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Abstract
A time-dependent global fibre-bundle model of fracture with continuous
damage was recently formulated in terms of an autonomous differential system
and numerically solved by applying a discrete probabilistic method. In this
paper we provide a method to obtain the exact numerical solution for this
problem. It is based on the introduction of successive integrating parameters
which permits a robust inversion of the numerical integrations appearing in the
problem.

PACS numbers: 46.50.+a, 02.60.−x, 62.20.Fe, 62.20.Mk

1. Introduction

Fracture in disordered media has for many years attracted much scientific and industrial
interest [1–7]. An important class of models of material failure is the fibre-bundle models
(FBMs) which have been extensively studied during the past decades [7–12]. These models
consist of a set of parallel fibres having statistically distributed strengths. The sample is
loaded parallel to the fibre direction, and a fibre fails if the load acting on it exceeds a
strength threshold value. When a fibre fails, its load is transferred to other surviving fibres
in the bundle according to a specific transfer rule. Among the possible options of load
transfer, one simplification that makes the problem analytically tractable is the assumption
of equal load sharing (ELS), or global load transfer, which means that after each fibre
breaks, its stress is equally distributed among the intact fibres. Until very recently, the
failure rule applied in standard FBM was discontinuous and irreversible, i.e., when the local
load exceeds the failure threshold of a fibre, the fibre is removed from the calculation and
is never restored. Recently, a novel continuous damage law was incorporated into these
models [13, 14]. Thus, when the strength threshold of a fibre is exceeded, it yields, and
the elastic modulus of the fibre is reduced by a factor a(0 < a < 1). Multiple yields
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of a given fibre are allowed, up to a maximum of n yielding events per fibre, where n
is a small integer number which can be different for each fibre. This generalization of
the standard FBM is suitable to describe a variety of elasto-plastic constitutive behaviours
[15–17].

The standard FBMs simulate the failure of a system at the microscopic level. Each fibre
breakage can be mapped onto a new microcrack (with a typical size of a few µm), or onto
the extension of a previous microcrack. On the other hand, the continuous damage FBMs
simulate failure at a mesoscopic level. Now, each fibre in the model can be viewed as a small
volume of the material. The term ‘small’ depends on the size of the heterogeneities, but
can be of the order of one millimetre for rocks. In each of these representative elementary
volumes (REVs) in which the total volume can be divided, there are many potential sites for
crack nucleation and growth, and the addition of each new crack will change continuously the
elastic properties of the REV until its final failure when the accumulated damage surpasses a
threshold. This threshold is identified in our model with the parameter n. Another important
parameter in the model, the stiffness reduction factor a, controls the amount of weakening
that each yielding event introduces in an REV. The value a = 1 means no weakening, so that
the elastic modulus of the REV remains the same irrespective of the number of yieldings,
a rather unphysical situation. At the other extreme, the value a = 0 means complete
weakening after the first yield event. Thus, 0 < a < 1 is the physically meaningful
range for the stiffness reduction factor. In all the results given in the following sections,
we have assumed that the initial elastic module of all the REVs is unity and that n is the
same for all the fibres. The randomness is incorporated in the lifetimes of REVs not in the
elastic moduli.

