious period can be considered very small
compared to the lifetime of an individual. Moreover, all these previous results have been obtained for closed
populations, where the number of individuals does not change during the whole duration of the epidemics.
Here, we go one step further and analyze, both analytically and numerically, a radically different kind of
diseases: those that are persistent and can last for an individual’s lifetime. To be more specific, we particularize
to the case of tuberculosis’ �TB� infection dynamics, where the infection remains latent for a period of time
before showing up and spreading to other individuals. We introduce an epidemiological model for TB-like
persistent infections taking into account the heterogeneity inherent to the population structure. This sort of
dynamics introduces new analytical and numerical challenges that we are able to sort out. Our results show that
also for persistent diseases the epidemic threshold depends on the ratio of the first two moments of the degree
distribution so that it goes to zero in a class of scale-free networks when the system approaches the thermo-
dynamic limit.
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I. INTRODUCTION

Disease spreading has been the subject of intense research
since long time ago �1–3�. Our current knowledge comprises
mathematical models that have allowed to better understand
how an epidemic spreads and to design more efficient immu-
nization and vaccination policies �1–3�. These models have
gained in complexity in recent years capitalizing on data
collections which have provided information on the local and
global patterns of relationships in the population �4–6�. In
particular, with the advent of modern computational re-
sources and tracking systems, it is now feasible to contact-
trace the way the epidemic spreads or at least to predict the
paths that a given pathogen might follow. In this way, some
of the assumptions at the basis of the theoretical models that
were difficult to test—the backbone through which the dis-
eases are transmitted—are now more accurately incorporated
into epidemiological models �7–11�.

Strikingly, the systems on top of which diseases spread
show common nontrivial topological and statistical proper-
ties �12,13�. A large number of networks of contacts in real-
world social, biological and technological systems have been
found to be best described by the so-called scale-free �SF�
networks. In SF networks, the number of contacts or connec-
tions of a node with other nodes in the system, the degree �or
connectivity� k, follows a power-law distribution, P�k�
�k−�. Recent studies have shown that the SF topology has a
great impact on the dynamics and function of the system
under study �12–15�. The reason is that, at variance with
homogeneous or regular networks, SF architectures are a
limiting case of heterogeneity where the connectivity fluc-
tuations diverges if 2���3 as the system size tends to in-

finity �the thermodynamic limit�. This means that there are
nodes in the network which have an eventually unbounded
number of connections compared to the average degree. Ex-
amples of such networks include the internet �16,17�, the
world-wide-web �WWW� �18�, food-webs, and metabolic or
protein networks �13,19�.

In the context of disease spreading, SF networks lead to a
vanishing epidemic threshold in the limit of infinite popula-
tion when ��3 �20–23�. This is because the ratio �k� / �k2�
determines the epidemic threshold above which the outbreak
occurs. When 2���3, �k� is finite while �k2� goes to infin-
ity, that is, the transmission probability required for the in-
fection to spread goes to zero. Moreover, the previous result
holds both for the susceptible-infected-susceptible �SIS� and
susceptible-infected-removed �SIR� epidemiological models
�20–22�.

In this paper, we will deal with a different kind of
diseases—those that are persistent in time and show a latent
period that can be as large as an individual’s lifetime. Our
first aim is to enlarge the epidemiological framework for
complex networks reported previously for the SIS model
�20� and proposed as well for the SIR model �21,22� by
integrating the spreading dynamics of persistent diseases
within it. With this purpose, we consider a variation in the
susceptible-exposed-infected-removed model �24� on com-
plex heterogeneous networks. As we will see, this kind of
dynamics introduces new challenges essentially different
from others successfully treated before. In particular, when
the latent period is high enough, we shall work with an open
system in which new individuals are born and others dead
for causes not directly related to the spreading of the disease.
We present analytical and numerical methods that allow us to
obtain the epidemic threshold for this kind of disease in het-
erogeneous populations. Moreover, we introduce a numerical
method that is well suited to deal with the kind of problems
we face. Our results point out that also for persistent infec-*yamir.moreno@gmail.com
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tions the virtually unbounded fluctuations of the degree dis-
tribution have an important enhancing effect on the epidemic
spreading.

