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Selective advantage of tolerant cultural traits in the Axelrod-Schelling model
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The Axelrod-Schelling model incorporates into the original Axelrod’s model of cultural dissemination the
possibility that cultural agents placed in culturally dissimilar environments move to other places, the strength
of this mobility being controlled by an intolerance parameter. By allowing heterogeneity in the intolerance of
cultural agents, and considering it as a cultural feature, i.e., susceptible of cultural transmission (thus breaking
the original symmetry of Axelrod-Schelling dynamics), we address here the question of whether tolerant or
intolerant traits are more likely to become dominant in the long-term cultural dynamics. Our results show that
tolerant traits possess a clear selective advantage in the framework of the Axelrod-Schelling model. We show
that the reason for this selective advantage is the development, as time evolves, of a positive correlation between
the number of neighbors that an agent has in its environment and its tolerant character.
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I. INTRODUCTION

Agent-based modeling is one of the most successful
methodologies in recent social and economics research [1].
Its aim is “to discover fundamental local or micro mechanisms
that are sufficient to generate the macroscopic social structures
and collective behaviors of interest” [2]. Even very simple
assumptions in the modeling often have consequences in the
collective behavior that are far from obvious. The term agent
indicates an interacting entity (e.g., individual, group, or insti-
tution) characterized by a set of internal states. The agent actual
internal state may vary on time as an effect of the interactions
with other agents. The dynamical social phenomena of interest
include residential segregation [3,4], cultural globalization [5],
opinion formation [6], rumor spreading [7,8], and others (see,
e.g., Ref. [9]).

On the one hand, agent-based models (ABM) of social
dynamics can use the statistical physics concepts and methods
as an appropriate toolbox to speed up both comprehension
and model predictions. On the other hand, these models are
of interest in the field of nonequilibrium phase transitions in
lattice models [10,11], as other stochastic spatial and network
models motivated by population dynamics, epidemiology, or
evolutionary biology [12].

The Axelrod’s model for cultural dissemination attempts
to understand the mechanisms underlying the tension between
multiculturalism and cultural globalization, i.e., it addresses
the question of why cultural differences between individuals
and groups could persist despite the tendencies to become
increasingly more similar as a result of social interactions.
The model assumes a highly nonbiased scenario and culture
is defined by a certain number of (equally important) cultural
features capable of transmission among agents. The driving
force of this cultural dynamics is the “homophile satisfaction”
that plays the role of a utility function: In their social
interactions the agents attempt to become more similar to their
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neighbors. Moreover, the likelihood that a cultural feature will
spread from an agent to another depends on how many other
features they already share, so the more similar two individuals
are, the more similar they tend to become.

More specifically, in the Axelrod’s model the culture
of an agent is a vector of F integer variables {σf } (f =
1, . . . ,F ), called cultural features, that can assume q values,
σf = 0,1, . . . ,q − 1. At each elementary dynamical step, a
randomly chosen agent i imitates an uncommon feature’s trait
of a randomly chosen neighbor j with a probability equal to
their cultural overlap ωij , defined as the proportion of common
cultural features,

ωij = 1

F

F∑
f =1

δσf (i),σf (j ), (1)

where δx,y stands for the Kronecker’s δ which is 1 if x = y

and 0 otherwise. The mean cultural overlap ω̄i of an agent i

with its ki neighbors, defined as

ω̄i = 1

ki

ki∑
j=1

ωij , (2)

does not necessarily increase after a successful interaction
(imitation) with one of the neighboring agents, for it will
decrease if the changed feature was previously shared with
two (or more) other neighbors. This renders the Axelrod’s
cultural dynamics nontrivial. This dynamics converges to a
global monocultural macroscopic state when the initial cultural
diversity q is below some critical value, whereas above it
the homophilic social influence is unable to enforce cultural
homogeneity, and the system freezes in a multicultural pattern.
This change of macroscopic behavior has been characterized
[9,13–17] as a nonequilibrium phase transition. The usual
order parameter for the model is 〈Smax〉/N , where 〈Smax〉 is
the average (over a large number of different random initial
conditions) of the number of agents sharing the most abundant
(dominant) culture and N is the number of agents in the
population.
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Several studies from the statistical physics perspective
have analyzed the effects on the globalization-multiculturalism
transition of diverse lattice or network structures [16–18], the
presence of different types of noise (“cultural drift”) [19,20], as
well as the consideration of external fields (influential media,
information feedback) [21–24] and global or local nonuniform
couplings [25,26]. Coevolutionary dynamics of cultural traits
and network of interactions has also been considered in
Refs. [27,28].

