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ABSTRACT. We numerically investigate the existence of a threshold for epi-
demic outbreaks in a class of scale-free networks characterized by a parametri-
cal dependence of the scaling exponent, influencing the convergence of fluctua-
tions in the degree distribution. In finite-size networks, finite thresholds for the
spreading of an epidemic are always found. However, both the thresholds and
the behavior of the epidemic prevalence are quite different with respect to the
type of network considered and the system size. We also discuss agreements
and differences with some analytical claims previously reported.

1. Introduction. Complex networks have been widely used to describe many rele-
vant situations in social, biological, and communication sciences [1, 2, 3]. These are
objects where the nodes represent individuals or organizations, whereas the links
model the interaction among them. Relevant examples in which a network approach
has contributed to understanding important aspects of the global behavior are the
Internet [4], the World Wide Web [5], metabolic networks [6], food webs, protein
and neural networks [1], and human sexual contacts [7]. Many complex networks
can be used in epidemiology to model the spread of epidemic diseases in population
of individuals. A key issue is the characterization of the threshold for epidemic
outbreak processes, in view of assessing strategies for vaccination campaigns to be
efficient.

Scale-free networks (SFNs) are those complex networks where the probability
that a given node has k connections follows a power-law distribution P (k) ~ k~7.
The through characterization of SFNs have allowed investigators to bound the
exponent v between 2 and 3.5 [1]. An immediate consequence is that the fluctuation
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FIGURE 1. Degree distribution P(k) (in logarithmic scale) vs. k
(in logarithmic scale) ([a],[c]) and 7 coefficient vs. B ([b], [d]).
Here (a) and (b) refer to SFN, and (c) and (d) to SSFN. In (a)
and (c), triangles correspond to B = 10, squares correspond to
B =5, and circles to B = 0. The dashed and dot-dashed lines are
a schematic drawing of potential scaling laws with v = 3 and v = 4,
respectively.

of connectivities - that is, the second moment of the degree distribution ({(k?))- does
not converge in the thermodynamic limit [3], in many cases of practical relevance,
for which v < 3. Recently, SFNs have been shown to possess very important
peculiar properties, such as the absence of a threshold for percolation processes
[8], as well as a major propensity for robust synchronization among nodes [9].
Furthermore, SFNs have often been used in the past to model the spread of epidemic
diseases in a population of individuals since they properly take into account the
actual topology of many real networks where this kind of process occurs [10, 11, 12,
13, 14, 15, 16, 17, 18, 19, 20, 21]. The key model in such epidemiological studies
is the susceptible-infected-susceptible (SIS) model [22], where each node represents
an individual and each link a connection between two individuals. The nodes here
are in a binary state: ”healthy” or ”infected”. At each time step, a healthy node
becomes infected at a rate v only if it is connected with at least one infected node.
At the same time, infected nodes are cured at a rate § (usually and hereinafter
0 = 1), thus regaining susceptibility.

The numerical and analytical exploration of the epidemic spreading process, and
by extension the percolation one [21, 19], has been a subject of intense research
even when degree-degree correlations are introduced [16, 19, 20]. This is usually
done by taking a continuous limit and making N — oo. However, real networks are
always finite and thus they show an effective epidemic threshold [23]. This point has
not yet received the due attention in network literature, and extensive numerical
simulations on scale-free networks in which epidemic thresholds are reported are
not currently available.
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The main goal of this paper is to fill that gap. To this end, we use a generalization
of the original growing procedure for SFNs, by which the v parameter can be
modulated parametrically and can be made larger than three. Thus, we can control
the convergence of connectivity fluctuations in the thermodynamic limit and also
report on epidemic threshold values for finite scale-free networks by implementing
the SIS model. Furthermore, we study the influence of local network properties,
such as the clustering coefficient and the average shortest path length on the critical
points characterizing epidemic outbreaks.

