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A simple model of activatory-inhibitory interactions controlling the activity of agents �substrates�
through a “saturated response” dynamical rule in a scale-free network is thoroughly studied. After
discussing the most remarkable dynamical features of the model, namely fragmentation and mul-
tistability, we present a characterization of the temporal �periodic and chaotic� fluctuations of the
quasi-stasis asymptotic states of network activity. The double �both structural and dynamical�
source of entangled complexity of the system temporal fluctuations, as an important partial aspect
of the correlation structure-function problem, is further discussed in light of the numerical results,
with a view on potential applications of these general results. © 2006 American Institute of Physics.
�DOI: 10.1063/1.2146115�
Many real networks are complex and heterogeneous. In
this paper, we study a dynamics that generically describes
biological processes that take place on complex architec-
tures as metabolic reactions and gene expression. We
capitalize on the theory of nonlinear dynamical systems
to uncover the topological and dynamical patterns of a
Michaelis-Menten-type dynamics coupled to a network
that is complex, directed, and highly skewed. The results
indicate that such patterns can exist in the form of peri-
odic and chaotic orbits revealing interesting properties at
both local and global levels. Moreover, the dynamics on
top of the substrate networks yields topologically com-
plex substructures (islands or clusters) whose structural
characteristics are analyzed. This analysis offers interest-
ing results on the interplay structure-function. We round
off our study by discussing possible implications of het-
erogeneous topologies on biological processes at the cel-
lular level.

I. INTRODUCTION

Nonlinear lattices, i.e., spatially discrete many-body sys-
tems with nonlinear interactions, are currently the subject of
considerable multidisciplinary interest, not only among a
wide variety of Physics subdisciplines and technologies,1 but
also in Biomolecular Chemistry, Cell Physiology, Theoretical
Biology, Social Sciences, and other fields.2 There is a com-
mon basic interest in the understanding of the many aspects
of the correlation between structure and function in systems
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made up of discretely many nonlinearly interacting compo-
nents.

While in Physics applications the interactions among
constituents �atoms, magnetic moments, etc.� usually depend
on the geometrical distance between their positions in real
space, in applications outside “fundamental physics” the
space of interactions is abstracted, so that proximity between
components �say i and j� is measured as the length of the
path of interactions given by a connectivity matrix Cij. In
other words, the graph �or network� of interactions, and not
anymore the real space, fixes the relevant geometry related to
the function �dynamics� of the system. This does not pre-
clude the applicability of statistical and field theory methods
to the study of nonlinear lattices outside the traditional phys-
ics subdisciplines; on the contrary, a proper use of these ap-
proaches often throws considerable light on some important
issues currently addressed.3

Though lattice disorder effects on nonlinear dynamics of
macroscopic systems have their own tradition, the most usual
case in physics is that of homogeneous �either pure random
or regular� networks. However, recent confluent studies on
the structure of interactions in a large variety of technologi-
cal �communication, power grid� as well as biomolecular
�protein-protein interaction, gene regulation, cell metabo-
lism�, ecological �trophic networks, mutualism� and socio-
economic systems have shown the overabundance of highly
inhomogeneous structures4,5 among “real world” interacting
systems.

Homogeneity of the interactions structure means that al-
most all nodes are topologically equivalent, like in a regular

lattice or in a random Erdös-Renyi graph, thus showing a
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density distribution function of the degree of connectivity
localized around a mean value with a well-defined average of
quadratic fluctuations. If k denotes the degree �number of
interactions of a given node� and P�k� denotes its density
distribution function, an inhomogeneous network shows for
P�k� a power law �often truncated�. The absence of a char-
acteristic scale in the connectivity patterns �scale-free net-
works� manifests itself in the presence of a small number of
nodes �named hubs� connected to very many nodes, and a
larger number of poorly connected nodes. The complex char-
acter of the structure of the interactions couples to the dy-
namical complexity which emerges from the nonlinear char-
acter of the interactions, so that generally one may say that
the structure-function correlation problem in real networks
has at least two sources of entangled complexity.

The model that we analyze is introduced in Sec. II. It
tries to capture general ingredients of this entangled com-
plexity in a relevant kind of nonlinear dynamics: Activation/
inhibition �AI� competing interactions with a “saturated re-
sponse” rule for the rate of activation �see Fig. 1�. This kind
of dynamics is often called Michaelis-Menten,6 Holling,7 or
Langmuir8 rule. The interacting units sit on a lattice which is
both small-world �i.e., short mean path length� and scale-
free. For this we use the Barabási-Albert9 network. After-
words, some basic general features of the model are dis-
cussed, namely the network fragmentation in subclusters �or
islands� of collective dynamics �Sec. II A�, and the generic
types of asymptotic behaviors coexisting in the phase space
of collective dynamics as well as the observed bifurcations in
phase portrait upon parameter variations �Sec. II B�. These
basic consequences of the AI competition on the complex
network are prevalent for values of the ratio AI ranging from
1 to 6. Finally, in Sec. II C the bifurcations found are ex-
plained in terms of the Floquet analysis of the solutions.