An investigation on the effects of agents’ mobility on cul-
tural transmission was reported in Ref. [29] by considering that
the agents move following the gradient of a “sugar” landscape
(that they consume) and interact with agents nearby, so the
driving force of agents’ mobility is a new utility function (sugar
consumption) that enters into the scene, whose details (as well
as those of the landscape) need to be specified. Recently,
a different setting regarding mobility has been considered
[30], in which the driving force of mobility is the agents’
cultural dissimilarity with their environment, i.e., homophile
(dis-)satisfaction, the same that drives cultural transmission.
In this model, two new parameters are introduced, namely the
density h of empty lattice sites (places that are available to
moving agents), and an intolerance parameter θ that controls
the strength of the mobility: If an attempt to cultural interaction
(imitation) fails, then the agent i moves to a randomly chosen
empty lattice site if its mean cultural similarity ω̄i < θ . θ here
is a threshold for tolerance, in such a way that high values of θ

characterize intolerant societies (and please note that Ref. [30]
uses the symbol T instead of θ for this intolerance parameter).
Note, additionally, that in the presence of a density of empty
sites, the sum in Eq. (2) runs over neighboring agents, and not
on neighboring sites, so ki can take on the values 0, 1, ...4 for
a square lattice geometry.

This mechanism for agents mobility, based on homophile
satisfaction, was directly inspired by one of the earliest
examples of ABM in social science research, the well-known
Schelling model of urban segregation [3,4], that plays a
prominent role in segregation studies and public economics
research [31–33]. Thus, the resulting model for cultural
transmission among mobile agents is referred to as the
Axelrod-Schelling model. Let us be careful with terms and
establish the extent to which the Axelrod-Schelling model is
related to the original Schelling model of urban segregation,
recently also studied from statistical physics perspectives and
methods [34–38].

When F = 1 the overlap ωij is a two-valued function
(ωij = 0 or 1) so there is simply no chance for cultural
imitation (Axelrod dynamics) and the trait value of an agent is
no longer a cultural trait but, let us say, an ethnic one, meaning
a constant of motion (as, e.g., the color of the agent’s skin).
The mobility rule “move whenever ω̄i < θ” then translates
into “move whenever the proportion of neighbors of your type
[same σ1(i) value] is less than the threshold θ (intolerance
parameter).” This defines (a standard variant of) the Schelling
model dynamics, with a myopic long-range move, and with
compulsory moves of isolated agents, a rather sensible feature
(though not always present in the abundant literature on
the Schelling model) whose main effect on the segregation
dynamics is to favor hole segregation and, correspondingly,
agent aggregation. Our main focus here is, however, not as

much on the aggregation-segregation tension underlying the
Axelrod-Schelling model as in the cultural interaction (traits
imitation) that is intertwined with that essential tension and its
feedback effects on it.

The mobility of cultural agents in the Axelrod-Schelling
model leads to an enhancement of the convergence to cultural
globalization so the behavior of the order parameter scales
with the number N of cultural agents and the transition to
multiculturalism occurs only for finite populations. This is
basically the only effect for very low values of the density h

of empty sites. However, for values of the density (1 − h)
of the agents below the lattice percolation threshold, new
collective behaviors appear: (a) A fragmented multicultural
phase occurs at very low values of the initial cultural diversity
q, characterized by the reach of different local consensuses
in disconnected monocultural clusters. (b) When q increases,
the system undergoes a first-order transition to cultural
globalization, and (c) by futher increasing q, the transition
to the genuine Axelrod’s multicultural phase finally occurs.