II. MODEL

To be more precise and without loss of generality, we will
particularize our model to one case of persistent infection—
the most threatening one which is tuberculosis �TB�. TB is
an old disease whose world-wide prevalence had been di-
minishing even before vaccination and prophylaxis strategies
were firstly accomplished �25–27�. Its recent return in devel-
oping countries, mainly in Southeast Asia, have attracted re-
newed interest in it. The current world estimate of prevalence
is about 33% while the number of deaths per year that it is
causing reaches more than 3 million people �28�. Depending
on the kind and the intensity of immune response that the
host immune system performs after initial infection with M.
tuberculosis bacillus, the individual can suffer latent infec-
tion, �in which the bacteria are under a growth-arrest regime
and the individual neither suffer any clinical symptom nor
becomes infectious� or active infection, where the host suf-
fers clinical symptoms and can transmit the pathogen by air
�29,30�. Latently infected individuals can, generally after an
immune-depression episode, reach the active phase. Estimat-
ing the probability of developing direct active infection after
a contact, or alternatively, the lifetime’s risk for a latent in-
fected individual to evolve into the active phase, are not easy
tasks. However, it is generally accepted that only 5–10 % of
the infections directly produce active TB �29,30�, while the
ranges concerning the estimation of typical “half-life” of la-
tent state rounds about 500 years �24�.

The spreading dynamics of TB-like diseases has been
studied in recent years. However, to the best of our knowl-
edge, these works assume the homogeneous mixing hypoth-
esis, that is, a perfectly homogeneous system in which all
individuals are dynamically equivalent. As mentioned above,
many of the systems on top of which diseases spread, are
better described by scale-free connectivity patterns. There-
fore, in what follows, our main objective will be to assemble
a basic model fitted for tuberculosis spreading that firstly
takes into account the heterogeneity in the distribution of the
networks of contacts. We note that the increasingly alarming
situation about TB epidemiology evidences the need to in-
crease the effort in TB research in a global way. In the con-
text of the study of its epidemiology, new models must be
developed in order to gain predictive skills, incorporating the
recent theoretical advances referring to disease spreading on
complex heterogeneous substrates as well as metapopulation
approaches and new computational tools for numerical
analysis and simulation. In this sense, ours is a contribution
that addresses one of the most important parameters in epi-
demiological description: the epidemic threshold.

Let us then introduce our model. We consider that indi-
viduals in the population are compartmentalized into three
groups: healthy—U�t�—infected but not infectious—or la-
tently infected L�t�—and sick individuals T�t� which are in-
fected and are infectious as well. The transition between
these subpopulations proceeds in such a way that a healthy

individual acquires the bacteria through a contact with an
infectious subject with probability �. In its turn, this newly
infected individual may develop the disease directly with
probability p. However, the most common case is the estab-
lishment of a dynamic equilibrium between the bacillus and
the host’s immune system, which allows the survival of the
former inside the latter. When this happens, newly infected
individuals become latently infected, because despite harbor-
ing the bacteria in blood, neither becomes sick nor is able to
infect others.

On the other hand, after a certain period of time �which
may be several years� and usually following an episode of
immunosuppression, the balance between the bacterium and
its host can be broken. In this case, the bacteria grow and the
individual falls ill beginning to develop the clinical symp-
toms of the disease. In addition, if the infection attacks the
lungs �pulmonary TB�, the bacillus is present in the sputum,
making the guest infectious.

The dynamics of the disease, in a well-mixed population,
is then described by the following system of nonlinear dif-
ferential equations:

dU�t�
dt

= bN�t� − ��U�t�
T�t�
N�t�

− �U�t� ,

dL�t�
dt

= �1 − p���U�t�
T�t�
N�t�

− �� + r�L�t� ,

dT�t�
dt

= p��U�t�
T�t�
N�t�

+ rL�t� − �� + �tb�T�t� , �1�

in which
�i� N�t�=U�t�+L�t�+T�t� represents the total population at

time t,
�ii� � is the number of contacts per time unit,
�iii� � is the probability that the bacteria is transmitted to

a new host after a contact with an infectious subject,
�iv� b is the birth rate per capita and per unit time,
�v� � is the natural death rate per capita and unit time,
�vi��tb is the rate of disease-related deaths per capita and

unit time,
�vii� r is the transition frequency of latent infection �i.e.,

the probability that a latently infected individual becomes
infectious�, with the closure relationship,