FBMs come in two settings, static and time-dependent or dynamic, and both of them
have been applied to the standard and continuous damage settings [13, 14, 18, 19]. The
static version of FBM simulates the failure of materials by quasistatic loading. Drawing
an analogy with what is carried out in a deformation experiment in the laboratory: a static
FBM simulates a uniaxial or triaxial, compressive or tensile, deformation test where the
duration of the test is measured in seconds or minutes. In these models, the stress on each
fibre is the independent variable and the strength of each element is the distributed random
variable. On the other hand, the dynamic FBM simulates failure by creep rupture, static
fatigue, or delayed rupture, i.e., a (usually) constant load is imposed on the system and the
elements break because of fatigue after a period of time. The time elapsed until the system
collapses is the lifetime of the bundle. Time acts as an independent variable and the initial
lifetime of each element for a prescribed initial stress in the independent identically distributed
random quantity. Again, we can draw a clear analogy with a particular type of deformation
experiments in the laboratory, the so-called creep experiments, where a heterogeneous material
(rock, concrete, composite, ceramic alloy) is subjected to a constant or cyclic load, breaking
after a period of time. The duration of these tests depends on the load imposed on the material
and, more exactly, on the load compared to the short-term strength of the material (i.e., the
load that causes the ‘instantaneous’ failure of the same material in a fast uniaxial experiment).
This load is usually expressed as a percentage of the short-term strength and the duration
of the experiments is critically dependent on it. For rock, a sample will typically fail by
creep after a few hours when subjected to a load 80% of the short-term strength, after a
few weeks for a load 70% of the short-term strength and after a few months or even years
for lower working loads. The mechanism behind creep failure is subcritical crack growth,
i.e., the slow extension of microcracks with lengths smaller than the critical crack length for
instantaneous failure. Subcritical crack growth is due to a variety of processes operating
near crack tips, the most important of them being stress corrosion, a chemical interaction
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between the crack tip and the environmental species, notably water, filling the microcracks
that provoke the hydrolytic weakening of the atomic bonds of the material in the crack
tip, where stress concentrations are highest. The crack propagation velocity is extremely
sensitive to the applied load, suggesting exponential or power-law velocity functions with
large coefficients or exponents.

Indeed, in the dynamic FBMs the most widely used breaking rate function is the power
law [10–12], in which elements break at a rate proportional to a power of their stress σρ , where
the exponent ρ is an integer known as the stress corrosion exponent for obvious reasons. This
type of breaking rate will be assumed here and ρ is another parameter of the model.

Our generalization of the dynamic global FBM [18] was restricted to the global transfer
modality, and there we assumed that the size of the bundle, N, was very large. This enabled
us to formulate the evolution of the system in terms of continuous differential equations. This
type of equation, similar to those appearing in radioactivity, was first used by Coleman [8], and
later in [11]. In [18] we supposed an ELS bundle formed by N fibres which breaks because of
stress corrosion under the action of an external constant load F = Nσ0 = Y , with σ0 = 1. The
breaking rate of the fibres, �, is assumed to be of the power-law type (� = σρ ) f denotes the
strain of the bundle and Y = 1 represents the initial stiffness of the individual fibres. The original
dynamic FBM was generalized by allowing one fibre to fail more than once, and thus we define
the integer n as the maximum value of failures allowed per fibre. Besides, as mentioned before,
the parameter a(<1) represents the factor of reduction in the stiffness of the fibres when they
fail. As up to n partial yielding events are permitted per fibre, at any one time the population of
fibres will be sorted in n + 2 lists. Thus N = N0 +N1 + · · · +Nn +N ′, where Ni (i = 0, . . . , n)

denotes the number of elements that have failed i times. N ′ denotes the number of elements that
have failed n + 1 times and therefore are inactive (i.e., they no longer support any load anymore).
At t = 0, the N elements of the bundle form the list 0, N0 = N, and at t = T ,N ′ = N . The
specification, at a given time t, of the value of Ni, for i = 0, 1, . . . , n, provides the state of
the system. In our continuous formulation the Ni are real positive numbers lower than N.