In this paper, we extend the Axelrod-Schelling model by
considering intolerance θ as a cultural feature, and then it is
no longer a parameter (a property of the whole population)
but an individual property of agents subjected to cultural
transmission. Due to its influence on the dynamics through the
rule of mobility, the question of whether certain traits of this
feature are more likely to be present in the dominant culture
makes sense, contrary to what occurs with the rest of cultural
features, whose particular traits do not influence the dynamics
and are thus selectively neutral.

We have performed extensive numerical simulations that
implement different rules for the mobility of agents, whose
results show unambiguously that tolerant traits possess a
selective advantage over intolerant ones, i.e., they are better
adapted for survival in the long-term dynamics. Furthermore,
by a stochastic analysis we present arguments showing that the
reason of this cultural evolutionary success of tolerant traits is
the establishment in the population of a negative correlation
between the number ki of neighboring agents and the value
θi of the agent intolerance. This is presented in Sec. III.
In Sec. II, we reconsider the transition between fragmented
multiculturalism and globalization, first analyzed in Ref. [30],
by using an alternative scheme for mobility with homogeneous
intolerance. This new scheme corresponds to the homogeneous
version of one of the rules of mobility used in Sec. III (mobility
by social rejection), so this helps in the interpretation of some
of these results and, at the same time, it throws a new light on
the understanding of the mechanisms triggering this transition.
Finally, we summarize our results in Sec. IV.

II. THE TRANSITION FROM FRAGMENTED
MULTICULTURALISM TO GLOBALIZATION

REVISITED

One of the new phenomena that appear associated to the
mixed Axelrod-Schelling social dynamics is the existence,
for values of the density (1 − h) of agents below the lattice
percolation threshold, of a multicultural macroscopic phase
at very low values of the initial cultural diversity q. In this
regime, the processes of local cultural convergence are faster
that the typical time scales at which mobility is able to
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FIG. 1. (Color online) Order parameter 〈Smax〉/N versus scaled
initial cultural diversity q/N for a density of empty sites h = 0.5
and lattice linear size L = 40. Panel (a) corresponds to scheme A for
different values of the intolerance parameter. Panel (b) corresponds
to scheme B. See the text for further details.

induce global convergence to a monocultural state. In this
multicultural state agents are aggregated into disconnected
(monocultural) clusters where different cultural consensuses
have been achieved, hence the term fragmented for this
multicultural phase.

If the value of q is increased [see Fig. 1(a)], the behavior
for the order parameter 〈Smax〉/N becomes rather sensitive to
the value of the intolerance parameter θ : For very low values
of θ multiculturalism persists, while for very high values, a
first-order transition to complete globalization is observed. At
intermediate values of θ , the order parameter increases versus
q but complete globalization is not reached. The observation
that the increase of the initial cultural diversity promotes
cultural globalization may seem paradoxical at a first sight,
but it is not difficult to rationalize it by noting that an increase
in q has also the effect of enhancing mobility, which is in turn
an important driving force toward globalization. Moreover,
insofar as higher values of θ enhance agents’ mobility, the
different behaviors that are observed for different values of the
intolerance are consistent with this interpretation.

To deepen further our current understanding of the complex
competing effects of different parameter variations that lead to
the transition fragmented multiculturalism-globalization, we
study here this transition in a different scheme for the mobility
of cultural agents. We note here that in the original scheme of
Ref. [30], after an elementary step of the Axelrod dynamics, if
imitation has not occurred and ωij �= 1, the agent i moves to
a randomly chosen empty site whenever ω̄i < θ . If the agent i

turns out to be isolated, then it moves with certainty. We refer
hereafter to this scheme as A. The mobility mi of an agent i is
defined as the probability that it moves in one elementary

dynamical step (provided it has been chosen). Thus in
scheme A:

mA
i = (1 − ω̄i) �(θ − ω̄i), (3)

where �(x) is the Heaviside step function that takes the value
1 if x > 0 and 0 if x � 0.