dN�t�
dt

= �b − ��N�t� − �tbT�t� . �2�

The model above is a variation of the archetypal SIR model
to which a fourth class has been added �latency class L�. This
kind of model has been largely treated in the literature in its
well-mixed version, and it is frequently referred as SEIR
model. As a first step, in this work, we will identify the
removed individuals mostly with dead ones, and therefore
we do not consider the possibility of natural or medical re-
covery �this simplification is in part justified by the large
latency period of infected individuals and the constant flow
of newborns into the system�. A more refined model would
consist of introducing such eventual recovery fluxes in the
model, as well as the possibility of further relapses �the so
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called endogenous reactivation�. These phenomenologies
might be important mainly for diseases �like TB� for which
the only feasible treatment in many areas consists of supply-
ing large series of antibiotics. Thinking on the tuberculosis
case, further refinements, like the inclusion of varieties of
less infectious extrapulmonary diseases �31�, could also have
consequences on the disease’s dynamics.

III. STRUCTURED POPULATIONS

A. Dynamics

The previous system of differential equations describes
the dynamics of the epidemics in the well-mixed case. How-
ever, as argued above, the number of contacts of a given
individual in a population can vary, which is reflected in an
heterogeneous distribution of the number of contacts in the
system. To account for this fact, we next consider a struc-
tured population described by a connectivity distribution
P�k�. The system of Eqs. �1� has to be modified accordingly.
Assuming that all individuals with the same number of con-
tacts, i.e., belonging to the same connectivity class k, are
dynamically equivalent, the new system of differential equa-
tions are formulated for each degree class. Therefore, for a
structured population, we have that

Nk�t� = P�k�N�t� , �3�

with

Uk�t� + Lk�t� + Tk�t� = Nk�t� . �4�

Moreover, it is convenient to express the previous equations
in terms of densities, also defined within each connectivity
class,

uk�t� =
Uk�t�
Nk�t�

,

lk�t� =
Lk�t�
Nk�t�

,

tk�t� =
Tk�t�
Nk�t�

, �5�

so that the following closure relation for any value of k is
verified:

uk�t� + lk�t� + tk�t� = 1 ∀ �k,t� . �6�

On the other hand, the probability � that any given link
points to an infectious individual is given by

��t� =

�
k

kTk�t�

�
k

kNk�t�
=

�
k

kP�k�tk�t�

�k�
, �7�

which leads to the following set of equations that describes
the dynamics within each connectivity class:

dUk�t�
dt

= bP�k�N − �k��t�Uk�t� − �Uk�t� ,

dLk�t�
dt

= �1 − p��k��t�Uk�t� − �� + r�Lk�t� ,

dTk�t�
dt

= p�k��t�Uk�t� + rLk�t� − �� + �tb�Tk�t� . �8�

Finally, the number of individuals with connectivity k
evolves according to

dNk�t�
dt

= �b − ��Nk�t� − �tbTk�t� = �b − � − �tbtk�Nk�t� .

�9�

At this point, and building on the previous equation, it is
important to point out a feature of the model: the influence of
the infection dynamics on the connectivity distribution P�k�.
First, if we add the above equation for all k, we obtain that
the total population evolves as

dN�t�
dt

= �b − ��N�t� − �tb�
k

Tk�t�

= 	b − � − �tb�
k

P�k�tk
N�t� . �10�

However, if we substitute Nk�t�= P�k�N�t� directly into Eq.
�9� and assume P�k� to be constant, we would arrive to

P�k�
dN�t�

dt
= P�k��b − � − �tbtk�N�t� .

The last expression is only compatible with Eq. �10� un-
der the unrealistic assumption that all connectivity classes
have the same proportion of sick individuals. We must there-
fore assume that the distribution of connectivity is also a
function of time: P�k , t� and therefore

dNk�t�
dt

=
d�P�k,t�N�t��

dt
= N�t�

dP�k,t�
dt

+ P�k,t�
dN�t�

dt
,

�11�

so, if we substitute Eq. �11� into Eq. �9� we get

N�t�
dP�k,t�

dt
+ P�k,t�

dN�t�
dt

= P�k��b − � − �tbtk�N�t� ,

expression from which, if we replace dN�t� /dt from Eq. �10�,
we get the temporal evolution of P�k , t� as

dP�k,t�
dt

= − P�k,t��tb�tk�t� − �tk��t�� , �12�

where

�tk��t� = �
k

P�k,t�tk�t� . �13�

Reformulating the equations in terms of densities using the
definitions of the densities given above, Eqs. �8� become

duk�t�
dt

= b − uk�t��b + �k��t� − �tbtk�t�� ,
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dlk�t�
dt

= �1 − p��k��t�uk�t� − �b + r�lk�t� + �tblk�t�tk�t� ,

dtk�t�
dt

= p�k��t�uk�t� + rlk�t� − �b + �tb�tk�t� + �tbtk�t�2.