2. Epidemic thresholds in SFNs. The absence of an epidemic threshold in
scale-free networks was first reported a few years ago in Refs. [10, 11]. The authors
showed theoretically by a dynamical mean-field approximation that in SFNs with
2 < v < 3, the unbounded fluctuations of the connectivity distribution imply
the lack of an epidemic threshold when N — oo. This, in turn, leads to the
conclusion that diseases always persist in such networks even when the spreading
rate becomes very small [10, 11]. In particular, Refs. [10, 11] have shown that the
epidemic threshold is given by A\. = (k)/(k?), thus predicting a vanishing \. for
all SFNs with 2 < v < 3 as the thermodynamic limit is approached. This result
was validated numerically by showing that the survival probability of one infected
node in a SFN has a finite value for large enough sizes of the networks under study,
even for small spreading rates. Furthermore, the same studies showed that this is
not the case for random graph topologies [2], where we have the classic picture of
a finite threshold below which no epidemic outbreak occurs. This was taken as a
consequence of the convergence of fluctuations in the node’s connectivities.

Soon afterward, it was proposed that networks where local properties are strong
(in particular, the so-called structured scale-free networks (SSFNs) where the clus-
tering coefficient is of the order of unity) do show a finite epidemic threshold even
for a diverging second moment of the degree distribution [15]. In this case, the
presence of a finite epidemic threshold was motivated by the high clustering of the
SSEN, which prevents such networks from spreading an infection. However, a later
study argued that the argument was somehow misled because SSFNs do not possess
small-world properties [24], a key property of all known complex networks.

Another interesting contribution to the topic was given in [13]. In this study, the
authors introduced a network model exhibiting scale-free properties that could show
persistent infections at any spreading rate A > 0 for any v > 1. Such an alternative
flexible model is inspired by the principle of evolutionary selection of common large-
scale structure in biological networks. The results were also proved analytically by a
more sophisticated mean-field approximation (where previous results are contained)
that incorporates connectivity matrices between nodes having k and k" degrees [13].

In summary, one may say that having a scale-free degree distribution with a
diverging second moment is a sufficient condition to have a null epidemic threshold
in unstructured networks with either assortative or disassortative mixing [12, 16, 19,
20]. The basic assumption of the dynamical mean-field approach is that all vertices
within a given degree class can be considered statistically equivalent; therefore, the
results do not apply to structured networks in which a distance or time ordering
can be introduced (for instance, when the small-world property is lacking).

Finally, we would like to stress that the studies summarized above are aimed
at a better comprehension of epidemic processes, since they have at least pointed
to new strategies for vaccination campaigns to be efficient. For instance, special
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FIGURE 2. Clustering coefficient C' vs. B ([a] for SFN, [b] for
SSFN) and average path length < £ > vs. the network size N ([c]
for SFN, [d] for SSFN). In (c), the horizontal axis is in logarithmic
scale; circles correspond to B = 0, squares to B = 10, and triangles
correspond to a SSFN with B = 10 and with 10% of randomly
selected rewired links. In (d), circles correspond to B = 0, and
squares to B = 5.

policies for curing mostly the highly connected nodes in SFNs were considered in
[14]. Such a policy can restore a finite epidemic threshold; thus, it would potentially
eradicate a disease. The main result of [14] is that the more biased the policy is
toward the hubs, the larger effect it has in bringing the epidemic threshold above
the spreading rate.

3. Scale-free networks with initial node attractiveness. In this section, we
describe a generalization of the Barabdsi-Albert(BA) formula that allows more
flexibility in the selection of the « coefficient. Two different types of networks
will be used henceforth. The first gives results (i.e., local topological properties)
similar to the original preferential attachment procedure [3], but we can tune the
exponent beyond v = 3. The second model employed has its counterpart in the
deactivating procedure leading to the so-called structured scale-free networks [15].
Unless both SFN and SSFN have similar properties in degree distribution, the
main local topological features, such as the small-world property and the clustering
coefficient, are quite different[24].

