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Abstract. – The instability introduced in a large scale-free network by the triggering of node-
breaking avalanches is analyzed using the fiber-bundle model as conceptual framework. We
found, by measuring the size of the giant component, the avalanche size distribution and other
quantities, the existence of an abrupt transition. This test of strength for complex networks
like Internet is more stringent than others recently considered like the random removal of
nodes, analyzed within the framework of percolation theory. Finally, we discuss the possible
implications of our results and their relevance in forecasting cascading failures in scale-free
networks.

The recent months have witnessed a great effort devoted to the unraveling of the proper-
ties of complex networks [1, 2]. These properties include the rules followed in the process of
formation of the net, the resulting connectivity distribution of the networks and their robust-
ness under unfavorable circumstances like the presence of acting damaging agents, etc. [3–5].
This general interest is mainly due to the fact that the subject of complex networks has a
considerable impact on many branches of science and technology and also in sociology [6–11].
An important observation has been to recognize that some significant networks have a scale-
free connectivity distribution, which means that the number of links emerging from one node
statistically follows a power law distribution Pk ∼ k−γ . In particular, it has also been noted
that the Internet belongs to this class of networks with several studies reporting an exponent
γ = 2.2 ± 0.1 [10,12].

In this letter, we explore the robustness of large scale-free networks in a scenario in which
the failure of a node may trigger the subsequent failure of its neighbors. Two nodes are
considered as nearest neighbors if they are connected by a direct link. It is thus clear that
the possibility of having 2nd-step failures can in turn induce 3rd-step failures, etc. and thus a
breaking avalanche can be generated. This idea is not just an entertainment of theoreticians;
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as is now well known, on 10 August 1996, a fault in two power lines in Oregon led, through
an avalanche of cascades, to a large-scale blackout in the US and Canada.

To implement our model, we will use the framework of the so-called fiber-bundle models
(FBM) [13–15]. In FBM a set of N � 1 fibers (elements) is located on the sites of a —usually
regular— lattice, and one assigns to each element a random strength threshold sampled from
a given probability distribution (the Weibull distribution is frequently used for this purpose).
Then, the set is loaded by uniformly elevating the weight acting on each element up to a certain
value, σ. All the elements whose thresholds are lower than σ fail in the first instance. The
individual load carried by each of the broken elements is equally transferred to their surviving
nearest neighbors and therefore the rupture of an element may induce secondary failures which
in turn may trigger tertiary failures and so on. These systems are usually conservative which
means that when equilibrium is finally attained, i.e., when there occur no more casualties, the
total weight borne by the Ns surviving elements is equal to Nsσ. The translation of the FBM
terminology to that of complex networks studied here is simple. A fiber may be viewed as a
node of the net, the directions of the load transfers are now the links of the net connecting the
nodes to each other and the load can represent, for instance, the intensity of electric current
flowing into the nodes of the network, or the viral pressure in Internet, etc., i.e. any magnitude
or agent able to surpass a security threshold of an individual node, break it, and then provoke
an increase of potential damage in the neighborhood of that node.

Recently, several scenarios of instability have been considered for complex networks. In
particular for scale-free networks the random removal of nodes in a fixed proportion and its
impact on the global connectivity and functionality of the network have been explored [5]
with tranquilizing conclusions: networks with γ < 3 are completely stable. In this scenario,
akin to percolation, the removal of a node never leads to cascades as it does in our model.
This implies that the test of strength analyzed here is more stringent and thus offers more
guarantees for the security of networks with power law connectivity distributions.

To study the instability of scale-free networks under node-breaking avalanches, we first con-
struct a network using the Barabási-Albert (BA) algorithm [4]. This is a stochastic growth
model in which, at each time step, a new node is added and attached preferentially to the
already existing ones. At the initial state, we start from a small number m0 of disconnected
nodes and the network grows by adding one new node at each time step. This new node is
connected preferentially to m old nodes with a probability that depends on the node connec-
tivities ki through the relation Π(ki) = ki/

∑
j kj . By iterating this scheme a sufficient number

of times, a network consisting of N nodes with connectivity distribution Pk = 2m2k−3 and
average connectivity 〈k〉 = 2m develops [4]. It is worth noting that the preferential attachment
rule introduced in the BA model accounts for the rich-gets-richer feature observed in many
real complex networks. Besides, the BA model has recently been improved by adding several
new ingredients in order to account for connectivity distributions with exponents 2 < γ < 3.
The main feature of the scale-free networks is that each node has a statistically significant
probability of having a very large number of connections compared to the average connectivity
of the network 〈k〉. This is not the case for other complex networks [1, 2] where the connec-
tivity distribution is peaked at 〈k〉 and decays exponentially fast for k � 〈k〉 and k � 〈k〉.
Thus, we expect that working with γ = 3 does not alter the results one would obtain for the
general case 2 < γ ≤ 3, a fact confirmed by preliminary numerical simulations in more general
SF networks [16].