As the external load F = N is supported by the present active fibres, we have N =
f

(
N0 + aN1 + a2N2 + · · · + anNn

)
, and hence

f = N
/ (

N0 + aN1 + a2N2 + · · · + anNn

)
. (1.1)

The time evolution equations are [18]:
dN0

dt
= f ρ(−N0)

dN1

dt
= f ρ(N0 − κN1)

dN2

dt
= f ρκ(N1 − κN2) (1.2)

...

dNn

dt
= f ρκn−1(Nn−1 − κNn)

where the ubiquitous constant factor κ represents κ = aρ . This is an autonomous differential
system. Its solution must fulfill the initial condition

N0(t = 0) = N

Nj(t = 0) = 0 j �= 0. (1.3)

An alternative way of introducing a time-dependent rheological response in FBM is that
of Cruz-Hidalgo et al [19]. These authors incorporate a viscoelastic constitutive behaviour in
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their model through the mapping of each fibre to a Kelvin–Voigt element. They express the
time evolution of the strain in each fibre by way of a differential equation. In their model,
fibres break irreversibly when they surpass a statistically distributed strain threshold, whereas
in our model multiple failures (yields) of a fibre are allowed, the variable which is statistically
distributed is the lifetime of the fibres, and there is no explicit threshold dynamics. This
different formulation implies that we can formulate the evolution of the system in terms of
coupled differential equations, while the authors in [19] have necessarily to use Monte Carlo
simulations due to the absence of a global differential equation for the system.

In [18], equations (1.2) were solved by applying a numerical probabilistic method. The
purpose of this paper is to present an exact numerical method that solves equations (1.2),
fulfilling the initial conditions (1.3). This method is explained in section 2. In section 3 we
present a discussion of the method and of the results. The reader will find a longer discussion
of the physical results in [18]. This paper concentrates on the solution method.

2. Exact numerical method

To simplify the notation, we first normalize the variables

xi = Ni

N
i = 0, 1, . . . , n. (2.1)

In terms of the xi , the differential system to be solved is

ẋ0 = −f ρx0 ẋj = f ρκj−1(xj−1 − κxj )
(2.2)

x0(0) = 1 xj (0) = 0 j = 1, 2, . . . , n.

A dot on a variable means derivation with respect to time, and f and κ are the same objects as
in section 1:

1/f =
n∑

i=0

aixi . (2.3)

The system (2.2) admits a reduction of degrees of freedom by eliminating t from the last
n equations and by integrating with respect to x0:

ẋ0 = −f ρx0
dxj

dx0
= κj−1(κxj − xj−1)

x0
. (2.4)

From equation (2.4) we obtain

xi =
i∑

l=0

b
(i)
l xκl

0 , i = 0, 1, . . . , n (2.5)

with

b
(0)

0 = 1 b
(j)

l = b
(j−1)

l κ(j−1)

κj − κl

(2.6)

b
(j)

j = −
j−1∑
l=0

b
(j)

l j = 1, 2, . . . , n.

In consequence,

f = 1∑n
i=0 aixi

= 1∑n
i=0 αix

κi

0

=: f0(x0) αi =
n∑

l=i

albi
l . (2.7)
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Then, the first equation in (2.4) provides the relation x0 versus t

t =
∫ 1

x0

dx0

[f0(x0)]
ρ x0

=
∫ 1

x0

(∑n
i=0 αix

κi

0

)ρ

x0
dx0 (2.8)

which, in principle, solves the problem because it relates t to x0 and hence to any other xj .
However, the integral (2.8) is, in general, improper for x0 → 0 because the integrand is
O(x

ρκn−1
0 ) and therefore the numerical relation t versus x0 is problematic. Specifically:

(a) If ρκn − 1 � 0 this integral is proper,
(b) if ρκn − 1 < 0 the integral is improper.

Due to the fact that the convergence occurs iff ρκn − 1 > −1, equation (2.8) is always
convergent, because in our model of fracture ρκn > 0.