Section III mainly reports on the statistical characteriza-
tion of both the dynamical behaviors observed �Sec. III A�
and the structural characterization of the dynamical islands
�Sec. III B�. We perform an extensive exploration of the pa-
rameter space, employing different initial conditions and
substrate network realizations, in order to find the conditions
for the existence of chaotic and periodic behavior as well as
to fully characterize the main topological characteristics of

FIG. 1. Saturated functional response �h=4�.
the dynamical islands. Finally, in Sec. III C we identify those
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substructures of the dynamical islands that are relevant for
the dynamical evolution of the system.

The concluding Sec. IV summarizes the main conclu-
sions of our work, along with some prospective remarks on
likely applications of the model, and the potential use of
these techniques in the study of particularly interesting real-
world biological networks.

II. THE MODEL. BASIC DYNAMICAL FEATURES

As stated in Sec. I, here we introduce a model of
activatory/inhibitory interactions regulating the activity gi�t�
�i=1, . . . ,N�, of N constituents �e.g., agents, substrates�, with
N generally being a large number. The real functions of time
gi�t� are each attached to a node of a graph with adjacency
matrix Cij �N�N�. The matrix element is nonzero, Cij�0,
only if the rate of variation of the ith node activity, gi�t�,
depends on the activity gj of the jth node �interaction i← j�.
Different realizations of the Cij matrix are constructed using
the method of Barabási and Albert,9 in order to ensure two
seemingly universal characteristics of many recently studied
networks in biological and social sciences and other fields:4,5

�a� Small-world, meaning that the mean distance �minimal
length of the interaction path�, �lij�, between pairs of
nodes goes at most as log N, for large values of N.

�b� Scale-free, meaning that the density distribution func-
tion P�k� of the degree �connectivity� of nodes scales
as P�k��k−�, with �=3. Other values of � �2��
�3� were also analyzed by using suitably tested modi-
fications of the Barabási-Albert preferential attachment
rule.10

The interaction �i← j� can be either activatory �excita-
tory� or inhibitory; correspondingly we define the interaction
matrix element Wij to be +1 or −1, respectively �and Wij

=0 whenever Cij =0�, and call p the fraction, among nonzero
elements, of negative signs �note that while Cij is a symmet-
ric matrix, Wij is not in general�. Moreover, the sign distri-
bution of elements is taken uniform in the set of �approxi-
mately �k�N /2� links of the network realization.

The dynamics of the nodes activity vector G�t�= �gi�t�	
�with i=1, . . . ,N� that we consider is such that only in the
presence of excitatory neighbors activity could gi possibly be
non-null, otherwise gi decays to zero with an exponential
rate:

dG�t�
dt

= − G�t� + �F�WG�t�� , �1�

where F is a nonlinear vector function whose argument is the
product of the interaction matrix W and the activity vector
G, and � ��0� accounts for the strength of the interaction.
The function F is a saturated response function �see Fig. 1�,
defined as

F�z� = 
 ��zi�
h−1 + ��zi�

� , �2�

where ��x� is a function defined as ��x�=x if x�0 and zero
otherwise. In our numerical studies of the model we have

fixed the value of the parameter �=3, and varied the param-
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eters 0� p�1 and 0�h�10. One can easily realize that the
solutions for non-negative initial conditions remain bounded
for all t�0. Indeed, as the nonlinear term in Eq. �1� is
bounded above by �, one obtains that ġi�0 whenever gi

��. Also, if gi=0 then Fi�WG��0, so that the activities
cannot become negative.

The above-noted dynamics can be regarded, e.g., as a
generalization of some simplified and coarse-grained genetic
models, referred to as random Boolean networks,11 where
Boolean rules are implemented. These have been extensively
used to study networks at various levels of biological orga-
nization, and have provided useful insights later supported
by experiments.11,12 Equation �1� incorporates the experi-
mental observation of a continuous range of activity levels.13

While linear models have been successful for the reconstruc-
tion of the interaction networks from experimental data,14

nonlinear models like Eq. �1� are expected to be more appro-
priate for a quantitative description of the dynamics.

The dynamics �1� of a two-agent �dimer� model has been
considered in Ref. 13, in the context of virus-cell interactions
in bacteria and general gene regulatory activity models,
where a rich repertoire of behaviors, like multistability �mul-
tiple attractors in phase space� was reported. A preliminary
study of the behavior of Eq. �1� on small-world scale-free
networks can be found in Ref. 15, where the interested reader
can find a more detailed account of the numerical techniques
used in the characterization of the different dynamical re-
gimes. In the following, we review some remarkable general
features of the network dynamics.