�14�

B. Evolution of the degree distribution

At this point it is appropriate to point out one aspect that
will hinder any numerical characterization of the epidemic
threshold. Our main goal will be to calculate both numeri-
cally and analytically the critical value �c beyond which the
population presents an endemic proportion of sick individu-
als. However, we expect �c to be dependent on the ratio �k�

�k2� ,
which is in turn a function of the connectivity distribution
P�k�. The degree distribution, as previously shown, changes
in time as the dynamics of infection progresses. As we
should see, we can handle this time dependence analytically,
but we should be forced to design a simulation method to
account for the rate of births and deaths and the effects of
these two processes on the degree distribution.

The aforementioned features might lead to a situation in
which the infection dynamics would modify the underlying
structure of the network through which the disease is being
spread. Therefore, �c could also vary as one expects it to be
intrinsically related to the first two moments of a seemingly
time-dependent degree distribution. The reason why we con-
sider the distribution of contacts per unit time as heteroge-
neous, even for the current airborne-transmitted disease is
based on the observation that the number of contacts a per-
son can have per unit of time is subjected to two sources of
heterogeneity. Firstly, what we can call geodemographic,
macroscopic heterogeneity, in which the number of contacts
depends on the population density in the region in which an
individual inhabits. Secondly, at a more individual, micro-
scopic level, the heterogeneity arises because the number of
contacts depends, in a region of constant population density
�i.e., a town or neighborhood in a city�, on the daily activity
pattern of the individual within that region. These two factors
define, ultimately, the function P�k�. Having that said, the
assumption implicitly incorporated in the first equation of
system �8� does not hold. Note that this equation implies that
the connectivity of individuals is hereditary and therefore
that the number of births within each k class equals the birth
rate times the number of individuals within each k class,
Nk= P�k , t�N.

The above situation would be equivalent to assume that
the dynamics of the disease being studied is the only one that
influences the demographic structure of a population, which
is not true since it is clear that there are countless cultural,
economic and social factors that ultimately define the above
two levels of heterogeneity. We therefore assume in what
follows that the newborns of each generation are distributed
among the k classes according to an invariant distribution
function, which we further assume to be the initial degree
distribution of the original network: P�k , to�. As we shall see,

this assumption, besides being more plausible, has the ad-
vantage that makes the connectivity distribution to be
roughly stable and so will be the critical value �c.

So, we have the following reformulation of the system of
differential equations �8�,

dUk�t�
dt

= bP�k,to�N − �k��t�Uk�t� − �Uk�t� ,

dLk�t�
dt

= �1 − p��k��t�Uk�t� − �� + r�Lk�t� ,

dTk�t�
dt

= p�k��t�Uk�t� + rLk�t� − �� + �tb�Tk�t� , �15�

with the definition of the number of individuals in each class
of connectivity,

Nk�t� = N�t�P�k,t� , �16�

and inside each class,

Uk�t� = Nk�t�uk�t� ,

Lk�t� = Nk�t�lk�t� ,

Tk�t� = Nk�t�tk�t� . �17�

Now the total population within each connectivity class veri-
fies,

dNk�t�
dt

= bNP�k,to� − �NP�k,t� − �tbTk�t� , �18�

so that, if we add in k, the last modification has no effect on
the variation of the total volume of the population. The tem-
poral evolution of the degree distribution is now given as

dP�k,t�
dt

= b�P�k,to� − P�k,t�� − P�k,t��tb�tk�t� − �tk��t�� .

�19�

Finally, writing the equations in terms of the densities we get

duk�t�
dt

= b
P�k,to�
P�k,t�

�1 − uk�t�� − uk�t���k��t� − �tbtk�t�� ,

dlk�t�
dt

= �1 − p��k��t�uk�t� − 	b
P�k,to�
P�k,t�

+ r
lk�t�

+ �tblk�t�tk�t� ,

dtk�t�
dt

= p�k��t�uk�t� + rlk�t� − 	b
P�k,to�
P�k,t�

+ �tb
tk�t�

+ �tbtk�t�2. �20�

C. Characterization of the equilibrium points

The previous set of differential equations tells us how the
different densities of interest evolve within each connectivity
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class. Their corresponding macroscopic quantities are de-
fined as

�u��t� = � kP�k,t�uk�t� ,

�l��t� = � kP�k,t�lk�t� ,

�t��t� = � kP�k,t�tk�t� , �21�

where �u��t� , �l��t� and �t��t� are the mean densities of
healthy, latent, and sick individuals, respectively.