In the new scheme, hereafter referred to as B, after an
elementary step of the Axelrod dynamics, if imitation has not
occurred and ωij �= 1, the agent i moves to a randomly chosen
empty site with probability (1 − ω̄i) θ . In the case where agent
i is isolated, then it moves with certainty, as in the previous
scheme. The mobility of agent i in scheme B is thus given by

mB
i = (1 − ω̄i)

2 θ. (4)

Note that in both schemes the mobility is a decreasing
function of ω̄. However, in scheme A the mobility vanishes
in the interval ω̄ > θ (being independent on θ for ω̄ < θ ),
whereas it does not vanish in scheme B, provided ω̄ �= 1 (and
θ > 0), though it takes lower values than in scheme A for
ω̄ < θ where it depends linearly on θ .

In Fig. 1(b) we plot the order parameter versus the scaled
initial cultural diversity q/N for h = 0.5 and different values
of the intolerance θ for scheme B and a two-dimensional square
lattice geometry. In contrast with the results for scheme A
[shown in Fig. 1(a)], the behavior of the order parameter turns
out to be rather insensitive to the values of the intolerance θ ,
and the transition from the fragmented multicultural phase to
globalization takes place for all the values of θ that we have
used. Therefore, we have the following question regarding
how to fit these observations into the interpretation framework
given in Ref. [30] (succintly reproduced above in a previous
paragraph) for the transition.

To have a better picture of the speed at which the processes
of cultural convergence take place and what parameters are
more influential on them, we have inspected the time evolution
of the histograms of ω̄, namely P (ω̄,t), at values of the initial
cultural diversity close (below and above) to the transition. In
all cases and for both schemes, this probability density always
evolves from being sharply concentrated near ω̄ = 0 at t = 0 to
become later widespread, the centroid shifting to progressively
higher values of ω̄ as time goes by, until it concentrates near
ω̄ = 1, finally becoming a Dirac δ function δ(ω̄ − 1). The
time scale at which this evolution occurs seems not to be
influenced by the scheme (A or B) adopted and the influence
of the value of θ is also minor. The important parameter that
mainly determines the time scale of local cultural convergence
is the initial cultural diversity q: The lower its value, the faster
this process takes place. What then makes a truly meaningful
difference between, on the one hand, both scheme A at high
θ values and scheme B at all θ values and, on the other hand,
scheme A at low θ values (where the transition to globalization
is absent) is that agents with high cultural overlap do not move
in the latter.

These results throw new light onot the mechanisms that
trigger the transition from the fragmented multicultural phase
to cultural globalization. The increase of the initial cultural
diversity slows down the local cultural convergence, thereby
giving mobility a chance to induce global cultural consensus.
But it is the mobility of agents with a significant high local
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C. GRACIA-LÁZARO, L. M. FLORÍA, AND Y. MORENO PHYSICAL REVIEW E 83, 056103 (2011)

cultural overlap (however small its mobility, as is the case
for scheme B at low θ values), and not just the amount of
overall mobility, that allows the effective cultural transmission
among the disconnected clusters of the fragmented states, thus
enabling the coalescence of the giant monocultural cluster
characteristic of the globalization state. If mobility is strictly
limited to culturally marginal agents, its power of cultural
transmission is unable to overcome the fragmentation into
disconnected cultural clusters.

III. HETEROGENEOUS INTOLERANCE.

As we have already mentioned in the Introduction, the
mobility of cultural agents in the Axelrod-Schelling model
is driven by the same utility (or social driving force) that
underlies the cultural dynamics of the Axelrod model (as well
as the dynamics of the Schelling model), namely “homophile
satisfaction.” In the model, those agents that are placed
inside fully homogeneous cultural environments do not move.
Cultural dissimilarities are the only source of mobility, and the
parameter θ , which controls the strength of mobility, quantifies
the degree of (in-)tolerance to cultural dissimilarities. Being a
model parameter, tolerance is a quantity characteristic of the
whole (artificial) society. In other words, in this context one
can speak of tolerant (low value of θ ) or intolerant societies.
However, it seems to us rather natural to consider (artificial)
societies where different agents have different degrees of
tolerance to cultural dissimilarities. This certainly opens the
possibility of new interesting questions to be investigated
inside the model.