A. Activation and inhibition interplay: Fragmentation

A brief look at Eq. �1� easily reveals that for any value of
the parameters p and h the state of inactivity, G=0, is always
a solution. As a matter of fact, for h=0, or h�0 but p=1,
this is the unique asymptotic solution �global attractor in the
phase space� for all possible non-negative initial conditions.
However, for h�0 and p�1 other asymptotic solutions,
with islands of positive activity, generically coexist with the
rest state. The term islands denotes here subnetworks that are
interconnected through nodes which have evolved to null
activity, so that their dynamics are effectively disconnected.

The fragmentation of the network dynamics into discon-
nected islands is a generic feature of AI interactions, as the
following considerations suggest. Let us call D the set of
nodes whose activities, for a given initial condition G�t=0�,
asymptotically vanish. It is easy to see that, irrespective of

the initial condition, this set is generically nonempty.
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Indeed, if a node i is such that Wij =−1 or 0 for all j, then
its activity gi�t� will tend to zero. Let us call D0 the set of
these nodes, and note that its measure ��kP�k�pk� is a non-
zero increasing function of p. Now, call D1 the set of nodes
l such that their positive Wlj occur for j’s in D0, and so on.
Due to the small-world property, there are in fact very few
relevant Dn �n=0,1 , . . . � sets. Its union D*= �Dn is easily
seen to have a nonzero measure which increases with p.

The nodes of D* are structurally �i.e., irrespective of
initial conditions� inactive. Depending on the initial condi-
tion, the set D may include other nodes not contained in D*,
namely those nodes that evolve to inactivity due to the initial
condition �dynamically, instead of structurally, inactive�:
See, e.g., the white nodes in Fig. 2, where we show two
small networks of N=50 nodes to allow a simple visualiza-
tion of the sets D* and D. In other words, the measure of D
may in general be �much� larger than the measure of the
“structurally dead” nodes D*.

From the previous considerations, whether or not the set
D percolates the network realization, leaving out islands of
disconnected activity, is an event that clearly depends on
both the parameter p and the initial conditions. But also the
discussion correctly suggests that fragmentation of the net-
work into subclusters with independent temporal evolution is
a generic �nonzero measure� feature. Our numerics, which
are extensive in the sense of �both network realizations and
initial conditions� large sampling, convincingly corroborate
this assertion. Figures 3 and 4 show two islands of periodic
and chaotic activity, respectively, as well as the temporal
evolution of gi�t� for some of their constituent’s nodes �see
the next section for a more detailed discussion of the
figures�.

B. Temporal fluctuations of asymptotic solutions

The asymptotic dynamics of Eq. �1� was studied in Ref.
15. We summarize here the most salient features of the phase
portrait of the collective dynamics.

The presence of inhibitory interactions makes possible
the existence of instabilities in the fixed point solutions �i.e.,
states of constant activities, gi�t�=gi

*, let us say chemostasis
regime� of evolution equations �1�. Using linear stability
analysis techniques, these “typical” instabilities are charac-
terized as Hopf bifurcations �either direct or often inverse�,
where attractors of exactly periodic collective activities,
gi�t�=gi�t+T�, are born out from the unstable fixed points.
The inverse period �frequency� 	=1/T of a periodic attractor
changes with parameter and is naturally dependent on each

FIG. 2. �Color online� Two examples of network frag-
mentation. The nodes of the networks are classified in:
�i� dynamical nodes �red�, �ii� stationary nodes with
nonzero activity �blue�, �iii� stationary nodes with zero
activity belonging to D0 � D1 �yellow�, and �iv� remain-
ing nodes with zero activity �white�. Note that the white
central nodes in �b� act as the frontier between the dy-
namical island and the steady nonzero activity one.
specific island realization. A sampling over different initial
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conditions and network realizations shows that 	 is smoothly
peak-distributed around a value of order unity �the character-
istic time scale of activity decay in the absence of interac-
tions� with a decaying queue slightly biased to higher fre-
quency values.15

One easily observes that these periodic attractors, in
turn, also typically experience period doubling instabilities,
and through the well-known universal scenario of �succes-
sive� period doubling bifurcation cascade, the onset of cha-
otic attractors takes place in the phase portrait of the network
dynamics. To help visualization of the generic types of
asymptotic network dynamics, we represent in Fig. 5 the
bifurcation diagram for a typical attractor. At different values
of the �Michaelis-Menten� parameter h, and constant values
of �=3, p=0.7, we plot the activity of an individual node at
the instant when its time derivative vanishes. Thus, a single
branch in the figure indicates stationary activity, two
branches indicate a periodic attractor, etc. We also plot in
Fig. 5 the largest Lyapunov exponent 
 on the attractor, so to
allow discerning between chaotic �positive 
� and eventual