Let us now go one step further and characterize the equi-
librium points. The magnitudes of interest are the average
densities so that an equilibrium point ��u�� , �l�� , �t��� must
verify by definition,

	d�u��

dt
,
d�l��

dt
,
d�t��

dt

 = �0,0,0� .

We also impose a further constraint which is that the degree
distribution of the network is stationary, that is,

dP�k��

dt
= 0 ∀ k .

At this point one must ask whether macroscopic stability also
implies stability within each connectivity class. The answer
is yes, if we also demand stability of the degree distribution.
Admittedly, if we equate expression �19� to zero and solve
for the stationary P�k , t�� we get

P�k,t�� =
bP�k,to�

b + �tb�tk
� − �t���

,

which shows that this value depends on the microscopic
scale tk. Therefore, the stability of the degree distribution
imposes a stationary condition on tk for all k, which in its
turns extends to the other densities lk

� and uk
�. Hence, we have

	duk
�

dt
,
dlk

�

dt
,
dtk

�

dt

 = �0,0,0� ∀ k .

The above condition is trivially satisfied for the solution
�uk

� , lk
� , tk

��= �1,0 ,0�∀ k, which leads to a degree distribution
exactly as the initial distribution. We next analyze the stabil-
ity of this solution, which shall allow us to characterize the
epidemic threshold.

D. Epidemic threshold

As stated before, in this section we will study the stability
of the solution �uk

� , lk
� , tk

��= �1,0 ,0�∀ k. At this point, as no
latent or infected individuals are introduced in the network,
the degree distribution does not change in time; so that
P�k��= P�k , t�= P�k , to�. This situation allows to work with
the system of differential equations given by Eq. �14� instead
of working with the more general case given by the system
�Eq. �20��.

1. Case p=1

For simplicity and to gain some preliminary insight into
the problem, we first study the case p=1, which means that

there is no latent phase �i.e., the latent subpopulation disap-
pears, lk=0∀ k�. Using uk+ tk=1 we get

duk

dt
= b − uk�b + �k� − �tb� − �tbtk

2,

where we have omitted temporal dependences, as we will do
from now on. Looking for the stationary solution, we have
that the condition

duk

dt =0 implies,

uk = − 	 1

2�tb

�b + �k� − �tb 	 ��b + �k� − �tb�2 + 4b�tb� ,

from which the meaningful solution is the one with the nega-
tive sign. The previous expression is consistent with the
meaning of u� since we recover the expected result u�=1
when �=0. Moreover, if we calculate the derivative with
respect to � we get

duk
����
d�

=
�k

2�tb
	− 1 +

b + �k� − �tb

��b + �k� − �tb�2 + 4b�tb

 � 0,

which guarantees that u� will always be less than unity and
therefore is a real valid solution. The study of the value of �
in the steady state helps us to identify the epidemic thresh-
old. We write

�� =
1

�k��k

kP�k�tk
� = 1 −

1

�k��k

kP�k�uk
�,

which, after substituting uk
� for its value, leads to

�� = f��� =
1

2
−

b

2�tb
+

��k2�
2�tb�k�

�

−
1

2�tb�k��k

kP�k���b + �k� − �tb�2 + 4b�tb.

The graphical interpretation of the above equation indi-
cates that the existence of an equilibrium point in which
��
0 is equivalent to the existence of a point at which f���
crosses the bisector of the first quadrant. Evaluating the sec-
ond derivative of f��� one gets

d2f���
d�2 =

− 2b�2

�k� �
k

P�k�k3

��b + �k� − �tb�2 + 4b�tb�
� 0,

which ensures that the condition for the existence of such
intersection is reduced to

	df���
d�



�=0

=
��k2�
�k�

1

b + �tb
= 1,

from which the epidemic threshold is derived as

�c =
�b + �tb��k�

�k2�
.