In what follows, we consider that each cultural agent i

has assigned a real number 0 � θi � 1, called intolerance.
Moreover, we are going to consider the intolerance of agents
as a quantity associated to a cultural feature, i.e., a component
of the cultural vector, and then subjected to temporal changes
as a result of cultural interactions. Without loss of generality,
one can associate the agents’ intolerance to the first component
σ1 of the cultural vector {σf }. As this variable takes on integer
(0,1, . . . ,q − 1) values, one has to choose some function f (x)
that takes values in the interval [0,1] and define the intolerance
θi of agent i to be

θi = f (σ1(i)). (5)

We then have to specify the particular way in which the
agents’ intolerances enter into the dynamical rules. Many
alternatives can indeed be considered for it, and our first choice
will be the following: After an elementary step of the Axelrod
dynamics, if imitation has not occurred and ωij �= 1, the
agent i moves to a randomly chosen empty site with probability

1

ki

ki∑
j=1

(1 − ωij )θj , (6)

where the sum extends to the ki neighbors of i, and if the
agent i is isolated (ki = 0), it moves with certainty. In this
choice, the intolerance θj of a cultural agent j is seen as its
degree of hostility toward a culturally dissimilar neighbor i

and is weighted by the cultural dissimilarity (1 − ωij ). The
mobility of an agent i is here the result of the social rejection
of its neighbors, due to cultural dissimilarities.

The Axelrod-Schelling model with homogeneous toler-
ance, as the original Axelrod’s model does, assumes an unbi-
ased scenario in the sense that the traits of a cultural feature are
completely interchangeable: Nothing in the dynamical rules
distinguishes among different traits, and then the likelihood
that each particular trait is present in the dominant culture
of a realization is the same for all of them, provided they are
uniformly distributed in the initial conditions for the dynamics.
The particular traits that survive in the dominant culture of
a given realization reach fixation by neutral selection, so,
averaging over many independent realizations, one obtains
a uniform distribution of traits in a large-enough sample of
dominant cultures.

However, this symmetry of the model is broken in our
current case of heterogeneous intolerance regarding the cul-
tural feature σ1, for its particular values do influence the
local dynamics through the dynamical rule of mobility. The
question of how likely different traits are to prevail and be
present in the dominant culture now makes sense in this
new symmetry-breaking scenario. Do tolerant traits possess a
cultural selective advantage or, on the contrary, are intolerant
traits better adapted to survive? Moreover, by which dynamical
mechanisms are the “natural” selection of particular θ values
built up in the time evolution of the populations of cultural
agents?

Note that if one takes for f (x) in Eq. (5) a constant function,
so θi = θ independent of i, one recovers scheme B, introduced
in Sec. II. To the extent that the behavior of the order parameter
〈Smax〉/N (for a density of empty sites h = 0.5) in scheme B
was seen to be rather insensitive to the value of θ , one should
expect, in the present case of heterogeneous intolerance, that
the order parameter for a density of empty sites h = 0.5 will
be as shown in Fig. 1(b). Thus the choice made above in
Eq. (6) is technically convenient for the purpose of investigat-
ing the question on the selective advantage of tolerant traits,
just because it is expected that it leads to states of cultural
globalization in some ranges of the initial cultural diversity,
when the very term “dominant culture” is most meaningful.

We consider two-dimensional square lattices of linear
size L, with periodic boundary conditions. The number F

of cultural features is fixed to F = 10, and we have used
two values of the density of empty sites, namely h = 0.05, to
represent the situation in which agents percolate the lattice,
and h = 0.5 to represent the opposite case. For f (x) we will
consider a simple linear function:

θi = q−1σ1(i). (7)

For the initial conditions, N = (1 − h)L2 agents are randomly
distributed on the L × L lattice sites and randomly assigned
a culture. The simulation of the cultural dynamics is stopped
when the number of links for which 0 < ωij < 1, commonly
called active links, vanishes. In addition to the order parameter,
we compute the intolerance θD of the dominant culture, the
average intolerance 〈θ〉, and, sometimes, the histogram of
intolerance values of the final state. The results that we show
below are obtained by averaging over a large number (typically
103–104) of different initial conditions.

