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A model for complex aftershock sequences

Y. Moreno,"? A. M. Correig,® J. B. Gémez,* and A. F. Pacheco!

Abstract. The decay rate of aftershocks is commonly very well described by
the modified Omori law, n(t) o t7P, where n(t) is the number of aftershocks per
unit time, ¢ is the time after the main shock, and p is a constant in the range
0.9 < p < 1.5 and usually close to 1. However, there are also more complex
aftershock sequences for which the Omori law can be considered only as a first
approximation. One of these complex aftershock sequences took place in the eastern
Pyrenees on February 18, 1996, and was described in detail by Correig et al. [1997].
In this paper, we propose a new model inspired by dynamic fiber bundle models
to interpret this type of complex aftershock sequences with sudden increases in
the rate of aftershock production not directly related to the magnitude of the
aftershocks (as in the epidemic-type aftershock sequences). The model is a simple,
discrete, stochastic fracture model where the elements (asperities or barriers) break
because of static fatigue, transfer stress according to a local load-sharing rule and
then are regenerated. We find a very good agreement between the model and the
Eastern Pyrenees aftershock sequence, and we propose that the key mechanism for
explaining aftershocks, apart from a time-dependent rock strength, is the presence
of dynamic stress fluctuations which constantly reset the initial conditions for the

next aftershock in the sequence.

1. Introduction

Omori [1894] discovered scaling in earthquakes in the
frequency distribution of aftershocks over 100 years ago
when he proposed a formula to represent the decay of
aftershock activity with time. Now, 100 years later,
it remains as one of the few well-established empirical
laws in seismology. As noted by Utsu [1995, p. 1], “any
theory for the origin of aftershocks must explain this
law, which is unique for its power law dependence on
time”. The Omori law (as modified by Utsu [1961]),

n(t) = Kt™P, 1)

says that the number of aftershocks n(t), measured at
time t after the time of the main shock, declines fol-
lowing a power law with an exponent p around one
(0.9 < p < 1.5, with a median of about 1.1 [Utsu, 1995]),
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and K being a proportionality constant. To avoid di-
vergence at ¢ = 0, the Omori law is usually written in
the form

n(t) = K(t+c)7?, (2)
where ¢ is an additional “small” positive constant with
dimensions of time (between 0.01 and 1 days, with a
median of 0.3 days [Utsu, 1995]). The power law, scale-
free behavior is maintained for t > ¢, with a transition
to n(t) = const for ¢ < ¢ that accounts for incomplete-
ness in the detection of low-magnitude aftershocks dur-
ing the few hours after the mainshock [e.g., Utsu, 1995,
Figure 2; Gross and Kisslinger, 1994]. From (2) the
cumulative number of aftershocks, N(t), occurred until

time t after the main shock, defined as fot n(s)ds, is

Kln(t/c+1) p=1
K{c'™? = (t+0)'P}/(p-1) p#1

The Omori law has also been verified in laboratory-
scale experiments in brittle rock deformation by mea-
suring acoustic emission [Scholz, 1968a, 1968b; Lockner
and Byerlee, 1977; Hirata, 1987; Sammonds et al., 1992;
Lockner, 1993] and in mine-induced seismicity [Zalebs,
1997], which represents an intermediate scale between
laboratory experiments and natural aftershocks. The
fulfilment of the Omori law at the microscale (1073-
107! m), mesoscale (1-10! m) and macroscale (102-10%
m), suggests that a universal process is behind the in-
elastic strain responsible for acoustic emission in the
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laboratory [Hirata, 1987], induced microseismicity in
mines [Gibowicz, 1997, and aftershock sequences in ac-
tive tectonic faults [Utsu, 1995; Gross and Kisslinger,
1994]. However, what is this mechanism?