3.1. Scale-free networks. We here describe the generalization of the preferential
attachment procedure introduced in [3]. We start with m nodes (hereinafter and
without lack of generality, we fix m = 4) fully connected with each other. Then we
add new nodes to the network. At each time step, a new node is added, its degree
is fixed to be m. The probability P; that such new node may be linked with the
i-th old node is defined as follows:
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k;+ B
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where k; is the degree of the i-th node, and B is a tunable real parameter, represent-
ing the initial attractiveness of each node. This generalization was first proposed
by Dorogovtsev and Mendes [25] as a way for generating scale-free networks with
tunable degree distributions. Our implementation is somewhat different, since we
do not distinguish between incoming and outgoing links. Note that the two proce-
dures are equivalent if we make A = B 4+ m in Dorogovtsev’s formula [25]. Besides,
for B = 0, Equation (1) recovers the original preferential attachment [3], leading
to a degree distribution P(k) ~ k=7 with v ~ 3. Here, we briefly reproduce the
derivation of the dependency of v with B by following the continuum approach
introduced in [3]. We assume k; to be a continuous variable, which changes in time
following

-PL:

Ok;

ot

By taking into account that > (k;(t) + B) = 2mt —m+ Bt, one obtains a solution

of (2) as a function of the initial time ¢; at which every node is introduced. By

further assuming that the ¢; values have a constant probability density (nodes are

added at equal time intervals, thus P(t;) = ;=) the probability that a given
node has a degree k;(t) < k is given by

=mbkP;. (2)

Plki(t) < k] = P (tz- > WM)

(k + B)l/
7 (m+ B)"/*t
- (k + B)!/(t +mq)’ ?)

and the degree distribution can be easily obtained as

P() = o Plku(t) < K

(k+ B)~(/otD, (4)

which asymptotically (¢

P(k)~ A(k+ B)™7, (5)

with A = (2+ B/m)(m + B)?>*5/™ and with a tunable exponent v(B) = 3+ Z.

Equation (5) represents the behavior of the degree distribution in the thermody-
namic limit. For finite-size networks (having N nodes), it is instead to be expected
an exponent - smaller than the corresponding one at N = oo. Figure la shows the
change of the slope in degree distribution in log-log domain for various B. Linear
fits of the corresponding degree distributions make it possible to calculate the de-
pendence of the 7 coefficient. Fig. 1b shows that when B is varied from 0 to 10,
varies in the range from 3 to 4, for the considered value of N.

Another important parameter characterizing the network topology is the clus-
tering coefficient C. As depicted in Figure 2a, C' is also slightly modulated by B,



322 D.-U. HWANG, S. BOCCALETTI, Y. MORENO, AND R. LOPEZ-RUIZ

100 1000 10000

Ll
GG

100 1000N 10000

FIGURE 3. First ([a] and [c]) and second ([b] and [d]) moment of
the degree distribution vs. N, for SFN ([a] and [b]) and SSFN ([c]
and [d]). In (a) and (c), the horizontal axis is in logarithmic scale.
In all cases, circles refer to B = 0, squares to B = 5, and diamonds
to B = 10.

although remaining very small in all cases. Finally, the small-world property [2]
(the fact that the average path length < [ > scales logarithmically with N) holds
for all B values as shown in Figure 2c. The conclusions are that only the degree
distribution depends crucially upon the B parameter, whereas other local topolog-
ical properties, such as the small-world property and the clustering coefficient, are
not significantly modified; hence, the topological structure of the network remains
unchanged.

An important consequence is the convergence of the second moment of the degree
distribution (even taking the thermodynamic limit), which can be made possible
by suitably selecting B. In Fig. 3 we report (a) the first moment < k >, and (b)
the second moment < k? > of the degree distribution as a function of the network
size N. While the first moment always approaches 2m rapidly, the second moment
converges to a finite value only for large B, while for B = 0 (the usual SFN case
[3]), < k% > increases indefinitely with N as v ~ 3.