In the two panels of Fig. 2 we show our numerical results
for h = 0.05 [Fig. 2(a)] and h = 0.5 [Fig. 2(b)]. First, we
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FIG. 2. (Color online) Order parameter 〈Smax〉/N (stars), intoler-
ance θD of the dominant culture (circles), and average intolerance 〈θ〉
(squares) versus scaled initial cultural diversity q/N for a lattice linear
size L = 40, for the scheme of mobility corresponding to equation (6).
Panel (a) corresponds to a density of empty sites h = 0.05. Panel (b)
corresponds to h = 0.5. See the text for further details.

confirm the expectations on the behavior of the order parameter
discussed above: Given the insensitive character of the order
parameter in scheme B to the value of the intolerance parameter
θ for both values of h, no effect on 〈Smax〉/N due to the
heterogeneity of agents’ intolerance is observed.

The numerical results for the intolerance values θD of the
dominant culture for both values of the density of empty sites
clearly show that very tolerant traits are better adapted to
survive and become a part of the dominant culture. This occurs
in the whole range of values of the initial cultural diversity
that leads to values of the order parameter that are much
larger than N−1 (so the term dominant possess a meaning).
By comparing the graphs of θD shown in Figs. 2(a) and
2(b), we observe that the θD values are significantly lower
for h = 0.5 than for h = 0.05, so the strength of the selective
advantage of tolerant traits increases when the density h of
empty sites is higher. The fact that the average intolerance
〈θ〉 of the final configurations is higher than θD , provided
the order parameter N−1 � 〈Smax〉/N < 1, indicates that the
nondominant surviving values of the intolerance are typically
larger than the dominant one. We further show in Fig. 3 that
the results regarding the behavior of θD and 〈θ〉 for L = 40,
are essentially unchanged for lattice of size 100 × 100.

In Fig. 4 we show the histogram of θD values, obtained
from 2 × 103 realizations, at a fixed value of q/N = 1.1, for a
density of empty sites h = 0.05. One should note that although
the mean value of the dominant intolerance is at θD = 0.07,
the probability density is sharply peaked at θD = 0 and quickly
decays to negligible values as θD increases. In other words, the
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FIG. 3. (Color online) Comparison of TD and 〈T 〉 for L = 40 and
L = 100, h = 0.5, using the same mobility rule in Fig 2.

lower the value of θD , the more probable it is, so the mean value
is indicative only of the dispersion scale of the density.

In order to explain why tolerant traits are better adapted to
prevail in the long term of the dynamics, let us consider the
subset A(θ,t) of those cultural agents i for which, at time t ,
θi � θ , θ is an arbitrarily chosen value of the intolerance (e.g.,
θ = 0.3, more or less). Let us denote by n(θ,t) the cardinal of
A(θ,t) and call L(θ,t) the set of lattice links (i,j ) such that
the agent i belongs to A(θ,t) and the agent j is not in this set
(so θj > θ ). If time is measured in elementary step units, the
difference

�n(θ,t) = n(θ,t + 1) − n(θ,t) (8)

can only take on the values 0, ± 1. To compute the probability
P+ that �n(θ,t) takes on the value +1, one has to sum the
product of the following factors over all links (i,j ) ∈ L(θ,t):

(a) the probability (N−1) of choosing agent j for a cultural
imitation trial,

(b) the probability (k−1
j ) that its neighbor i is chosen,

(c) the probability (ωij ) that agent j imitates an uncommon
feature’s trait of i, and

(d) the probability
[

1
(1−ωij ) F

]
that the chosen uncommon

feature is σ1.
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FIG. 4. (Color online) Histogram of the values of the intolerance
θD of the dominant culture for 2 × 103 realizations, at scaled initial
cultural diversity q/N = 1.1, and a density h = 0.05, of empty sites.
See the text for further details.
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Note that for a link (i,j ) in the set L(θ,t), the strict
inequality ωij < 1 holds. We then obtain

P+ = 1

NF

∑
(i,j )∈L(θ,t)