FIG. 3. �Color online� Example of a cluster of 21 nodes displaying periodic
the interpretation�. The maximum Liapunov exponent is 
=−0.000 34 and
substrate network of N=50.
regular quasiperiodic evolutions �
=0�.
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A similar bifurcation diagram for a different network
realization is shown in Fig. 6, where one can appreciate �see
the inset� a commonly found bifurcation �though it appears
much less often than period doubling�, namely period tri-
pling bifurcation. Its characterization will be made in Sec.
II C where the Floquet analysis of periodic attractors is pre-
sented.

To illustrate the aspect of typical periodic fluctuations
we show in Fig. 3 some examples of the temporal activity
gi�t� of different nodes inside an island of synchronized ac-
tivity from a representative system. Note that the abundance
of out of phase oscillations of neighbors activity is a natural
consequence of inhibitory interactions. Horizontal lines in
insets indicate the average level ḡi of node activity. We see
that in some of the island nodes the amplitude of the oscil-
lation is small compared to ḡi �see, e.g., top rightmost and
bottom leftmost insets�; while in others they are of compa-
rable size, even to the point that lowest levels of activity can
reach a null value, before activity is triggered again after

mics. The insets show the dynamical patterns of each node �see the text for
dynamical parameters are h=4 and p=0.7. The cluster is embedded in a
dyna
the
inhibiting neighbors activity decreases enough.
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An analogous visualization of chaotic temporal fluctua-
tions of the activities in a cluster is shown in Fig. 4. Here
again we see nodes �e.g., top left inset� where the size of
activity fluctuations is less than 1% of the average level ḡi.
Most remarkable, there are nodes �like the one in bottom left
inset� which remain inactive most of the time intermittently
experiencing spikes of short duration activity. This amazing
variability of individual node temporal activity on the cha-
otic attractors is a generic feature of the network dynamics.
The existence of spike behavior of individual nodes’ activity
suggests correctly that eventual variations of parameters like
h may lead to permanent inactivity of some particular nodes,
so providing a straightaway decreasing of the dynamical
cluster size or, the other way around, the activation of inac-
tive nodes in the frontier.

It is important to note that, for a fixed set of parameter
values and a given network realization, there are generally
several different attractors coexisting in the phase space por-
trait of the network dynamics, each one having its own basin
�of attraction� of initial conditions. Multistability appears as
a generic consequence of the excitatory/inhibitory interplay.
Importantly also, there can be very many unstable periodic
trajectories �often entangled� flowing in between basins of
attractions. The excitatory/inhibitory competition is also re-
sponsible for the appearance of temporally complex �positive
Lyapunov exponent� aperiodic evolutions, associated to the

FIG. 4. �Color online� Example of a cluster of 19 nodes displaying chaotic
the interpretation�. The maximum Liapunov exponent is 
=0.4716 and the d
network of N=50.
bifurcation cascade scenario. As we will show in Sec. III A
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the manifestation of fluctuating �either periodic or chaotic�
temporal behaviors takes importance when inhibitory links
predominate, though not too much, over excitatory ones.

C. Floquet analysis of the periodic attractors

As shown in the bifurcation diagrams of Figs. 5 and 6,
periodic solutions of the network dynamics often become
unstable under variations of the model parameters. In order
to characterize these instabilities in a precise manner, one
may perform the linear stability analysis of the periodic or-
bits �see, e.g., Ref. 16� near the bifurcation points.

For this we consider small perturbations of the dynami-
cal variables, �g��t0�= ��gi�t0�	, and compute their evolution
over the period T of the periodic orbit. The evolution of these
small perturbations �vectors in tangent space� follows the
�linear� dynamics obtained by linearizing Eq. �1� around the
periodic orbit �ĝi�t�	= �ĝi�t+T�	, i.e.,

d�g��t�
dt

= − �g� + � · A�g� , �3�

where the matrix A is obtained as

Ai,j =
���kWi,kgk�

�1 + h−1���kWi,kgk��2 · Wi,j �4�

and ��x� denotes the �Heaviside� step function. Note that Eq.

ics. The insets show the dynamical patterns of each node �see the text for
ical parameters are h=4 and p=0.7. The cluster is embedded in a substrate
dynam
ynam
�4� is only valid when the sum of the inputs �activatories and
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inhibitories� which receives a node from its neighbors is non-
zero. Hence, the Floquet analysis is performed for each dy-
namical cluster found and not for the whole network.