Static fatigue, also known as stress, creep, or delayed
fracture is the basic way of time-dependent failure un-
der a constant load of a broad variety of materials, in-
cluding textile fibers [Coleman, 1957], fiber composites
[Phoeniz, 1977], wood [Garcimartin et al., 1997}, mi-
crocrystals [Pauchard and Meunier, 1993|, gels [Bonn
et al., 1998], policrystalline ceramics [Jacobs and Chen,
1994], metals [Schleinkofer et al., 1996], silicate glasses
[Charles, 1958], minerals [Scholz, 1968a; Barnett and
Kerrich, 1980], and rocks [Atkinson, 1984]. In all these
cases, the signature of static fatigue is the observation
of a failure strength that is a function of the load his-
tory of the material. For brittle materials, and from
the point of view of fracture mechanics, time-dependent
strength is commonly associated with kinetic fracture,
i.e., with the propagation of cracks under a crack tip
stress intensity factor below the modulus of cohesion of
the material [Kostrov et al., 1969]. This propagation is
stable and quasi-static and is referred to as subcritical
crack growth, where “quasi-static” means at velocities
much less than the sonic velocity of the medium [Das
and Scholz, 1981]. The presence of a chemically active
fluid environment saturating the pore and crack space
enhances this subcritical crack growth, a mechanism
known as stress corrosion [Charles, 1958; Wiederhorn,
1967). There is ample evidence that geological mate-
rials under brittle conditions owe their time-dependent
strength to the mechanism of subcritical crack growth
assisted by stress corrosion [Atkinson, 1984; Atkinson
and Meredith, 1987].

Benioff [1951] presented the first detailed theory of-
fering an explanation of the causes and characteristics
of aftershock sequences in terms of identifiable mechan-
ical properties. According to his theory, aftershocks
occur when there is a time-dependent recovery of stress
following the main shock. The stress recovery was as-
cribed by Benioff to a static fatigue of the rocks in the
immediate area of the fault.

Since Benioff’s seminal paper, many laboratory and
numerical experiments have confirmed the hypothe-
sis that aftershocks are a process of relaxing stress
concentrations produced by the dynamic rupture of
the main shock and that they are therefore an in-
trinsic time-dependent rheological effect. In this con-
text, Scholz [1968b] formulated the first time-dependent
strength model of aftershocks. He suggested that a
time-dependent strength of the rocks in the area of the
main shock could be the cause of the aftershock se-
quences and invoked static fatigue due to local overloads
to stresses much higher than their long-term strength
as the main mechanism of aftershocks. On the basis
of Scholz’s [1968a] laboratory experiments on static fa-
tigue of quartz, Das and Scholz [1981] formulated a gen-
eral model of aftershocks using elastic fracture mechan-
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ics and the concept of subcritical crack growth. They
showed that this model is consistent with the decay rate
of aftershocks as expressed by the Omori law and that it
is able to reproduce many other characteristics of real
aftershock sequences. More recent works and papers
that stress the role of time-dependent strength in af-
tershock dynamics are those by Yamashita and Knopoff
[1987], who assumed that stress corrosion is the phys-
ical mechanism for the delayed fracture in aftershocks;
Marcellini [1995, 1997], who advocated static fatigue,
together with stress inhomogeneities, as the cause of
Omori-law aftershock sequences; and Lee [1999] and Lee
and Sornette [2000], who constructed a fuse network
model of aftershocks incorporating a time-dependent
strength compatible with the mechanism of subcritical
crack growth. All these models of aftershocks also obey
the Omori law.

As mentioned above, the Omori law decay rate of af-
tershocks following a main shock is an almost universal
characteristic of seismicity (as compared to the more
irregular patterns of premonitory activity as foreshocks
or quiescence). However, despite this universality, many
real aftershock sequences display anomalies in the de-
cay rate that depart from the simple Omori law behav-
ior. Among these anomalies we can cite [Utsu, 1995]:
(1) cases in which seismic activity following the main
shock cannot be represented by a simple power law due
to the mixing of different series of activity [Gross and
Kisslinger 1994]; and (2) cases where aftershocks de-
cay, as a whole, according to the Omori law but depart
temporarily from the formula due to abrupt changes in
activity (accelerations and/or quiescence).

In this paper we are interested in aftershock series
that do not rigorously follow the Omori law and, in
particular, in this second type of anomalies where sud-
den accelerations in the rate of aftershock activity are
not directly linked to aftershocks of larger magnitude.
This last case is the so-called epidemic-type aftershock
sequence (ETAS), where each aftershock has its own se-
quence of aftershocks [Ogata, 1988], and can be thought
of as a fractal version of the simple Omori relaxation for-
mula. There are, however, some aftershock sequences
where the changes in decay rate are independent of
the magnitude of the aftershocks that provoke these
changes in activity, and that cannot be ascribed to
the ETAS model. One of these aftershock sequences
took place in the eastern Pyrenees on February 18, 1996
[Correig et al., 1997) and in this paper we propose a sim-
ple stochastic model 4 la dynamic fiber bundle model

as a framework to interpret this class of aftershock se-
quences.