Note that apart from the factor �b+�tb�, the previous result,
formally coincides with the epidemic threshold of the SIR
model.
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2. Case pÅ1

This is a somewhat more involved case. For structured
populations, the resolution of the system of differential equa-
tions �20� cannot be done explicitly. We next find the epi-
demic threshold for the case p�1 using two approaches. On
one hand, we study the time derivative of �. On the other
hand, we will also make use of the singularity of the Jaco-
bian at the point �uk , lk , tk�= �1,0 ,0� to argue that the expres-
sion for the critical threshold is given by

���c =
�k�
�k2�

�r + b���tb + b�
pb + r

. �22�

a. Time evolution of � in populations with a low number
of sicks. A first approach to characterize the epidemic
threshold in heterogeneous networks when p�1 is to study
the sign of the derivative of � at the onset of an epidemic
outbreak. We consider an initially healthy population in
which a small proportion of infectious individuals is intro-
duced so that tk�1∀ k. The derivative of � is

	d�

dt



��0
=

�
k

P�k�k
dtk

dt

�k�
+

�
k

tkk
dP�k�

dt

�k�

−��
k

P�k�ktk

�k�

��

k

k
dP�k�

dt

�k�



which, after substitution of the values of the derivatives of
P�k , t� and tk�t� leads to

	d�

dt



��0
=

�
k

P�k�klk

�k�
+ p��

�
k

P�k�k2uk

�k�

− �b + �tb�� + �tb�2.

At this point we make two simplifications. The first and most
easily justifiable is to neglect the term �2. The second is
related to the presence of lk in the above equation, that we
have to transform in a dependency with respect to tk. Spe-
cifically, we assume to be sufficiently close to the stationary
point �uk , lk , tk�= �1,0 ,0� as to be able to assume that the
three derivatives vanish. In other words, and focusing our
attention on latent and sick classes, we assume that

	dlk

dt



��0
= �1 − p��k�uk − �b + r�lk + �tblktk � 0,

	dtk

dt



��0
= p�k�uk + rlk − �b + �tb�tk + �tbtk

2 � 0,

from which

lk =
�1 − p��b + �tb�tk − �1 − p��tbtk

2

r + pb − �tbptk

=
�1 − p��b + �tb�

r + pb
tk + O�tk

2� ,

which allows to express the derivative of � as

	d�

dt



��0
= �� r�1 − p��b + �tb�

r + pb
− �b + �tb�

+ p�

�
k

P�k�k2uk

�k�

 .

In the limit uk�1∀ k the third term within brackets is the
ratio �k2� / �k�, from which the epidemic threshold condition
may be derived as

	d�

dt



��0
= �� r�1 − p��b + �tb�

r + pb
− �b + �tb� + p�c

�k2�
�k� 
 = 0,

finally leading to the expected expression for the threshold

�c =
�k�
�k2�

�r + b���tb + b�
pb + r

. �23�

b. Analysis of the Jacobian.. While for well-mixed popu-
lations the condition of singularity of the Jacobian allows to
get the epidemic threshold in a straightforward way, for het-
erogeneous populations the analysis of the Jacobian is a dif-
ficult task because � is a function of each and every one of
the tks. This translates into the need of calculating a determi-
nant whose order is three times the number of connectivity
classes. What we can reasonably do is to verify is the thresh-
old condition is verified for systems in which there are two
or three different connectivity classes. In the first case in
which only two different classes of connectivity exist, the
Jacobian is just a quite distasteful 6�6 determinant that,
after some cumbersome and lengthy algebra, can be reduced
to the expression,

J = b2�b + r��b + �tb���b + r��b + �tb� +
��k2�
�k�

�pb + r�
 ,

which equated to zero leads again to the previously obtained
expression for the epidemic threshold. If we instead consider
a population with three degree classes, the algebraic com-
plexity of the problem largely increases as we now have to
solve a determinant of size 9�9. However, we can proceed
as before getting the following expression for the Jacobian,

J = b3�b + r�2�b + �tb�2��b + r��b + �tb� +
��k2�
�k�

�pb + r�
 .