The so-called Floquet �or monodromy� matrix F of the
periodic solution �ĝi�t�	 is defined as the linear operator in
tangent space that maps the initial perturbation at t0, �g��t0�,
onto the perturbation at t0+T,

FIG. 5. Example of bifurcation diagram �island size: 14; N=60; p=0.8�.
One can appreciate an inverse Hopf bifurcation and several �direct and
inverse� period doubling bifurcation cascades. The maximum Lyapunov ex-
ponent 
 is plotted in the lower part.

FIG. 6. Example of bifurcation diagram �island size: 12; N=60; p=0.8�
showing �see the inset� a period tripling bifurcation. The maximum

Lyapunov exponent 
 is plotted in the lower part.
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�g��t0 + T� = F�g��t0� . �5�

The Floquet matrix F is obtained by numerical integra-
tion of the linearized Eq. �3� over a period T for a basis of
initial conditions in the tangent space. The spectrum of ei-
genvalues of this matrix provides the information on the lin-
ear stability of the periodic solution. Note that because F is a
real matrix, if a Floquet eigenvalue  is a complex number,
then its complex conjugate ̄ also belongs to the Floquet
spectrum. Also, because solutions of autonomous differential
equations can be shifted in the time t direction, their Floquet
matrix always has unity as an eigenvalue, say 1=1, with

associated eigenvector �ġ̂i�t0�	. The solution is linearly stable
if all the other eigenvalues  j =  jexp�i� j� are in the interior
of the unit circle of the complex plane, i.e.,  j�1 for j
�1. A periodic solution becomes unstable when a Floquet
eigenvalue �or a pair of complex conjugate eigenvalues�
crosses the unit circle. The associated Floquet eigenvector
indicates the direction in tangent space where perturbations
will grow exponentially away from the solution.

In Fig. 7�a� we plot the Floquet spectrum of a periodic
attractor at a period doubling bifurcation. As seen in the fig-
ure, a Floquet eigenvalue crosses the unit circle at −1. In Fig.
7�b� we plot the Floquet spectrum of the periodic attractor of
Fig. 6 at h=2.44, where the inset suggested that a period
tripling bifurcation may occur. We see a complex conjugate
pair of Floquet eigenvalues exiting the unit circle at angles
�= ±2� /3. In general, for generic irrational values of � /�
this type of bifurcation �called Naimark-Sacker or general-

FIG. 7. Floquet spectra. �a� Period doubling bifurcation in an island of size
14 at h=1.57. �b� Naimark-Sacker bifurcation �at rational Floquet angle �
= ±2� /3� in an island of size 12 at h=2.44 �the same as used in the diagram

of Fig. 6�. For both N=60 and p=0.8.
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ized Hopf bifurcation� gives rise to a quasiperiodic attractor
whose trajectories fill densely a two-frequency torus. How-
ever, as a generic feature of our model, the two frequencies
of the new attractor are in a commensurate ratio �2:3�, so that
the new stable trajectory has a period of 3 T.

In terms of how often different types of bifurcation occur
in the network dynamics, as inferred from our �nonexhaus-
tive, but significant at the scales considered� sampling of
initial conditions and network realizations, one may say that
period doubling cascades and, less often, commensurate
Naimark-Sacker bifurcations have been generically found by
varying the Michaelis-Menten parameter h. But, besides the
formal characterization of the dynamical instabilities ob-
served, the Floquet analysis allows one also to give an an-
swer on a more general question, namely how temporal in-
stabilities correlate with networking connectivity
characteristics. Are there characteristic features discernible in
the structure of instabilities? This point will be discussed
further.

III. STATISTICAL CHARACTERIZATION
OF DYNAMICAL REGIMES AND ISLANDS
STRUCTURE

As noted before, the dynamics of the system is deter-
mined by only two parameters, h and p. The behavior of the
system described by Eq. �1� on the underlying network is
very rich and one can have steady, periodic or chaotic states
as well as fragmentation. In the following we analyze in
more detail the system’s phase diagram as well as how the
dynamical regimes couple to the local structural properties of
the underlying network and dynamical islands.

A. Density distribution functions of dynamical regimes

In Fig. 8, we have represented the probability, Pchaos, of
ending up in a chaotic regime as a function of p for a net-
work of N=300 nodes and h=4. This probability is given by
the fraction of the total number of realizations �typically 103

different initial conditions over different network realizations
for each value of p and h were used� in which at least one
chaotic dynamics is observed. Figure 8 also shows the cor-
responding probability, Pper, for periodic orbits. As Fig. 8�a�
clearly shows, there is a threshold value p= pth beyond which
the network dynamics is not robust under variations of the
initial values of the gi’s. For values of p above pth