Let us now assume that the scale-free network previously generated is exposed to an
external pressure or force F and that each node of the network represents an individual
element able to support a finite amount of “load” σ. As noted before this could be seen as
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a system where the individual elements are continuously subjected to external agents able to
affect their functionality if they overcome a given security threshold. We will also assume that
in the initial state this external force is equally distributed among all the nodes in the network
so that each element bears a load σ = F/N . Furthermore, we assign to each node a statistically
distributed security threshold σith (1 ≤ i ≤ N) taken from a probability distribution. If the
load acting on a node surpasses its threshold, the node fails and its load is equally transferred
to the non-failed nodes directly linked to it. This may provoke other nodes to collapse and the
cascades of failure events last until all the sound elements in the network bear a load lower
than their threshold values. In order to assign the threshold values, we will use the Weibull
distribution P (σith) = 1− e−(σith )ρ

, where ρ is the so-called Weibull index which controls the
degree of threshold disorder in the system (the bigger the value of ρ, the narrower the range
of threshold values). This allows us to compare the stability of systems having different levels
of heterogeneity in their security threshold distribution.

The threshold rule introduced above has been used for many years to study a wide class of
non-equilibrium phenomena [14, 17, 18]. However, they have been extensively studied mainly
for regular lattices. In the present model, the cascading process not only depends on the
thresholds of the elements but also on the distribution of the neighbors, i.e., a casualty at a
node is determined by both the threshold of that node and the number (and state) of nodes
directly linked to it.

We have performed large-scale numerical simulations of the cascading process produced
by repeatedly applying the rules stated above. In the initial state all the elements that form
the network are subjected to a small individual load σ. If that load is bigger than one (or
several) threshold(s), a cascading process could start that lasts until the system arrives at a
new equilibrium state where all the nodes support a load lower than their security thresholds.
Then, the complete process is repeated again by imposing in the initial state (with all the
elements in the non-failed state) a bigger load and applying the same failure rules. After each
cascading event, the damage to the system increases, which affects both the properties of the
network and its functionality. Each simulation is performed many times to average over the
security threshold distribution and in the end a kind of phase diagram for each magnitude
characterizing the final damaged state of the system is obtained.

The results obtained indicate that the system has an abrupt transition in its connectivity.
Because of the similitude between this behavior and the one found in fracture systems on
regular networks, we would call it a critical point. Figure 1 shows the size of the giant
component in a BA network composed by N = 105 nodes as a function of the control parameter
σ for a Weibull distribution with two different values of ρ and for a uniform distribution of
thresholds. The size of the giant component, which plays the role of an order parameter,
is defined as the total number of intact nodes remaining in the largest component of the
network after the cascading events divided by the system size N . We performed a depth-
first search for the largest component [19] and averaged the results after many realizations to
get a stable mean value of this component’s size. As can be seen from the figure, for small
values of the weight imposed over the system, the network remains almost intact and the giant
component size is still large enough to ensure the network’s functionality. However, as the
load is increased, the cascading failure begins to reach more and more nodes up to the critical
point where the size of the giant component suddenly falls close to zero provoking the rupture
of the system in many small parts losing its properties as a functional network.

Figure 1 also shows that the network with the highest degree of homogeneity in the thresh-
old distribution is more resilient to breakdown. This behavior is the opposite to what is seen
in regular networks. Although the critical load at which the network loses its functionality
shifts to the right as the level of homogeneity in the thresholds is increased, the precursory
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Fig. 1 – Size of the giant component for a BA network consisting of 105 nodes as a function of the load
imposed over the system (in dimensionless units). The values of ρ = 5 and ρ = 2 correspond to two
different levels of heterogeneity for the security thresholds of the nodes. As the threshold distribution
is more homogeneous, the critical point shifts rightward; however, the precursory activity is less
intensive and the collapse of the network more catastrophic.

Fig. 2 – Connectivity distribution Pk of the network after the cascading process for several values of
the load imposed on the system. The model’s parameters are: N = 105 nodes and ρ = 5. The critical
load is σc = 0.52. The connectivity distribution remains almost unaltered until the system reaches
its critical point where it is split into many parts (see the distribution for σ = 0.53, just above σc).

activity is less intensive and so the final breakdown of the network arises more abruptly and
catastrophically, without previous warning. This result agrees with what is seen in fracture
processes. Obviously, from a practical point of view, this is as unwanted as having a low
critical value that makes the network very unstable. An intermediate value could satisfy both
criteria; one is to have a robust network and the other to guarantee that the failure of the
network is preceded by an important precursory activity which helps to foresee the cascades
and the imminent collapse.