2. Data

On February 18, 1996, a local magnitude M, = 5.2
earthquake occurred in the eastern Pyrenees, with epi-
central location 42°47.71°N, 2°32.30’E and focal depth
of 8 km [Rigo et al., 1997; Pauchet et al., 1999].
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Figure 1. Aftershock sequence of February 18, 1996, eastern Pyrenees. (a) Complete series of
aftershocks, shown as the accumulated number of events (left axis), together with their magnitude
(right axis). (b) First 300 hours of the aftershock sequence, as used in the comparison with the
model results. The fit to the whole range and two independent fits to the 0-100 and 140-300
hours intervals has been superimposed. (c) Separation of the aftershock sequence into leading
aftershocks (solid circles) and cascade events (dots). See the text for details.

The series of aftershocks that followed this event was
recorded at the three-component continuous broadband
seismic station at the Tunel del Cadi, located at ~ 80
km SW of the epicentral area. Altogether, the series
consists of 337 events (complete for a threshold magni-
tude of 1.9), spanning 1846 hours (77 days) from the
time of the main shock, and with magnitudes ranging

from 1.9 to 3.8. Figure la shows the cumulative series
of aftershocks, along with the magnitude of the events.
The sudden change in slope at ~ 300 hours is not due
to incompleteness of the series, and from the point of
view of the magnitude of the aftershocks, there is no
specific characteristic, nor any relevant event, that jus-
tifies this sudden change in the event rate. Because of
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this different behavior we will restrict our attention to
the series defined by the first 300 hours, with a total of
308 events, as displayed in Figure 1b.

The most striking feature of this series is the change
in concavity of the cumulative curve not correlated to
any significant event (as would be the case from the
point of view of an ETAS model), suggesting an increase
in the rate of aftershocks production apparently not re-
lated to any relaxation process. If we try to fit by the
maximum likelihood method the aftershock data in Fig-
ure 1b to (3), we immediately appreciate that a unique
fit to the whole range (0-300 hours) is graphically worse
than two independent fits to the ranges 0-100 and 140-
300 hours. Unfortunately, the parameter estimation for
the 140-300 hours is not unique in the sense that more
than one set of parameter values return the same value
of the likelihood function after maximization. After fix-
ing the values of K and ¢ (to the values K = 17+ 2 and
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Figure 2. (a) Series formed by the leading aftershocks,
after removal from the original sequence the cascades.
The fit to the Omori law is much better than the orig-
inal, and the p value (0.94) is also closer to worldwide
aftershock p values. (b) Cascades retrieved from the
original first 300 hours of the aftershock sequence. Each
cascade can be approximated by a straight line.

MORENO ET AL.: A MODEL FOR COMPLEX AFTERSHOCK SEQUENCES

100 T
10—: E
o ] ]
Q ] |
ko) ] ]
75}
1 u -
] n '\.! 3
] ~
] L .
0,1 — T
0,1 1 10 100
time

Figure 3. Slope of the cascades versus time on log-log
scale. It can be clearly seen that it follows a power law
s t™Y, with v = 0.7

¢ = 0.2+0.1 obtained for the fit to the 0-100 hour inter-
val), the 140-300 hour fit returns a unique value for the
parameter p = 0.654 + 0.005, which is statistically dif-
ferent to the value p = 0.7540.04 obtained for the 0-100
hour interval. The error in both estimates is one stan-
dard deviation assuming a normal distribution for the
variance. These values of p are abnormally low (0.75 for
the 0-100 hours interval, and 0.65 for the 140-300 hours
interval). The fit and the value of p do not improve
if the magnitude threshold is increased [Correig et al.,
1997].