1

kj

ωij

(1 − ωij )
. (9)

In a similar way, the probability P− that �n(θ,t) takes on
the value −1 is

P− = 1

NF

∑
(i,j )∈L(θ,t)

1

ki

ωij

(1 − ωij )
. (10)

We see that the number of agents in the set A(θ,t)
performs a complicated random walk with left- and right-step
probabilities changing in time as dictated by the model
dynamics. The expected value of �n(θ,t) is given by the
difference (P+ − P−), and then

E[�n(θ,t)] = 1

NF

∑
(i,j )∈L(θ,t)

(ki − kj )

kikj

ωij

(1 − ωij )
. (11)

This equation is the basis for an understanding of the
selective advantage of tolerant traits. Indeed, following
Eq. (6), agents with high θi values promote the mobility of
their neighbors (leaving empty sites in their neighborhoods)
more than do tolerant agents, so one should expect that a
negative correlation between values of ki and θi may be easily
developed in the population, and tolerant agents may likely
have larger values of ki than those of intolerant agents. If
this is the case, then Eq. (11) indicates that the random walk
performed by n(θ,t) will be biased to the right, and the number
of tolerant agents will likely increase as time evolves. The
cultural selective advantage of tolerant traits has its origin
on the bias produced by the negatively correlated degree of
intolerance (ki, θi) that is directly induced by the dynamical
rule of social rejection.

Equation (11) also allows rationalization of the observation
that the selective advantage of tolerant traits is strengthened
by higher values of the density h of empty sites, because
higher h values easily allow for higher values of the degree
differences (ki − kj ) for (i,j ) ∈ L(θ,t) and so the bias favoring
the increase of n(θ,t) can be stronger.

We have also considered a second way in which agents’
intolerance enter into the mobility rule of the dynamics: After
an elementary step of the Axelrod dynamics, if imitation has
not occurred and ωij �= 1, the agent i moves to a randomly
chosen empty site provided

ω̄i < θi. (12)

Note that if one takes a constant function for f (x) in
equation (5), so θi = θ independent of i, one recovers scheme
A for homogeneous intolerance, which was used in Ref. [30]:
The intolerance value is a threshold for the cultural overlap. But
there is also an important difference here with respect to Eq. (6)
regarding the interpretation, or meaning, of the intolerance. In
Eq. (12), what determines whether an agent i moves is its own
intolerance value θi and not its neighbors intolerance values,
as in the previous case. Though both dynamical rules are based
on homophile dissatisfaction, they in fact implement different
plausible mechanisms for mobility. Whether the average social
rejection (hostility) of my neighbors is more important than
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FIG. 5. (Color online) Order parameter 〈Smax〉/N (stars), intoler-
ance θD of the dominant culture (circles), and average intolerance 〈θ〉
(squares) versus scaled initial cultural diversity q/N for a lattice linear
size L = 40 for the scheme of mobility corresponding to Eq. (12).
Panel (a) corresponds to a density of empty sites h = 0.05. Panel (b)
corresponds to h = 0.5. See the text for further details.

my own degree of tolerance with a dissimilar environment
in the decision of moving may be a question with widely
different (as well as context-dependent) individual answers,
and it is certainly not within the scope of this paper to enter into
such a discussion. We regard both here as alternative plausible
mechanisms for mobility, which may lead to differences
regarding the selective advantage of tolerant traits in the
Axelrod-Schelling model with heterogeneous intolerance.

We show in Fig. 5 the results obtained for the dynamical
rule associated to Eq. (12). Though the values of θD in this
scheme are higher than those characteristic of the scheme
analyzed before, a certain degree of selective advantage of
tolerant traits is unambiguously observed. Also, the selective
advantage is stronger for high density h of empty sites, as
before. Now, however, agents move depending on their own
intolerance values, and then it is not (at least) as clear as
before whether a negative correlation between degree (ki) and
intolerance (θi) could be established, which would, in turn,
explain the selective advantage of tolerant traits.