Another way to shed light on the cascading process is to inspect the change in the topology
of the network as the control parameter varies. The transition from a functional network to
the fragmented one is illustrated by the simulation results shown in fig. 2, where we plot the
probability that a node has connectivity k when the system has reached the final equilibrium
state. For very low damage pressures (for instance, σ = 0.05 in the figure) the topology of
the network remains unchanged. Right after the critical point (σ = 0.52 in fig. 2) the system
loses its properties as a scale-free network and the whole system becomes disconnected, the
largest connectivity of the nodes being of about 4 links.

We have also monitored the nodes that collapse more frequently. This can be observed
in fig. 3 where we have represented the fraction of broken nodes nk with respect to their
connectivities for the same parameters of fig. 2. The existence of a critical point is again
clearly demonstrated. As the load supported by the system approaches the breakdown point
from below, the nodes with higher connectivities are the most affected by the cascading process
although the system still conserves a few hubs that make possible the existence of a large giant
component that keeps a significant fraction of nodes interconnected. Right after the critical
point only nodes forming isolated clusters remain, none of them having a large connectivity.
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Fig. 3 – Normalized fraction of broken nodes with connectivity k as a function of their connectivity.
The existence of a critical point is again clearly manifested. Note that at the critical point there
remain in the network a few hubs that ensure the presence of a giant component in the system. The
model parameters are the same as fig. 2.

Fig. 4 – Cumulative avalanche size distributions at the critical point for ρ = 5 and ρ = 2. The
system consists of N = 105 elements and each curve has been obtained after averaging over 104

different realizations of the disorder. A full line with a slope of 0.12 has been drawn for comparison.
Above the critical point the probability distribution function splits into two parts and is characterized
by the excess of large avalanches. For very homogeneous threshold distributions the avalanche size
distribution becomes strongly peaked.

While the fragility of scale-free networks with respect to the removal of highly connected nodes
has recently been documented by several authors [5], it is worth noting that the above result,
although pointing in the same direction, is obtained as a consequence of the model’s rules
instead of being imposed from the outside, i.e., the system is subjected to an external force
and it evolves according to a simple threshold rule in contrast to other models [5] where the
removal of hubs is directed.

Finally, we have characterized the cascading process itself by measuring the avalanche
distribution. The size s of an avalanche is defined as the total number of nodes that break
simultaneously. The cumulative distributions P (s) of avalanche sizes for a network composed
of 105 nodes have been represented in fig. 4 for two different values of the threshold disorder
parameter. In both cases, the avalanche size distribution was measured at the critical points
which are in these cases σc = 0.52 and σc = 0.37 for ρ = 5 and ρ = 2, respectively. The
distributions can be fitted, for low values of ρ, by a power law of the form P (s) ∼ s−τ ,
giving an exponent for the probability distributions of τ + 1 = 1.12 ± 0.03. As the threshold
distribution gets more homogeneous (i.e. bigger ρ), the avalanche size distribution becomes
a strongly peaked function around a large mean value. This occurs because, as we move
to the region of large critical points values (increasing ρ), there is a very poor precursory
activity and almost all the nodes forming the network break down in only one time step.
Above the critical point, the probability distribution of avalanches splits into two parts and
is characterized by the excess of large avalanches signaling that we are in the supercritical
region. Without providing a figure, we also want to report that in scale-free networks the
value of the critical stress, for the same ρ, is independent of the size of the system. This
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differs from what is obtained in regular lattices simulating non–mean-field fracture models:
there a bigger system implies a lower critical stress [15].

During the completion of this work, we have become aware of a similar study by Watts [20].
He presents an interesting analytical approach to this kind of problems and solves the small-
world case. Both models and the results reported, however, are different. In our model the
initial distribution of intact and broken nodes after the first casualty has no constraints as in
Watts’ model. Besides, and more important, the relationship between heterogeneity level, the
stability of the system and the precursory activity is not accounted for in [20]. We refer the
reader to [20] for more details.

To sum up, we have introduced a model that accounts for the cascading events observed
in many complex networks. By imposing an external pressure over the system, several mag-
nitudes have been recorded and the system has been shown to exhibit a sort of critical point.
The results point out that, in order to prevent the breakdown of scale-free networks, one has
to find an optimal criterion that takes into account two factors: the robustness of the system
itself under repeated failures and the possibility of knowing in advance that the collapse of
the system is approaching.
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