The interpretation of the Omori law as a relaxation
process suggests a way of separating the aftershocks in
the series into two classes: class A for the events that
follow a relaxation law and class B for those events that
do not. The criterion to assign the events to classes A
or B is the following: If the interval of time At; between
events 1 and 7 — 1 is strictly larger than the interval of
time At;_1 between events i —1 and i—2, the event 7 be-
longs to class A; otherwise, it belongs to class B. Events
belonging to class A are termed leading aftershocks, and
those belonging to class B are termed cascades. Figure
lc shows the aftershock sequence classified as leading
events (solid circles) and cascades (dots). Note that a
cascade is initiated by a leading aftershock and that this
leading aftershock has no significative different magni-
tude.

The fit of (3) to the series formed by the leading af-
tershocks is shown in Figure 2a. The fit has improved
significantly from the initial fit to the whole sequence,
and the value obtained for the exponent is now p = 0.94,
much more in agreement with the standard values for
worldwide aftershock sequences. Figure 2b depicts the
series of cascades, in which the first term of each cas-
cade is a leading aftershock. Two important features
are readily visible from Figure 2b: (1) the cascades are,
in general, well approximated by straight lines; and (2)
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their corresponding slopes decrease with time. A plot
of the slope s of the cascades against time ¢ (Figure 3)
shows the remarkable fact that there exists a power law
relationship of the form s o ¢t™” between them, with
v = 0.71.

The properties summarized in Figures 1-3 for the af-
tershock sequence of the eastern Pyrenees can be de-
scribed at first order with the modified Omori law,
(Equations (2) and (3)). However, at second order,
there are important nonrandom fluctuations about this
law (represented by the cascades) that can not be fitted
in detail with, nor accounted for, the Omori law and
its relaxation origin. In Section 3 we will construct a
model to account for this second-order deviations from
the Omori law and for the Omori law itself, of course.

We want to stress here that the characteristics of
the series of aftershocks from the February 18, 1996,
Pyrenees main shock are by no means “exceptional”.
On the contrary, they seem to be a rather general fea-
ture of aftershock series. We are currently analyzing
various aftershock sequences (Greece, Kobe, Landers,
Northridge) and have found a behavior very similar to
that of the Pyrenees aftershock sequence. Results will
be reported elsewhere.

3. Dynamic Fiber Bundle Models

Fiber bundle models (FBMs) are simple discrete sto-
chastic fracture models amenable to either close ana-
lytical or fast numerical solution. These models arose
in intimate connection with the strength of bundles of
textile fibers [Daniels, 1945; Coleman, 1957]. Since
Daniels” and Coleman’s seminal works, there has been
a long tradition in the use of these simple models to an-
alyze failure of heterogeneous materials [ Vazquez-Prada
et al., 1999, and references therein].

The dynamic version of the FBM simulates the failure
of materials because of static fatigue or delayed rupture.
In this version, one considers the following characteris-
tics: (1) a discrete set of IV elements located on the sites
of a d-dimensional lattice; (2) a probability distribution
for the nominal lifetimes of individual elements; and (3)
a load transfer rule, which determines how the load car-
ried by a failed element is to be distributed among the
surviving elements in the set.

As stated in characteristic 2, the nominal lifetimes, ¢,
of the individual elements supporting an initial stress o;,
equal for all j, are taken from a probability distribution
of the type

nj=1-—e kb i=1,2,...,N, (4)
where n; are random numbers (0 < n; < 1) and k(o)
is the so-called hazard rate or breaking rule. The most
accepted hazard rate is of the form

k(o) = vo (Z—O>p (5)
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vy and og represent a hazard rate of reference and a
stress of reference, respectively, and p is an exponent
in the range 2 < p < 50. This function has been used
to fit experimental results of time to failure on vari-
ous materials [Coleman, 1957, Phoeniz, 1977 |. Be-
sides, Phoeniz and Tierney [1983] derived it from a ki-
netic theory of thermally activated atomic bond rupture
[Zhurkov, 1965] and showed that in many circumstances
it is a better approximation than the exponential break-
ing rule, k(0) = aexp(Bo), also used in modeling time-
dependent fracture [Coleman, 1957).

Equation (5) has the same form as the Charles power
law to describe stress corrosion induced subcritical crack
growth in geological materials [Atkinson, 1984):

v =voexp(—H/RT)K}, (6)

where v is the crack velocity, H is the activation energy,
R is the gas constant, T is the absolute temperature,
K7 is the stress intensity factor for mode I fracture, and
vo and n are constants. Sometimes, n is known as the
stress corrosion index. Nominal values at room tem-
perature and in wet rock are [Atkinson and Meredith,
1987]: 15-40 for quartz and quartz rocks; 10-30 for cal-
cite rocks; 30-70 for granitic rocks; and 25-50 for gabbro
and basalt. If we assume constant temperature, (6) can
be simplified to

v=AK}, (7)
which is identical to (5) if we substitute & by K and
identify the breaking rate expressed by (5) with the
crack opening velocity expressed by (7).