�0.25�5�, two randomly chosen initial conditions can lead

the system to disparate asymptotic regimes. Besides, the size
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of the system affects the value of Pchaos, but the onset—and
the end—of the chaotic phase seems to be N independent.15

Moreover, Fig. 8�a� constitutes a quantitative illustration
of how the prevalence of fluctuating asymptotic regimes over
chemo-stasis ones depends on the model parameter p. The
sum of both functions, Pper�p�+ Pchaos�p�, gives the probabil-
ity that the asymptotic state shows temporal variations of the
activity vector �either regular or chaotic� as a function of p.
These results give that in the range of values 0.5� p�0.8
regimes of temporal fluctuations occur more often than con-
stant activity regimes. This measure is maximized by values
around p�2/3 and, quite naturally, it increases with the
value of the Michaelis-Menten parameter h, i.e., the slope at
the origin of the saturated response function �see Fig. 1�.
Note that even larger values of p means overabundance of
inhibitory interactions, which leads to the predominance of
the asymptotic rest state, while smaller values of p favor
chemostatic equilibria.

The quantities Pchaos and pth depend on h. As we move to
larger values of h, the strength of the interactions increases
and hence it is expected that slight perturbations produce a
behavior in which the fraction of nodes whose dynamical
patterns are easily disturbed grows. This is indeed the case,
as illustrated in Fig. 8�b�. The color-coded figure shows that
as h is increased, the probability of having a chaotic phase
grows, and that the onset of such chaotic patterns shifts to
smaller values of p. This drift of pth is however bounded. For
small enough values of p �even for very large h�, most of the
elements activate each other �Wij =1 for a large fraction of
pairs ij and ji� and hence the resulting dynamics is steady. In
other words, the onset of chaotic regimes is always located at
a nonzero value of pth �the same applies to the right �decay-
ing� part of Pch�p�, but in this case the activity falls down to
zero�.

B. Dynamical island structure

We next focus on the topological characterization of is-
lands of dynamical units. We first analyze how the cluster
size distribution of islands of nodes displaying either peri-
odic or chaotic activity scales with the system size. Figure
9�a� represents the probability that an island has a given size
for several networks made up of a number of nodes ranging
from 50 to 800. Clearly, the size distribution shows an aver-
age value that changes as N grows. A closer look at the figure
�see Fig. 9�b�� reveals that the mean cluster size scales with

FIG. 8. �Color online� �a� Probability, Pchaos �Pper�, that
the system evolves to a chaotic �periodic� regime as a
function of the probability of inhibitory interactions, p,
for h=4 and N=300. �b� Phase diagram in the
�p ,h�-parameter space of the chaotic dynamics of the
system. Color code indicate the values of Pchaos �N
=300�.
N and that about 17% of the nodes, on average, exhibits
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nonzero activity. This confirms what we have discussed in
Sec. II A about the measures of the sets D* and D, namely,
that the fragmentation of the network into islands of inde-
pendent dynamics appears as one of the most characteristic
features of the model.

Another interesting aspect is the elucidation of how the
topological properties of the islands correlate with those of
the underlying �original� network. To this end, we have fur-
ther scrutinized the structure of the clusters and measured
two topological quantities of interest. Figure 10 shows the
degree distribution of nodes belonging to dynamical islands
for several system sizes. This property can be regarded as a
global one and indicates that within the islands, the probabil-
ity that a node has k links also follows a power-law, though
with a more pronounced cut-off and a �slightly� different
value for the exponent �. More striking is the result depicted
in Fig. 11, where the average clustering coefficient �C� of the
substrate �original� network and of the islands is plotted as a
function of N. While for the BA network the clustering is
vanishing as the network size grows, it seems that for dy-
namical islands its value saturates. This is quite interesting
because, on the other hand, the value of the clustering coef-
ficient is very large and comparable to measures of real sys-
tems where the kind of dynamics explored here applies, for

17

FIG. 9. �a� Probability that a connected cluster of nodes displaying either
chaotic or periodic behavior has a given size �in number of nodes forming
the cluster�. �b� Scaling of the mean cluster size with N. The parameters
have been set to h=4 and p=0.7.
instance, biological networks.
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That is, the structure of dynamical islands correctly re-
produces several of the most important topological features
observed in biological networks and not captured by current
network models. Namely, the heterogeneous distribution of
connections, a high average clustering and the independence
of �C� with respect to the system size. This result points to
the conjecture that several topological properties observed in
systems driven by AI interactions where nodes are them-
selves �nonlinear� dynamical units may be biased by their
own dynamics. In other words, what we actually see is the
result of the activity showed up by a smaller “dynamical”
network whose local topological properties greatly differ
from those of a larger substrate network that we do not “see”
because many of its components are simply off. This, in fact,
may be the case of biological systems where structure and
dynamics are indissoluble linked.5,17

C. Structure inside dynamical islands

The above-presented findings on new �dynamically�
emergent characteristics of the islands’ structure motivates
the question of whether these clusters have an internal orga-

FIG. 10. Probability that a node belonging to a dynamical island interacts
with k other nodes of the island. Parameters were set to h=4 and p=0.7.

