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Creep rupture has two universality classes
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Abstract. – Objects subject to a steady load will often resist it for a long time before
weakening and suddenly failing. This process can be studied by fiber bundle models, in which
fibers fail in a random fashion that depends both upon the integrity of their neighbors and
the load to which they are subjected. In this letter, we introduce a new fiber bundle model
that allows us to examine how the behavior of such a system depends upon the range over
which each fiber interacts with its neighbors. Using analytical and numerical arguments, we
show that for all systems there is a critical load below which the system reaches equilibrium,
and above which it fails in finite time. We consider how the time to failure depends upon how
much the applied load exceeds the critical load, and find two universality classes. For short-
range interactions, failure is abrupt, and time to failure is independent of load. For long-range
interactions, the time to failure depends upon the excess load as a power law. The transition
between these two universality classes is sharp as a function of the range of interaction. In
both universality classes, the distribution of times between breaking events obeys a power law
as the system creeps towards failure.

Introduction. – Time evolution of physical systems under a steady external driving is
abundant in nature. Examples can be found in seemingly diverse systems such as the behavior
of domain walls in magnets [1], earthquake dynamics [2, 3] and creep rupture of solids [4–8].
Recent intensive experimental and theoretical studies revealed that, in spite of the diversity
of the governing physical dynamics, the behaviors of these systems share several universal
features: local stresses arising due to the external driving are resolved in the form of avalanches
of microscopic relaxation events. As a result, the system attains a stationary macroscopic state
characterized by a scale-invariant microscopic activity. In particular, large efforts have been
devoted to the study of material failure occurring under various loading conditions [4–16] since
these studies also provide direct information on the dynamics of earthquakes [2, 3, 8].
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Under high steady stresses, materials may undergo time-dependent deformation resulting
in failure called creep rupture which limits their lifetime, and hence, has a high impact on
their applicability in construction elements. Creep failure tests are usually performed under
uniaxial tensile loading when the specimen is subjected to a constant load σ0 and the time
evolution of the damage process is followed by recording the strain ε of the specimen and the
acoustic signals emitted by microscopic failure events. During the last decade several theoret-
ical approaches have been worked out to describe time-dependent deformation and rupture
of materials occurring in a finite time [9–16]. In spite of the large amount of experimental
and theoretical results accumulated, a comprehensive theoretical picture of creep rupture is
still lacking.

In this letter we study the creep rupture of materials by means of a novel fiber bundle
model. During the past years Fiber Bundle Models (FBMs) [13–24] of materials damage not
only played a very important role in the study of fracture but they turned out to be also one of
the most promising approaches to earthquake predictions [3,25,26]. Our model describes the
interaction of fibers in terms of an adjustable load-sharing function covering all cases relevant
to real materials; furthermore, it combines the viscoelastic constitutive behavior and breaking
of fibers. Analytical and numerical calculations show that there exists a critical load that
determines the final state of the material. Strikingly, we find that in creep rupture there are
only two universality classes and that the distribution of times between breaking events shows
a universal power law behaviour. The relevance of our results to experiments is discussed.

Viscoelastic fiber bundle. – Our model consists of N parallel fibers arranged on a square
lattice of side length L having viscoelastic constitutive behavior [13]. For simplicity, the pure
viscoelastic behavior of fibers is modeled by a Kelvin-Voigt element which consists of a spring
and a dashpot in parallel and results in the constitutive equation σ0 = βε̇ + Eε, where σ0

is the imposed load, β denotes the damping coefficient, and E the Young modulus of fibers,
respectively. In order to capture failure in the model a strain-controlled breaking criterion is
imposed, i.e. a fiber fails during the time evolution of the system when its strain exceeds a
breaking threshold εi, i = 1, . . . , N , drawn from a probability distribution P (ε) =

∫ ε

0
p(x)dx.

When a fiber fails, its load is redistributed to the intact fibers according to the interaction
law of fibers. It was shown in ref. [13] that in a viscoelastic bundle the fibers break one-by-
one, which implies that such a system is very sensitive to the details of load sharing, much
more than a static fiber bundle [13–21], where a large number of fibers can break at once
in the form of bursts [17]. In order to realistically model the stress transfer between fibers,
recently an adjustable stress transfer function was introduced, which interpolates between the
two limiting cases of global and local load sharing (GLS and LLS) [18, 19]. Motivated by
mechanics-based models of fracture [23, 24] we assume that the additional load σadd received
by an intact fiber i on a square lattice after the failure of fiber j depends on their distance rij
and has the form σadd = Zr−γij . Here the normalization factor Z is simply Z =

∑

i∈I r
−γ
ij and

the sum runs over the set I of intact fibers [21]. The exponent γ is an adjustable parameter
of the model, which controls the effective range of load redistribution. The limiting cases
γ = 0 and γ → ∞ recover the global and local load sharing widely studied in the literature;
furthermore, intermediate values of γ interpolate between them. For the breaking thresholds
of fibers a uniform distribution between 0 and 1, and a Weibull distribution of the form
P (ε) = 1− exp[−(ε/λ)ρ] were used with Weibull moduli ρ = 2 and 5. A comprehensive study
of the quasistatic fracture of fiber bundles in terms of the adjustable load-sharing function
has been presented in ref. [21].