In dynamic FBMs, once elements begin to fail be-
cause of fatigue and their stress is transferred according
to the assumed rule, the stresses among the surviving
elements are no longer equal and the stress history of
an individual element becomes complicated by the suc-
cessive step-like transfers coming from failing elements.
The effect of the increase in stress for a particular ele-
ment j is the reduction of its lifetime from the initially
assigned t; to a T} defined by

Notice that in the case of independent elements (i.e.,
no stress transfer), o;(t) = o; V5 and hence the bun-
dle would break as a succession of individual failures
at the times t; assigned at the beginning. When, on
the contrary, stress redistribution between elements is
assumed, the temporal series of individual failures ac-
tually occurs at the times 7} dictated by (8).

Note that in these models the total stress acting on
the system is conserved until the failure of the last ele-
ment; and for the reasons explained above, the last el-
ement, i.e., that with the longest T}, does not coincide,
in general, with that with the longest ¢;. A detailed ex-
planation of how to perform a Monte Carlo simulation

(8)
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using this model is given by Newman et al. [1995], to
which the reader is referred to for details.

The dynamic FBM can also be calculated using a
probabilistic approach. This approach was introduced
by us in the work by Gdmez et al. [1998]. From this
perspective, one starts with N elements loaded with
an initial common stress equal to ¢;. The mean time
interval, 4, for one element to break by fatigue is

1
b= —x——- (9)
Zj:l k(o)
Supposing that vy =1 and o9 = 1 in (5), we have
1
0 = ——— (10)
N b
Zj:l ‘7;

In the first step, o; = o0; Vj and hence § = 1/No?.
This will change with time because of stress transfers.
At any instant of the process of breaking, § of (10) rep-
resents the mean time for the next individual failure.
The identification of which element breaks after one ¢
is calculated by deciding that the probability that pre-
cisely element k be the affected one is given by

(11)

The reader will note that from the probabilistic per-
spective, one does not consider weak elements or strong
elements: Here all elements are equal but, in general,
with a different o;. The succession of individual break-
ings proceeds by chance with the probabilities dictated
by (11) until the total collapse of the system. Gdémez et
al. [1998] showed that the probabilistic approach rep-
resents a way of partially smoothing the fluctuations
inherent to these stochastic models of fracture.

Pk = 050

4. Model

The model used in this paper to describe aftershock
sequences is based on the same physical mechanism as
the model recently introduced by Lee [1999] and Lee
and Sornette [2000], although the ingredients of the cel-
lular automaton, the way of running the model and the
type of results are different. Our model is inspired by
dynamic FBMs but with several substantive differences.
As stated above, in dynamic FBMs, N uniformly loaded
elements break by fatigue one after one, in a total stress
conserving process until the last individual failure. The
sequence always occurs in a finite time accelerated pro-
cess.

Trying to describe a sequence of aftershocks, which
is a clearly decelerated process of relaxation, we will
modify three things.

1. Stress is lost in the breaking process in two ways:
(1) by stress transfers out of the system through the bor-
ders, and (2) by considering a dissipative effect during
each transfer: When an element fails bearing a stress o,
the fraction (1 — 7)o is removed from the system. Thus
the constant 7 will represent the degree of conservation.

A MODEL FOR COMPLEX AFTERSHOCK SEQUENCES

2. In FBMs, when an element fails, it transfers its
load and then remains inactive. In this model, on the
contrary, when an element fails, it transfers its load (ex-
cept the dissipated fraction) to its nearest neighbors,
but then it is automatically regenerated and able to re-
ceive stress again and actively participate in the time
evolution of the set. After its regeneration, an element
has zero load before receiving any load. This assump-
tion is justified because time intervals between individ-
ual failures are much longer than the time of actual
breaking of an asperity, and hence in an interevent in-
terval a just failed asperity has enough time to reheal.