FIG. 11. Average clustering coefficient �C� as a function of the network size
for the BA original network and the dynamical cluster. Note that while �C�
in the BA network continuously decreases, for the dynamical island it satu-
rates. See more details in the text. The results have been obtained using h

=4 and p=0.7.
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nization or hierarchy among its constituents. It is widely
known that when one deals with problems where the network
topology �scale-free� is the only degree of complexity of the
problem the answer to this question is usually based on the
presence of highly connected nodes �the hubs�. This is the
case when linear evolution equations are studied on top of
complex networks like epidemic or rumor spreading, traffic,
and communication problems.18–20 However, our case is not
so simple and the nonlinear excitatory/inhibitory dynamics
between the elements of the network plays a crucial role in
determining which nodes are governing the evolution of the
system. Moreover, the high clustering found for the dynami-
cal clusters points out that this leading role is not played by
isolated nodes but by small substructures inside the dynami-
cal islands. This concept is not new, the problem of finding
small relevant substructures inside large networks, usually
called “motifs,”21 has been studied in different ways in the
field of biological networks.

It is indeed very revealing to pay attention to the net-
worked structure of the unstable manifold, which is given in
the linear regime of small perturbations by the Floquet un-
stable eigenvectors. For this purpose, we look at the behavior
of the components of the dynamical islands when a bifurca-
tion �either period doubling or Naimark-Sacker type� occurs.
In these critical points, it is possible to get a deeper insight
into what is going on in the dynamical islands I by looking at
the Floquet eigenvector responsible for the bifurcation,
�g���t0�= ��gi

��t0�	, corresponding to the Floquet eigenvalue
which reaches the unit circle. In particular, integrating Eq.
�3� for the initial condition �g���t0� we can compute the fol-
lowing vector:

��g�� � = ���gi
��	 = 
 1

T
�

0

T

�gi
�dt� . �6�

The components of this vector measure, for each node,
the average �over a period T of the old solution� distance of
the new solution after the bifurcation point from the old pe-
riodic solution. Note that a zero component of this vector at
a node k means orthogonality of the single-site perturbations
at that node with respect to the unstable direction in tangent
space. In other words, by looking at the components of the

vector �6� we can identify those nodes that are more affected
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by the perturbation that leads the system to instability. In
Figs. 12�a� and 12�d� we show this quantity for the same two
islands �relatively small, but still representative� whose Flo-
quet spectra are given in Fig. 7, one �a� corresponding to a
Naimark-Sacker bifurcation and the other �d� to a period
doubling bifurcation.

As can be seen from the figures, the vectors ��g��� have
several null components. The structural profiles reveal, ap-
parently irrespective of the type of instability, that the set S
of nodes in the island which are alien to instability �white
regions�, that is, the set of those nodes k such that ��gk�=0,
is a nonzero measure set; it is sometimes even larger than the
complementary set �green area� U= I−S of participating
nodes on the unstable eigenvector evolution during a period.
We observe here that the fragmentation tendency �see the
earlier discussion on islands of disconnected dynamics� op-
erates also at the level of the tangent space, in the sense that
a binary partition of the island nodes is well defined at the
bifurcation �critical� point. Namely, the instability introduces
a partition of the island I=U � S into �a� the set U of nodes
that do participate in the instability evolution in the linear
regime, and �b� the complementary set S of nodes such that
single-node perturbations are orthogonal to the unstable lin-
ear manifold. This drastic, generic fragmentation of the is-
land of periodic activity at the linear description level of the
bifurcation is also clearly the consequence of the AI compe-
tition on the network of interactions, and we have not seen
any deviation from this observation in the computations per-
formed �of which only two cases are illustrated�. In sum-
mary, one could say that inside the dynamical islands there
are compact substructures �and not single nodes� governing
the dynamical changes of the whole cluster of nodes.