3.2. Structured scale-free Network. SSFNs are highly clustered; however, they
do not display small-world properties [15] unless rewiring of links is introduced. In
these networks, each node can be in two states: ”active” or "nonactive”. The
growing procedure is as follows: The added node is always linked to all m ”active”
old nodes and is initially set as a new active node. Before adding another new node,
one among the m+ 1 active nodes in the network is deactivated, and the procedure
restarts. The probability for deactivating the i-th node is

-1

1
pde — ]
i ;MB e (6)
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FIGURE 4. Prevalence p vs. infection rate A for (a) SFN and (b)
SSFN. Circles refer to B = 0, squares to B = 5, and upper triangles
to B = 10. The network size is N = 30, 000.

where A is the set of the active nodes. Starting from an initial network of m fully
connected active nodes, the above procedure generates a network with an average
degree (k) = 2m links. Note, however, that there are two different ways in which
the addition/deactivation process can be done, leading to two different ranges for
the v values [24, 18]. On the other hand, the exponent 7 can be tuned by varying
the value of m as well. Here, we keep m fixed to generate networks with the same
average connectivity and varied v by tuning B.

In the case B = 0, the degree distribution becomes P(k) = 2m?k~7, where
v = 3, and the clustering coefficient C' = 5/6 [15]. Therefore, the second moment
of the degree distribution diverges here in the case B = 0. As we increase B from
1 to 10, we numerically found that ~ is increasing in the very same way as for
SEN; that is, the slope of the degree distribution in the log-log domain changes
continuously from 3 to 4 as shown in Figures 1c and 1d.

The clustering coefficient does not show a very significant change with B, as seen
in Figure 2b. Finally, B does not affect the scaling properties of the average path
length (¢), as depicted in Figure 2d. The average path length grows linearly when
we increase the size of the network reflecting the lack of the small-world property for
all B values. The numerically measured first and second moments show behavior
similar to the case of SFN, and are reported in Fig. 3(d). (k?) is convergent when
B is large enough, and (k) converges rapidly to 2m for all B values.

In conclusion, we highlight that for both SEFN and SSFN, the effect of the pa-
rameter B is to tune the scaling exponent of the degree distribution without sub-
stantially affecting the other relevant topological parameters. This means that we
can use the above approach to test the existence of a threshold in the SIS model
for both the case of convergent and divergent fluctuations.

4. Prevalence and threshold for epidemic outbreak. In this section, we im-
plement the SIS model in both SFN and SSFN grown with the procedure described
above. In the SIS model, each node of the network is in a binary state: ”healthy”



324 D.-U. HWANG, S. BOCCALETTI, Y. MORENO, AND R. LOPEZ-RUIZ

or "infected”. At each time step, a healthy node becomes infected with probabil-
ity A only if it is connected with at least one infected node, while infected nodes
are cured regaining susceptibility for the next step. The prevalence p is defined
as the average ratio of infected nodes to total nodes in the steady state. Natu-
rally, the prevalence p is a function of the infection probability A\. The epidemic
threshold A, is the point in the phase diagram below which diseases cannot pro-
duce a major epidemic outbreak or an endemic state. Notice that the model differs
from the susceptible-infected-removed (SIR) model, but the results are equivalent
[17, 20, 21].

4.1. Numerical results. Initially, we fixed the network size at N = 30,000 and
measured the prevalence in various cases for both SFN and SSEFN, by varying the
B parameter. For each calculation of p, twenty different realizations of the same
network were used for ensemble averaging, while initial conditions were always put
such that 10% of randomly selected nodes are infected at ¢ = 0. The dynamics is
then evolved for a transient time until ¢ = 3,000. At this point, averages for the
infection ratio are calculated, taking its value in the next one hundred time steps.