Let ε ∈ (0, 1); due to the fact that x0 decays from 1 to 0, there exists a time value t0 > 0
such that x0(t0) = ε. If (2.8) is improper, we perform the following change of parameter:
x0 ≡ y0 → y1, such that

ẋ0 = −f ρx0 ẏ1 = −κf ρy1
(2.9)

ẋj = f ρκj−1[xj−1 − κxj ] j = 1, 2, . . . , n

with x0(t0) = ε, y1(t0) = 1, and t > t0. From here

dx0

dy1
= κx0

y1
⇒ x0 = c1y

1/κ

1 c1 = (x0(t0)) = ε. (2.10)

Hence

xj =
j∑

l=0

b
(j)

l

(
εy

1/κ

1

)κl

=
j∑

l=0

β
(j,1)

l yκl−1

1 (2.11)

f =: f1(y1) = 1∑n
i=0 αi

∑i
l=0 β

(i,1)
l yκl−1

1

= 1∑n
i=0 α

(1)
i yκi−1

1

(2.12)

with β
(i,1)
l = b

(i)
l εκl

, α
(1)
i = ∑n

l=i αlβ
(i,1)
i (i = 0, 1, . . . , n).

In these circumstances (2.11) and the equation

t − t0 =
∫ 1

y1

dy1

(f1(y1))
ρ y1

=
∫ 1

y1

(∑n
i=0 α

(1)
i yκi−1

1

)ρ

y1
dy1 (2.13)

describe t, x0, . . . , xn in terms of the y1 parameter, for t � t0.

As the integrand of (2.13) is O
(
y

ρκn−1−1
1

)
, then

(a) If ρκn−1 − 1 � 0 then (2.13) is a proper integral,
(b) if ρκn−1 − 1 < 0 then (2.13) is an improper integral, but (2.13) is always convergent.

Now, as y1 decays to zero, there exists a time instant t1 > t0 such that y1(t1) = ε. And by
considering the change of parameter y1 → y2 given by the conditions

ẋ0 = −f ρx0 ẏ1 = −κf ρy1 ẏ2 = −κ2f ρy2
(2.14)

ẋj = f ρκj−1
[
xj−1 − κxj

]
j = 1, 2, . . . , n

with y2(t2) = ε, y2(t1) = 1, and t > t1, we have

dy1

dy2
= κy1

y2
⇒ y1 = c2y

1/κ

2 c2 = (y1(t1)) = ε (2.15)
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Table 1. General terms in the procedure.

Time interval Condition Parameter

[0, t0] y0 = x0

[t0, t1] y0(t0) = ε y1 such that ẏ1 = −κf ρy1; y1(t0) = 1
[t1, t2] y1(t1) = ε y2 such that ẏ2 = −κ2f ρy2; y2(t1) = 1

.

.

.
.
.
.

.

.

.

[tn−1, tn] yn−1(tn−1) = ε yn such that ẏn = −κnf ρyn; yn(tn−1) = 1

and hence

xj =
j∑

l=0

b
(j,1)

l

(
εy

1/κ

2

)κl−1

=
j∑

l=0

β
(j,2)

l yκl−2

2 (2.16)

f =: f2(y2) = 1∑n
i=0 α

(2)
i yκi−2

2

(2.17)

with identical meaning as before forβ(j,2)

l and α
(2)
j . Then, (2.16) and

t − t1 =
∫ 1

y2

dy2

(f2(y2))
ρ y2

=
∫ 1

y2

(∑n
i=0 α

(2)
i yκi−2

2

)ρ

y2
dy2 (2.18)

describe t, x0, . . . , xn in terms of y2, for t � t1. Besides, as the integrand of (2.18) is

O(y
ρκn−2−1
2 ), then

(a) if ρκn−2 − 1 � 0 then (2.18) is a proper integral,
(b) if ρκn−2 − 1 < 0 then (2.18) is an improper integral, but always convergent.

The process followed so far is generalized in the way expressed in table 1 where in the
end

f =: fn(yn) = 1∑n
i=0 α

(n)
i yκi−n

n

(2.19)

and therefore

t − tn−1 =
∫ 1

yn

dyn

(fn(yn))
ρ yn

=
∫ 1

yn

(∑n
i=0 α

(n)

i yκi−n

n

)ρ

yn

dyn (2.20)

whose integrand is O(y
ρ−1
n ); that is, integral (2.20) is always proper.