3. The third modification to standard FBMs is re-
lated to the initial stress distribution in the system.
While in FBMs it is usually assumed that the initial
load per element is a constant o;, here, trying to sim-
ulate the disordered state existing in the fault after a
main shock, we will take the initial o; from a uniform
probability distribution (0 < 0; < 1;1 < j < N). In
the actual running of the model we will adhere to the
probabilistic approach explained above for the FBM,
and so we will deal with the ds as defined in (10) and
the probabilities of (11).

Besides the three general modifications 1, 2, and 3 in-
troduced with respect to FBMs, in order to reinforce the
appearance of sudden accelerations, which constitute
the genuine phenomenology of the complex aftershocks
sequences, we will add two more rules for running our
model.

When a breaking is going to occur in a context such
that all the elements have o < 1, we say that this is
a normal event, the § is calculated using (10) and the
broken element is pointed out by using (11). On the
contrary, if a breaking is going to occur with one or
several elements with ¢ > 1, we call it an avalanche
step.

4. For each avalanche step, the ¢ is calculated using,
as usual, (10) but the element that breaks is that one
whose o; surpasses 1. If there are several elements with
o > 1, the element that fails is that with the maximum
value of ;.

5. The avalanche ends when all the o; of the set
become lower than 1. During an avalanche, which in
general involves several §, all the elements that have
surpassed at any step of the avalanche the condition
o > 1, remain inactive with ¢ = 0 until the end of the
avalanche.

These two additional rules 4 and 5 are introduced
in order to increase the local stress accumulations. The
high stress concentrations occurring in avalanche events
lead to very short § and in very short § it is reasonable
to assume that there is not enough time for the healing
process.

As a résumé of the above paragraphs, we will recall
that in the process of evolution of the system there are
normal events and avalanche events. The former (nor-
mal) refers to the failure of one element when no ele-
ment in the system has ¢ > 1. The latter (avalanche
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steps) corresponds to the failure of one element with
o > 1. Equation (10) is always used for the calcula-
tion of the time intervals. The § of the avalanche steps
are much shorter because of the large stress concentra-
tions induced by rules 4 and 5 and the magnitude of
the exponent p. With these rules it is obvious that the
avalanches become extinct with time because as the to-
tal stress in the system declines, it is more difficult to
locally accumulate load to surpass unity. The model of
Lee [1999] and Lee and Sornette [2000] cannot describe
complex aftershock sequences because in their model
the avalanches are instantaneous in time, so that the
decay rate would have singularities at the time of an
avalanche. On the contrary, our avalanches are not in-
stantaneous since they are formed by several steps with
their corresponding ds, that is, they occur in a finite
time interval.

We have performed our simulations in a two-dimens-
ional square lattice with 50x50 sites with p = 30 and
7w = 0.7. Each site represents the emplacement of one
element or asperity. The load transfer rule assumed is
a local load-sharing (LLS) rule: a failing element trans-
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fers its load to its nearest four neighbors located in the
north, south, east, and west. If the element is located at
the borders of the square lattice, this isotropic transfer
provokes the corresponding stress leakage.

In FBMs, in which broken elements remain inactive,
an LLS rule can lead to an uncertain situation when
a failing element lacks active neighbors able to receive
the stress transfer. In this model, though, this does not
occur because any element, at any time, is active to
receive stress. The only possible exceptional situation
could come from the application of rule 5 in avalanches.
Then the load of the failing element is transferred only
to the existing active nearest neighbors. In this ex-
tremely rare case (we have not met such a situation
in our simulations) of having the four nearest neigh-
bors already broken, the load is removed from the lat-
tice. This is just one possibility among various choices.
Lomnitz-Adler et al. [1992] explored in detail three of
these possibilities for a cellular automaton with rules
similar to those of the LLS static fiber bundle model,
and the reader is referred to their paper for details. In
our model, deciding among one of the three alternative
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Figure 4. Rate of aftershocks dN/dt as a function of dimensionless time for a dissipation of
7 = 0.7 and a Weibull index of p = 30. The spikes that decorate the general ¢~ trend correspond

to sudden accelerations in event rate (avalanches). The diagonal straight line has a slope of —1.
This curve was obtained by numerically differentiating the curve in Figure 5
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scenarios is not important due to the extreme rarity of
such events.