The above-described behavior suggests the following
numerical experiment: we have explored the responses of the
different nodes to an external perturbation when the system
is in a periodic state near a bifurcation point. In particular,
we force a node by adding an aditional term of the form
A · sin�	t� �with 	=2� /T where T the period of the unper-
turbed system� to its equation of motion �1�. Then we com-
pute, as a function of the forcing amplitude A, the evolution
of the Floquet eigenvalue � responsible for the forthcoming

FIG. 12. �Color online� �a� and �d�
The components of the vector ��g���
�see the text� for two dynamical is-
lands at the critical point of a
Naimark-Sacker bifurcation at h
=2.44 �a� and a period doubling one at
h=2.629 �d�. �b� and �e� The distribu-
tion �green region� of the nodes with
non-null component of ��g��� in �a�
and �d�, respectively. Finally, �c� and
�f� show the evolution of the Floquet
eigenvalue � as a function of the
forcing amplitude A applied to differ-
ent nodes of the dynamical islands �b�
and �e�, respectively. For both islands
the substrate network was of N=60
nodes with a fraction of 80% of inhibi-
tory interactions �p=0.8�.
bifurcation in the unperturbed system. The effects of such a
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perturbation strongly depend on whether the perturbed node
belongs to the subset of those identified as leaders �i.e., the
ones with non-null component in ��g����. The results obtained
for the two dynamical islands aforediscussed are shown in
Figs. 12�c� and 12�f�. When the nodes inside the green area
are perturbed the Floquet eigenvalue � significantly deviate
�either increase or decrease, we have not been able to eluci-
date when a given change is expected� from the values of the
unperturbed system. On the other hand, the perturbation of
the nodes located outside the green region does not imply
any change to linear stability of the whole system. These
results illustrate the relevant role played by the substructures
found by the computation of ��g���.

IV. CONCLUDING REMARKS

In this paper, we have analyzed the interplay between
complex topologies and activatory-inhibitory interactions
driven by a saturated response dynamics of the Michaelis-
Menten type. The dynamics of the system is very rich and
exhibits steady, periodic and chaotic regimes that in turn lead
to the fragmentation of the original substrate network into a
smaller cluster of dynamically active nodes. We have fully
characterized these states by means of the Lyapunov expo-
nent and the Floquet analyses as well as the topological fea-
tures of active islands. The reach behavioral repertoire ob-
served is thus a consequence of the entangled complexity of
the system temporal behavior and the heterogeneous struc-
ture of the underlying network.

The emerging dynamics characterized in this work could
plausibly describe at least two relevant scenarios in biologi-
cal systems. On one hand, the dynamics expressed in Eq. �1�
has been proposed as a way to characterize theoretically the
individual dynamics of gene expression.13 In fact, Eq. �1� is
the generalization of the successful random Boolean
models11,12 widely used to model gene expression. In this
context, two nodes at the ends of a link are considered to be
transcriptional units which include a regulatory gene. One of
these end-nodes can be thought of as being the source of an
interaction �the output of a transcriptional unit�. The second
node represents the target binding site and at the same time
the input of a second transcriptional unit. By studying sim-
plified models as the one implemented here—the intrinsic
complexity of the problem does not allow for a complete and
detailed description of real gene dynamics—one can infer
the region of the parameter space �i.e., �p ,h�� that better
describes gene networks. The latter seems possible due to
latest developments in microarray technologies, biocomputa-
tional tools, and data collection software.

A second scenario where the results obtained apply is
reaction kinetics in metabolic networks. In metabolic sys-
tems, a very rich behavioral repertoire is well documented,22

as for instance, the oscillations observed in the concentration
of certain chemicals in biochemical reactions such as glyco-
lysis. The system of differential equations, Eq. �1�, represents
one of the most basic biochemical reactions, where sub-
strates and enzymes are involved in a reaction that produces
a given product. In this context, there are several important

issues as how fast the equilibrium is reached, how the con-
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centration of substrates and enzymes compare, etc. Besides,
it is known that in a large number of situations, some of the
enzymes involved show periodic increments in their activity
during division, and these reflect periodic changes in the rate
of enzyme synthesis. This is achieved by regulatory mecha-
nisms that necessarily require some kind of feedback control
as that emerging in our model. The interesting point here is
that the real topological features of the underlying metabolic
network23 have not been taken into account in studies per-
formed so far. As this work shows, they have important bear-
ings in the correlation between structure and the observed
dynamics.

Finally, on more general theoretical grounds, we antici-
pate several features of interest such as the fragmentation of
the original network according to the dynamical states of the
nodes, multistability and different routes to chaotic behavior
within the same system. The first of these points is particu-
larly relevant since it may indicate that in networks of dy-
namical units, the topology observed can be the result of a
given network state hiding a larger substrate whose topologi-
cal properties are completely different at a local level. Of
particular interest is also the result gathered in the last part of
the work, namely, the existence of an additional substructure
inside dynamical islands determined by the different re-
sponses of nodes to external perturbations. This points to the
central issue in many biological processes of what subset of
nodes are the most important in order to sustain �or break�
the system’s robust functioning. In summary, the character-
ization of models where nonlinearity and spatial complexity
coexist yields new results missed when only one of these
ingredients is present and opens the path to a better compre-
hension of biological processes and the dynamics of net-
works of nonlinear dynamical units.
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