Global load sharing. – In the mean-field limit, i.e. global load sharing obtained for γ = 0,
many of the quantities describing the behavior of the system can be obtained analytically. In
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Fig. 1 – ε(t) for two different values of the external load a) σ0 < σc, b) σ0 > σc. The insets present
the inter-event times ∆t at the time of their occurrence t.

this case, the time evolution of the system under a steady external load σ0 is described by the
differential equation

σ0

1− P (ε)
= βε̇+ Eε, (1)

where the viscoelastic behavior of fibers is coupled to the failure of fibers [13]. For the behavior
of the solutions ε(t) of eq. (1), two distinct regimes can be distinguished depending on the
value of the external load σ0: When σ0 falls below a critical value σc, eq. (1) has a stationary
solution εs, which can be obtained by setting ε̇ = 0, i.e. σ0 = Eεs[1 − P (εs)]. It means that
until this equation can be solved for εs at a given external load σ0, the solution ε(t) of eq. (1)
converges to εs when t → ∞, and the system suffers only a partial failure. However, when
σ0 exceeds the critical value σc, no stationary solution exists; furthermore, ε̇ remains always
positive, which implies that for σ > σc the strain of the system ε(t) monotonically increases
until the system fails globally at a finite time tf . The behavior of ε(t) is illustrated in fig. 1
for two values of σ0 below and above σc with uniformly distributed breaking thresholds. It
follows from the above argument that the critical value of the load σc is the static fracture
strength of the bundle [18]. In ref. [14] a similar overall behaviour was obtained for long fiber
composites subjected to a constant load.

The creep rupture of the viscoelastic bundle can be interpreted so that for σ0 ≤ σc the
bundle is partially damaged implying an infinite lifetime tf = ∞ and the emergence of a
stationary macroscopic state, while above the critical load σ0 > σc global failure occurs at a
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finite time tf , but in the vicinity of σc the global failure is preceded by a long-lived stationary
state. The nature of the transition occurring at σc can be characterized by analyzing how the
creeping system behaves when approaching the critical load both from below and above.

For σ0 ≤ σc, the fiber bundle relaxes to the stationary deformation εs through a gradu-
ally decreasing breaking activity. It can be shown analytically that ε(t) has an exponential
relaxation to εs with a characteristic time scale τ that depends on the external load σ0 as

τ ∼ (σc − σ0)
−1/2, for σ0 < σc, (2)

i.e., when approaching the critical point from below the characteristic time of the relaxation
to the stationary state diverges according to a universal power law with an exponent −1/2
independent of the form of disorder distribution P . Note that a similar power law divergence
of the number of successive relaxation steps of a dry fiber bundle subjected to a constant
external load was pointed out in refs. [15,16]. Above the critical point, the lifetime tf defines
the characteristic time scale of the system which can be cast in the form [13]

tf ∼ (σ0 − σc)
−1/2, for σ0 > σc, (3)

so that tf also has a power law divergence at σc with a universal exponent −1/2 like τ below
the critical point. Hence, for global load sharing γ = 0, the system exhibits scaling behavior
on both sides of the critical point, indicating a continuous transition at the critical load σc.

In a creeping system, due to the steady external driving, local overloads build up slowly
on the microscopic level when the breaking threshold of fibers is exceeded by the local defor-
mation. The sudden breaking of fibers occurring on a time scale much shorter than the scale
of the driving provides the relaxation mechanism which resolves the overloads in the system.
This mechanism consists of sequential fiber breakings that form an avalanche which either
stops (below the critical point) or continues until the whole system gets destroyed (above the
critical point).