3. Results and conclusions

The simple formalism written in section 2 can be expressed, for example, in a brief
program of MATHEMATICA and its results graphically appreciated. We omit here the
program but it can be provided on request. By fixing the constants at the following values:
n = 3, a = 0.6, ρ = 2 and ε = 0.1, in figure 1 the value of the working parameters yi are
represented versus time. Note that their range of definition is from 1 to ε, except for y3 which
ends at 0 for t3 = T , i.e., the actual lifetime of the bundle.

In figure 2 we again show the evolution of the working parameters and also the evolution
of the four lists xi of elements in the problem.
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Figure 1. Time evolution of the four integrating parameters y0, y1, y2 and y3 for a system with
n = 3, a = 0.6 and ρ = 2. Note that their range of definition is from 1 to ε, except for y3, which
goes from 1 to 0.

Figure 2. Time evolution for the four integrating parameters and the four variables x0 , x1, x2 and x3
for a system with the same parameters as for figure 1.

The strategy developed in section 2 can be summarized in a few sentences. First, let us
observe figure 2 to appreciate the time evolution of the different lists: while x0 monotonously
declines from 1 at t = 0 to 0 at t = T , the lists xj , j = 1, 2, 3 start from 0 at t = 0, rise to a
maximum and then monotonously decline to 0 at t = T (strictly speaking, all the lists vanish
at the same time). The last list j = n is special in the sense that it is the only one that tends to
0 with an infinite slope when t tends to T.

The analytical resolution of equation (2.2) is impossible because of the nonlinearity
introduced by the f ρ factors. This source of complexity is partly overcome after having
recognized the partial reduction of degrees of freedom expressed in (2.4). This partial reduction
leads to the relation between xj , j = 1, 2, . . . , n and x0, hence from (2.8) one has solved in
principle the time evolution of x0, and of the rest of xj . But, in (2.8) one also recognizes
that this integral is improper. This is the real problem we face for the numerical inversion
t ↔ x0 in the region where x0 is very small. In intuitive terms, this is shown in figure 2
because beyond a certain time, x0 is no longer significant and its relation with t becomes
‘delicate’. Therefore, we have used x0 = y0 as a good integration parameter only up to t = t0.
Beyond this point we successively introduced other ‘artificial parameters’ y1, y2, . . . , yn which
in the corresponding time interval play the role performed by x0 from 0 to t0. Using these



9990 L Moral et al

parameters, we are able to robustly relate all the variables xi to t in the whole interval
from 0 to T.

At the end of the process, the last integral is always proper, which allows a robust numerical
inversion in the vicinity of t = T . Intuitively, this is clear in figure 2 where we appreciate the
abrupt fall-off of x3.

In the comments written in section 2 after equations (2.8), (2.13), (2.18) and (2.20)

regarding the nature of those integrands, we noted that in general they behave as O(y
ρκn−i−1
i ).

This implies that the condition

ρκn−i − 1 � 0 (3.1)

tells us the value of i = ic,

ic � n − ln ρ

|ln κ | (3.2)

such that, for i � ic, the respective integral is proper and there is no need to introduce more
artificial integrating parameters.

The reader should note that the ε introduced in the method is not a limiting factor of
precision, but merely sets the temporal ranges of the various integrating parameters yi . In our
procedure, the only source of inaccuracy is the precision of MATHEMATICA, used for the
numerical inversion of the integrals.

As a final conclusion we would say that the exact numerical method presented in this
paper to solve this fibre-bundle problem does not predict any new qualitative result with
respect to what was obtained using the approximate method of [18]. Therefore, no new
physical conclusions can be drawn from here.

The use of this exact strategy in other scientific problems that are cast as an autonomous
differential system will be considered in the next future. In this respect, clear candidates are
some ecological problems and models of infection spreading [20, 21].
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