The critical point A, for an epidemic outbreak as a function of the network
size was obtained by computing the prevalence with twenty different realizations
of the same network and five different initial conditions for a given spreading rate
A. For each B value, the network size is increased from 5,000 to 100,000. We
furthermore define an effective threshold p®/f = n, /N, where n. = 100 and N is
the total number of nodes. The thresholds A, are then calculated as the values at
which p is sufficiently close to the effective threshold (|p¢/f — p| < &) by bi-section
method. However, in most cases, p does not reach p¢/f because of limited resolution
attributable to the size of the network. In these cases, the threshold ). is chosen to
be the value for which the minimum prevalence for a given network size is attained.

A few comments are necessary when computing the epidemic threshold A.. The
first concerns the resolution of p, which improves as the network size IV increases
(of the order of 1/N); thus, the probability of hopping from a state having finite
infected nodes to a state of fully healthy nodes decreases. The second regards the
initial density of infected nodes. While for SFNs there is no evidence that the
prevalence, and thus the critical point, depends on p(t = 0), studies of the SIS
dynamics showed that this is not the case when SSFNs are considered [18]. In any
case, this dependency is rooted in the way SSFNs are generated [24, 18], a problem
that does not arise here as we are generating the networks by tuning B.

Because of the finite-size effect, a finite threshold for an epidemic outbreak ap-
pears as shown in Figure 4, where we show the prevalence as a function of the
spreading rate X\. The case of SFN is reported in Figure 4 a, where one can see that
the slope of p continuously vanishes in the vicinity of the threshold, as A approaches
zero. These thresholds are slightly different for various B. In [11], analytical argu-
ments correctly anticipated that when 3 < v < 4, there are no critical fluctuations
around the thresholds, because of the vanishing slope of the order parameter p near
the critical point. Our results provide the first numerical test to their calculations.
At variance, the case of SSFNs (reported in Figure 4) shows a prevalence that
suddenly decreases near the threshold.

Our results show that SFNs display continuously decreasing values of A, for all B
values, even though the decreasing rates are different, as shown in Figure 5. For the
same N, the case B = 0 (the original SEN) has the smallest threshold values, while
the case B = 10 shows the largest ones. Notice that, at least up to the maximum
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FicURE 5. Threshold A, for epidemic outbreak in the network vs.
network size N. Diamonds refer to SSFN with B = 10, upper
triangles to SFN with B = 10, and left triangles to SFN with
B = 0. Squares correspond to SSFN with B = 10 and with 10%
of randomly selected rewired links.

size allowed by our numerical capability, there is no qualitative difference between
the SFN cases with B = 0 (left triangles) and with B = 10 (upper triangles), as
one should have instead expected from the formula \. oc (k)/(k?) derived from a
mean-field approach. In comparing the upper triangles curve in Figure 5 with the
diamond curve in Figure 3 b, one further notices that such a disagreement holds
within a range of network sizes for which the second moment (k?) of the degree
distribution has already numerically converged, thus indicating that the epidemic
threshold in finite-size SFNs cannot be solely related to the ratio between the mean
degree and the degree fluctuations.

In the case of SSFNs, as N increases, the epidemic threshold decreases much
slower than the case of SFNs within the statistical errors. As noted recalled, the
original SSFN does not have small-world properties, and this can in part explain the
reasons for such a difference in the asymptotic behavior for the epidemic threshold
[24]. One can implement the small-world property, by randomly rewiring a given
percentage of links. In the case B = 10, we operated such rewiring procedure,
giving each link a rewiring probability P,.. = 0.1. The rewired network now shows
a much faster decreasing threshold for epidemics, similarly to what occurs for SFNs
at the same v value.

The comparison between the results obtained for SFNs and the structured ones
for the same v and system size indicates that the differences in the local properties
of both types of networks do affect the way in which the epidemic threshold is
approached. The BA network shows a smooth behavior near the epidemic outbreak,
while for structured ones the order parameter p suddenly decreases when . is
approached from the right, signaling two distinct behaviors. Additionally, Figure 5
shows that for finite-size networks, which are the ones we found in the real world,
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the structure significantly affects the effective values \. for an epidemic outbreak to
occur. In particular, we found that structured scale-free networks are always (i.e.,
independent of the lack or of the small-world property) more resistant to endemic
states than the BA-like networks, as they show larger threshold values.