Fibers fail one by one, furthermore, under GLS conditions, breakings occur in the order
of increasing breaking thresholds εi and the time ∆t(εi, εi+1) elapsed between the breaking of
i-th and i+ 1-th fibers can be analytically obtained. The inter-event time ∆t is a fluctuating
quantity which depends both on the breaking thresholds and the load level, as illustrated in
the inset of fig. 1. It can be observed in the figure that before and after the plateau of ε(t) the
inter-event times are relatively short (low peaks), while along the plateau ∆t is scattered over
a broad interval. The statistics of inter-event times characterized by the distribution f(∆t)
provides information on the microscopic dynamics of creep. f(∆t) is presented in fig. 2 for
a system of N = 2 × 107 fibers with uniformly distributed breaking thresholds. Simulations
revealed that f(∆t) exhibits a power law of the form f(∆t) ∼ ∆t−b both below and above the
critical point whenever the macroscopic stationary state characterized by the plateau of ε(t)
is attained. However, the value of the exponent b is different on the two sides of the critical
point, i.e. below σc the exponent of the distribution is b = 1.95 ± 0.05 independent of σ0,
while above σc we obtained b = 1.5± 0.05. Increasing the load above σc the stationary state
gradually disappears, implying that the power law regime of f(∆t) preceding the exponential
cut-off is getting shorter but the exponent remains the same (see fig. 2). The emergence of
a macroscopic stationary state accompanied by a power law distribution of inter-event times
obtained in a certain range of load for creep rupture resembles scenarios that have been called
self-organized criticality in the literature [27,28].

Local load sharing. – To explore the effect of the details of load redistribution on the
creep rupture process we studied how the behavior of the system changes in the vicinity of
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Fig. 2 – The distribution of inter-event times ∆t for γ = 0. The power law behavior can be observed
over 5 orders of magnitude. Inset: the exponent b of f(∆t) as a function of γ for σ0 > σc.

the critical point when the load sharing gets localized. Simulations have been performed by
varying the effective range of interaction of fibers by controlling the exponent γ of the load-
sharing function. The inset of fig. 3 presents the lifetime tf of a bundle of fibers arranged
on a square lattice of side length L = 101 with uniformly distributed breaking thresholds
as a function of the distance from the critical point ∆σ = σ0 − σc for several values of
the exponent γ. It can be observed that the tf(∆σ; γ) curves form two groups of different
functional form: The upper group is obtained for 0 ≤ γ ≤ 1.95 when the load sharing
is global due to the divergence of the normalization factor Z of the load-sharing function
σadd [21] and eq. (3) holds [13]. However, in the lower group, obtained for γ > 2.9 when the
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load sharing gets localized [21], tf(∆σ; γ) rapidly takes a constant value showing an abrupt
transition at the critical load σc with no scaling, reminiscent of a first-order transition. The
results imply the existence of two universality classes in creep rupture characterized by a
completely global (GLS), or a completely local (LLS) behavior depending on the effective
range of interaction γ with a rather sharp transition between them. In order to quantify
the behavior of tf(∆σ; γ) under the variation of γ we calculated the normalized quantity
S(γ) = [tf(γ) − tf(γ = 10)]/[tf(γ = 0) − tf(γ = 10)], where tf(γ) denotes the value of tf at
the smallest value of ∆σ used to calculate tf(∆σ; γ) at a given γ. Figure 3 shows that S(γ)
provides a quantitative description of the creep rupture transition in terms of the effective
range of interaction, so that S(γ) takes value unity for the GLS, and it has a value close
to zero for the LLS class, respectively. It can also be observed in fig. 3 that the transition
between the two universality classes gets sharper around γc ≈ 2 with increasing system size.
Real materials described by a finite value of γ must fall into one of the above universality
classes. The existence of only two universality classes implies that the mean-field analytical
results can be extended beyond γ = 0, i.e., they apply for a wider interaction range which is
relevant for real materials.

Extensive simulations revealed that whenever a macroscopic stationary state is attained
by the system, the distribution of inter-event times follows a power law irrespective of the
range of interaction γ. Below the critical point the exponent b of the distribution has a value
b = 1.95 ± 0.05 independent of γ, while above the critical point b is different in the two
universality classes as illustrated by the inset of fig. 2. In the LLS class the exponent b has
practically the same value below and above σc. Simulation performed with a uniform and
Weibull distributions of parameter values ρ = 2 and 5 for the breaking thresholds showed that
the value of the exponent b is insensitive to the details of the disorder distribution P .

The breaking process of fibers occurring in a solid under various loading conditions can
be monitored by acoustic emission techniques which has also been applied to study creep
rupture. The statistics of inter-event times has been studied in various types of materials like
wood, plaster, basalt, and fiber glass. It was found experimentally that the distribution of
inter-event times always exhibits a power law behavior; however, the values of b was found to
depend on the material falling between 1.2 and 1.9 [4–8] for σ0 > σc. Hence, our theoretical
findings are in a quite reasonable agreement with the available experimental results.

Conclusions. – We have identified two universality classes of creep rupture depending
on the range of interaction of fibers: the creep rupture transition is either continuous, char-
acterized by power law divergences, or abrupt with no scaling. We demonstrated analytically
and numerically that in both universality classes the creeping system evolves into a macro-
scopic stationary state which is accompanied by the emergence of a power law distribution of
waiting times between consecutive breaking events on the microscopic level. Our theoretical
results provide a consistent explanation of recent experimental findings on the damage process
of creep rupture.
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