The running of the program proceeds as follows. At
t = 0 all the elements on the lattice are initialized by
loading them with a random initial stress o; taken from
a uniform probability distribution 0 < ¢; < 1. Then we
calculate the § corresponding to the first failure by us-
ing (10). The choice of the element that actually breaks
is done by using (11), and a random number between
0 and 1 to materialize the choice. The chosen element
fails and 7 times its stress is transferred to its nearest
neighbors and the (1 — 7) fraction disappears. Now we
analyze the distribution of stress in the board; if all the
o; are lower than one, the process of calculating the next
failure is identical to the first. If, on the contrary, one
(or several) o; > 1, then we calculate the corresponding
value of ¢ from (10) and the failure is assigned to the
element with the biggest o; > 1. During the period of
an avalanche, rule 5 is applied to favor the stress con-
centration. Thus the series of breakings and transfers,
involving normal events or avalanches, proceeds until
a prescribed minimum value for the total stress on the
system is reached, otherwise, there will be an infinite
number of aftershocks.

In our model, owing to the dissipation, the total stress
in the system, S = > ;05 systematically decreases. If
the value p = 1 were considered, then from (10) the suc-
cessive s would necessarily be longer and longer. How-
ever, p is bigger than one, and this is the reason why
one can have a step down in S and find a shorter value
of 4. This is the key point to understand our model
and other models based on subcritical crack growth. In
the general trend of S reduction and hence temporal
deceleration, the stress transfers in the system provoke
local inhomogeneities in ¢, and due to the high values of
p, this leads to temporal accelerations. These acceler-
ations are embedded in the general trend of dynamical
relaxation.

5. Results and Conclusions

We have carried out numerical simulations which
show the fulfillment of Omori’s law and reproduce the
features already commented on, that is, a cumulative
plot with sudden variations in the number of events
(accelerations). We show here the results for a two-
dimensional system of 50 x 50 elements located on a
square lattice, with p equal to 30 and a conservation
level of 7 = 0.7. Other simulations have also been per-
formed varying the size of the system, the value of p,
and the conservation level w. We have also explored
a variant of rule 5 in which, in avalanches, all the el-
ements with ¢ > 1 break simultaneously in the same
5. We have found that the results are indeed very close
to those exposed here with equal qualitative behavior.
Nevertheless, it should be noted that although the re-
sults are robust over a large range of parameters, dif-
ferent characteristics arise for extreme values of p and
.

A MODEL FOR COMPLEX AFTERSHOCK SEQUENCES

Figure 4 shows the rate of aftershocks dN/dt as a
function of time. Time is represented in dimensionless
units, and it is the sum of the successive ds. The straight
line has a slope of —1 for comparison. Thus the 1/t de-
cay is confirmed and is in full agreement with Omori’s
law for real aftershock sequences. The depicted power
law is very robust over a wide range of the parameters
that characterize the model. The most critical parame-
ter is the conservation level because for values of 7 close
to unity the system does not dissipate enough to avoid
its complete failure. Besides, for large dissipation m < 1
the power law extends only to a few decades, and the
number of decades decreases as 7 decreases. Anyhow,
in all cases the exponent of the power law decay is very
close to unity. The major vertical spikes of Figure 4 cor-
respond to avalanche-type events that disappear with
time. The smaller fluctuations for large times reflect
the intrinsic probabilistic nature of the model and are
not related at all to the appearance of avalanches. This
is clearly seen in Figure 5, where we have plotted the
cumulative number of aftershocks versus time instead
of the differential plot of Figure 4. As can be observed
in Figure 5, sudden accelerations appear in the first
stages of rupture. This behavior closely resembles that
previously reported in section 2 for the eastern Pyre-
nees aftershock sequence (see Figure 1). The Omori’s
law maximum likelihood fit to the model results is also
included in Figure 5. The estimated parameter values
are p=1.01+0.06, K =210+29, and c=1.34+0.2.