This leads us to the sensible conjecture that increasing the
number of connectivity classes does not add new roots to the
Jacobian, but it only would increase the degeneracy of the
noninteresting solutions b=0, b=−r, and b=−�tb.
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E. Numerical simulations

When designing numerical simulations to inspect the dy-
namics of the system under study, we have two difficulties
not previously addressed in the literature. These numerical
issues with which we have to deal come from the fact that we
have a system that is simultaneously open and structured. As
a result of dealing with an open system, new individuals are
being added to the population at a rate given by the birth
rate. Additionally, these new individuals must enter the net-
work of contacts with a predefined connectivity. While de-
ciding how many nodes our new individuals connect to is not
a problem, it certainly is to decide what are those nodes the
newcomers will be linked to, as this will impact the degree
distribution in a nontrivial way. This is an unavoidable nu-
merical complication that we should face relentlessly if the
analytical calculations are to be compared with Monte Carlo
simulations.

To this end, we have adapted a simulation method based
on transition probabilities first proposed in �32� for SIR
models in complex networks. The numerical approach con-
siders all transitions between states that take place during the
dynamical evolution of the subpopulations, defined by the
system of differential equations �20�. When dealing with
structured populations, these transition rates depend, in gen-
eral, on the connectivity class within which they occur.
Moreover, within each k-class seven transitions are possible
�see Fig. 1�:

�i� Birth of healthy individuals.
�ii� Natural death of healthy individuals.
�iii� Natural death of latently infected individuals.
�iv� Natural or disease-related death of sick individuals.
�v� Transition from a healthy to the latent state.
�vi� Transition from a healthy to the sick �infectious� state.
�vii� Transition from a latent to the sick �infectious� state.
Each of these transitions is characterized by a character-

istic transition rate 
i,k that can be directly derived from the
system of equations that characterizes the rate at which they
occur within the class k as


1,k = bNP�k,to� ,


2,k = �NP�k,t�uk,


3,k = �NP�k,t�lk,


4,k = �� + �tb�NP�k,t�tk,


5,k = �1 − p��kNP�k,t�uk� ,


6,k = p�kNP�k,t�uk� ,


7,k = rNP�k,t�lk.

Similarly, we define the sum of all these transition rates as
the average rate at which one transition �of any kind� occurs:

� = �
i,k


i,k. �24�

This average transition rate in its turn defines the character-
istic or average time � elapsed between any two consecutive
transitions, the latter being defined as the inverse of �:

� =
1

�
. �25�

Given the previous definitions, the Monte Carlo algorithm is
implemented in such a way that at each MC step �of duration
�� one single transition takes place. Finally, the probability
�i,k that a given transition actually happens, is calculated as

�i,k =

i,k

�
= �
i,k, �26�

that determines which of all possible transitions is realized at
each time step �.

We have made extensive numerical simulations of the
model starting from an initial population made up of N
�106 individuals, whose network of contacts follows an ini-
tial degree distribution P�k��k−3. Moreover, every newborn
joins the system with a degree that verifies the same connec-
tivity distribution. As for the values of the parameters of the
dynamics and thinking of typical values for persistent dis-
eases, we have set the following values: �=0.009 yr−1, b
=0.010 yr−1, �Tb=0.200 yr−1, r=0.002 yr−1, and p=0.070.
Demographical parameters b and � are roughly those of a
country like Spain, while the parameters p and r are in the
range of typical values for the case of tuberculosis. �tb has
been chosen attending to numerical convenience �tuberculo-
sis reaches a disease-related mortality rate that can be as
large as 0.8�. On the other hand, we note that a numerical
criterion to define stationarity should also be adopted. In our
simulations, we first let the system evolve for 4500 yr and
later take averages in a window of 106 Monte Carlo steps
�which corresponds, roughly, with a temporal lapse of 100
yr�, for the mean densities of healthy, latent and sick indi-
viduals defined in Eq. �21�. This is a long enough time and
ensures that all of the outputs to the left of the threshold are
stabilized to the state �1,0,0� �this is achieved almost surely
already for t�4000 yr�.

With the values for the parameters as specified above, the
epidemic threshold is �c=0.305. In Fig. 2�, we have plotted
the stationary proportion of sick individuals for values of the
probability of transmission � in the interval �0,0.5�. As can
be seen from the figure, the numerical and analytical results
are in a reasonable agreement, despite the numerical chal-
lenges of simulating an open system in which the dynamics
evolves on top of a complex topology. This indicates that the
numerical method is accurate enough as to be used in situa-
tions where analytical predictions are not at hand.