A possibility for this comes from the fact that intolerant
agents move to empty sites more easily than tolerant agents
do, so a negative (ki, θi) correlation could appear, provided
the lattice sites occupied by agents are more likely than empty
sites to have agents in their neighborhood. To check for this,
we have computed the time evolution of the average number
of neighbors 〈k〉 of agents. Figure 6 shows that, after some
(long) transient, the average degree of agents increases above
its initial value [which is 〈k〉 = 4(1 − h) for a square lattice and
von Neumann neighborhood]. This increase of 〈k〉 corresponds
to the coalescence of clusters that will become monocultural
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FIG. 6. (Color online) Time evolution of the average number of
neighbors per agent 〈k〉 and average intolerance 〈θ〉, for q/N = 1,
L = 40, and h = 0.5 as obtained from 200 realizations in the scheme
of Eq. (12).

in due (short) time. Interestingly, we also see in Fig. 5 the
decrease of the average intolerance 〈θ〉 as soon as the average
degree increases, so giving further support to the argument.

Consequently, in the case where the agents’ mobility is
the result of their own intolerance to cultural dissimilarity,
the tolerant traits possess selective advantage due to the
establishment of a negative (ki, θi) correlation that in this case
has its origin in the agents’ aggregation processes concomitant
to the increase of local cultural overlaps. The observed fact
that the selective advantage of tolerant traits is now weaker
than in the case when mobility is induced by social rejection
may likely be the effect of two confluent factors; on the one
hand, the development of negative (ki,θi) correlation is not a
direct consequence of the dynamical rule and, on the other, as
analyzed in previous Sec. II, agents’ aggregation processes are
much less effective when intolerance enters as a threshold for
mobility.

IV. SUMMARY AND CONCLUDING REMARKS

In the Axelrod-Schelling model for cultural dissemination
among mobile agents, we have considered intolerance, which
was originally [30] a model parameter controlling the strength
of agents’ mobility, as a variable associated to a cultural feature
and thus subjected to cultural transmission. We have performed
extensive numerical simulations for two different dynamical
rules for mobility, whose respective homogeneous versions are
analyzed with respect to the transition from a topologically
fragmented local consensus to a global cultural consensus that
occurs at very low values of the initial cultural diversity. In the
first of these dynamical rules (mobility by social rejection),

agents move due to the intolerance of their neighbors, weighted
by their cultural dissimilarity, whereas, in the second one,
the mobility depends on the agent’s own intolerance to the
cultural dissimilarity with its environment. In both cases our
results indicate that tolerant traits are selectively advantageous,
so the intolerance values present in the dominant culture are
preferentially low. One then sees how the breaking of the
original symmetry (indifference of the dynamics with respect
to a particular feature’s trait values, which leads to purely
neutral selection of dominant characters in cultural evolution)
effectively allows for the appearance of natural selection of
advantageous traits.

The selective advantage of tolerant traits increases with the
density h of empty lattice sites and is also higher for the first
scheme, where mobility is the result of the social rejection
from the neighborhood. A stochastic analysis allows the
rationalization of all these numerical observations and points to
the dynamical development of a negative correlation between
the number of neighbors of an agent and its intolerance value
as the origin of the selective advantage of tolerant traits. We
should emphasize here that regarding the rule of cultural
imitation, nothing favors tolerant traits over intolerant ones,
i.e., Axelrod’s cultural interactions are completely unbiased,
so the bias toward tolerant traits can come from only the
influence of the tolerance cultural feature on the mobility of
agents, which shapes the instantaneous network of interactions
among cultural agents. One should expect findings for other
network-updating dynamics that are analogous to the one
considered (in the symmetric context) by Refs. [27,28] and
that also show topologically fragmented phases, provided the
trait symmetry is broken at the network-updating rule level.

In this regard, the term tolerance—in the context of the
Axelrod-Schelling model—has a very precise and narrow
meaning, one that is much more limited than its usual
meaning in social science and political philosophy, where
it is much more than just a conditioning factor of the
mobility of individuals and groups. However, inside the
limitations of a simple agent-based model like this one, our
findings on the “adaptive to survival” character of tolerant
traits in cultural dynamics point to basic mechanisms that can
be highly influential in cultural evolution.
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