In our model the changes in aftershock rate are re-
lated to the readjustments of local stresses when events
take place. With time, local concentrations of stress
appear in the system, and there is a high probability
of finding a region in which the load supported by the
elements is close to the threshold value ¢ = 1. That
is, there is a large heterogeneous stress state in which
one failure will trigger an avalanche. During the evo-

200 | -

100 | -

2 4 6 8 10
time

Figure 5. Accumulated number of aftershocks N as a
function of dimensionless time for a dissipation of 7 =
0.7 and a Weibull index of p = 30. Note the sudden
increases in event rate (step-like jumps) superimposed
to the general Omori law trend. The continuous line
is a maximum likelihood fit to the 2-10 range, and the
corresponding p value is p = 1.01 £ 0.06.
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Figure 6. (a) Leading aftershock sequence for a sim-
ulation with 7 = 0.7 and p = 30. (b) Model cascades.
The first event in each cascade is a leading aftershock.
Note that the cascades can be also approximated by
straight lines, as was the case with the cascades in the

actual aftershock sequence Figure 2.

lution of the avalanche the local accumulation of load
increases. This fact, together with the high value of p,
provokes the 0 corresponding to these steps of rupture
to be considerably reduced. As a result, we observe
the step-like change in the cumulative number of events
(contrast Figure 5 with Figure 6). For large times the
avalanches eventually disappear since in a nonconserva-
tive model the total load in the system systematically
decreases and hence it would be unlikely to accumulate
stress in local regions as to surpass the value o = 1.
Of interest is the further investigation of the acceler-
ation events in order to get an additional insight about
the observed aftershock sequences. One simple way to
do that was explained in section 2. It consists of de-
composing the original series of aftershocks in leading
events and cascades depending on whether a relaxation
law is accomplished or not. We have followed the same
procedure with the synthetic data. The series of cas-
cades obtained in such a way is shown in Figure 6.
Figure 6a shows the series after removing all the cas-
cades, i.e., leaving only leading aftershocks, and in Fig-
ure 6b we plot the cascades, in which the first event of
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each cascade is a leading aftershock. The decomposi-
tion obtained from the model is indeed indistinguish-
able from that corresponding to the real series of events
(Figure 2). Two characteristics of the series of cascades
are again relevant: one, the elapsed time between suc-
cessive leading events is larger than the preceding one
in complete agreement with the supposition of a relax-
ation process, and second, the series of cascades can be
well approximated by almost straight segments whose
slopes decrease as time passes. This later characteris-
tic could be used to quantify the observed jumps in the
cumulative plot of aftershocks and to explain why they
are present mainly in the first stages of rupture. The
larger jumps are related to the occurrence of avalanches,
which are caused by local accumulations of stress; so
it is expected that when avalanches damp out due to
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Figure 7. (a) Slopes of the model cascades versus di-
mensionless time of the leading event that initiates each
cascade on log-log scale. Only the first part of the model
cascades is shown in this plot to facilitate comparison
with Figure 3. The local power law exponent in this
partis v = 0.94. (b) Log-log representation of the slopes
versus time for the long-time tail of the simulation. As
for the eastern Pyrenees series of aftershocks the slopes

fit very well a power law, in this case with an exponent
of ~ 1.08.
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dissipation, changes in the rate of occurrence are more
spaced in time and cascades consist of fewer events. Of
course, there will be fluctuations about the power law
trend even in the case where avalanches have deceased.
Thus we expect slope values gradually closer to zero as
time tends to infinity. This is clearly appreciated in
Figure 7, where we have represented in a log-log plot
the slopes of the cascades versus the occurrence time
of the leading event that initiate each cascade. Figure
7a shows only the first part of the time sequence to fa-
cilitate comparison with Figure 3. As for the observed
series of aftershocks, the slopes fit a power law with
an exponent of about v = 0.94 for the fist part of the
time series and v = 1.08 for the long-tail end Figure 7b.
Actually, the long-tail exponent v ranges between 1.00
and 1.08 depending on the conservation level 7 and the
value of p. This appears to be a smooth dependence.
Thus the qualitative behavior is again captured. The
discrepancy between the slopes (v = 0.7 for the Pyre-
nees sequence) is not surprising due to the simplicity of
the model as compared with the inherent complexity of
the real phenomenon we want to simulate. The reason
for this particular behavior, that is, why the slopes fol-
low a power law and no other law is unclear to us up to
now.

Future efforts will be devoted to the understanding of
other dynamical characteristics of the model and their
fine dependence on p and 7 by studying another com-
plex series of aftershocks. We also plan to perform a
detailed analysis of the spatial structure of the sequence
of events coming from our model.
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