FIG. 1. �Color online� Set of allowed transitions in the epidemic
model within each connectivity class.
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However, it is possible to carry out numerical simulations
using a variation in the algorithm above in order to improve
the accuracy in the determination of the epidemic threshold
�c. In this variation, instead of using a criterion for station-
arity, we focus our attention in the vicinity of the critical
value. More specifically, we first evaluate analytically the
value for �c and start the simulation there �obviously, if
we don’t have an analytical hint, the simulation can be
started at any value of ��. At each realization, we expect
6000 years for an eventual arrival of the system to the state
��u� , �l� , �t��= �1,0 ,0�. In the case that this state is not
reached in that time, we assume that we are to the right of the
critical point and so, we move to the left in � just a little
quantity ��=0.01. If, on the contrary, a minimum number of
realizations �we used 10 in our simulations� stabilize at state
��u� , �l� , �t��= �1,0 ,0�, we assume to be to the left of the
critical point and, consequently, we perform a �� switch to
the right. Each time that such kind of flip-flop algorithm �a
sort of bisection method� changes direction, we divide by
two the value of �� until the desired precision in �c is ob-
tained. Using this numerical approach, we have numerically
calculated the values of �c for different system sizes. The
results are reported in Table I. As expected from finite-size
effects, the larger the size of the population, the smaller the
absolute error between numerical and analytical thresholds
is. Moreover, the larger the system size the smaller the epi-
demic threshold, which eventually should vanish in the ther-
modynamic limit.

IV. CONCLUSIONS

We have discussed a model for the spreading of persistent
infections in complex heterogeneous populations. The frame-
work extends the epidemiological picture proposed in previ-
ous works. Our approach is particularly suited for diseases
like Tuberculosis, which shows large latency periods. The
latent period results from the dynamical equilibrium that is
established between the bacterium and the host’s immune

system, so that the host might not become infectious during
its lifetime. These particular features makes it compulsory to
work with an open system where newborns are continuously
introduced in the population and individuals might die due to
causes different from the disease itself. By assembling a
model with all these ingredients, we have shown analytically
that the epidemic threshold is proportional to the ratio be-
tween the first and second moments of the degree distribu-
tion. Therefore, our results point in the same direction of
those obtained for the SIS and SIR model on top of the same
topologies—the virtually unbounded connectivity fluctua-
tions play a key role in the infection dynamics enhancing the
epidemic incidence and lowering the epidemic threshold.

From another point of view, we have developed a method
well suited to numerically explore the dynamics of the sys-
tem under study. In particular, we have been able to deal with
the new challenge of having a system where the number of
individuals in the population is not constant and, moreover,
are connected following a given degree distribution �the
well-mixed case is not challenging�. Although we have ap-
plied the numerical approach to our particular system, it is
worth stressing that it is general and can be applied to any
problem for which transition rates between different classes
and states are known. The results obtained agree well with
the analytical estimates with the additional advantage that
the whole phase diagram can be explored.

Finally, it is also worth mentioning that the model dis-
cussed here is probably the simplest one may devise for the
spreading of persistent infections in structured populations.
However, despite the recent progresses in modeling disease
contagion dynamics and pandemic outbreaks, the kind of
spreading phenomena analyzed here is one of the issues that
have remained less explored. Our aim is to take a first step
toward more realistic modeling of persistent diseases. We
have left for future investigation possible extensions of the
current model that take into account the influence on the
dynamics of vaccination, prophylaxis and recovery rates, as
well as the effects of genetic heterogeneity in the pathogen
but also in the host �24�.
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TABLE I. Dependency of the epidemic thresholds on the initial
size of the network. Analytical values are obtained from Eq. �23�
using the moments of the distribution generated numerically.

No

Analytical Numerical

�cA �cN

1000 0.52903 0.46968

10000 0.42559 0.37595

50000 0.37620 0.33088

100000 0.35854 0.319260.25 0.30 0.35 0.4 0.45 0.5
λ

0

0.0003

0.0006

0.0009

0.0012

<t>*

λ
c
=0.305

FIG. 2. Stationary proportion of sick individuals as a function of
� ���0.25,0.5�� for p=0.07, r=0.002, �tb=0.2, �=0.009. and b
=0.01. The arrow marks the position of the epidemic threshold
��c=0.305� as given by analytical calculations using the previous
values for the parameters and the degree distribution. Error bars are
smaller than symbol size. The initial size of the network, character-
ized by a degree distribution P�k , to��k−3, is N0=106. Each point is
an average over at least 1000 values of �t��.
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