5. Conclusions. We have numerically investigated the existence of a threshold
for epidemic outbreaks in two classes of scale-free networks. By tuning the scaling
exponent characterizing the degree distribution, we numerically calculated the epi-
demic thresholds when ~ lies in the interval [3,4]. The results confirm the previous
analytical arguments about the lack of an epidemic threshold in scale-free networks
with diverging fluctuations in the degree distribution. At the same time, we also
showed that when « > 3, the behavior of an epidemic threshold is a monotonically
decreasing function within the same range of network sizes for which the second
moment of the degree distribution is numerically convergent.

Finally, we have shown that nonzero thresholds for the spreading of epidemics are
always found in finite-size networks; however, the behavior of such thresholds can
be strongly influenced by the value of v and the local properties of the network,
making the small-world property more influential than the specific value of the
exponent in the degree distribution.

Acknowledgments. This research was partially supported by the post-doctoral
fellowship program of the Korea Science and Engineering Foundation(KOSEF),
and MIUR-FIRB project no. RBNE0O1ICW3M-001. Yamir Moreno is supported by
MCyT through the Ramén y Cajal program.

REFERENCES

[1] R. Albert and A.-L. Barabdsi,Statistical mechanics of complex networks. Rev. Mod. Phys. 74
(2002) 47-97.

[2] D.J. Watts and S. H. Strogatz, Collective dynamics of ’small-world’ networks. Nature 393
(1998) 440-442.

[3] A.-L. Barabdsi and R. Albert, Emergence of Scaling in Random Networks. Science 286 (1999)
509-512.

[4] L.A.N. Amaral, A. Scala, M. Barthélémy and H.E. Stanley, Classes of small-world networks.
Proc. Natl. Acad. Sci. U.S.A. 97 (2000) 11149-52.

[5] R. Albert, H. Jeong and A.-L. Barabdsi, Internet: Diameter of the World-Wide Web. Nature
401 (1999) 130-131.

[6] H. Jeong, B. Tombor, R. Albert, Z.N. Oltvar and A.-L. Barabdsi, The large-scale organization
of metabolic networks. Nature 407 (2000) 651-654.

[7] F. Liljeros, C.R. Edling, L.A.N. Amaral, H.E. Stanley and Y. Aberg, The web of human
sexual contacts. Nature 411 (2001) 907-908.

[8] R. Cohen, K. Erez, D. ben Avraham and S. Havlin, Resilience of the Internet to Random
Breakdowns. Phys. Rev. Lett. 85 (2000) 4626-4628 ; D.S. Callaway, M.E.J. Newmann, S.H.
Strogatz and D.J. Watts, Network Robustness and Fragility: Percolation on Random Graphs.
Phys. Rev. Lett. 85 (2000) 5468-5471 .

[9] M. Barahona, and L. M. Pecora, Synchronization in Small-World Systems. Phys. Rev. Lett.
89 (2002) 054101.

[10] R. Pastor-Satorras and A. Vespignani, Epidemic Spreading in Scale-Free Networks. Phys.
Rev. Lett. 86 (2001) 3200-3203.

[11] R. Pastor-Satorras and A. Vespignani, Epidemic dynamics and endemic states in complex
networks. Phys. Rev. E 63 (2001) 066117.

[12] M. Boguiid and R. Pastor-Satorras, Epidemic spreading in correlated complex networks. Phys.
Rev. E 66 (2002) 047104.

[13] D. Volchenkov, L. Volchenkova and Ph. Blanchard, Epidemic spreading in a variety of scale-
free networks. Phys. Rev. E 66 (2003) 046137.



[14]
[15]
[16]
[17]
18]
[19]
[20]
[21]

(22]

THRESHOLDS FOR EPIDEMIC OUTBREAKS IN FINITE SCALE-FREE NETWORKS 327

Z. Dezs6 and A.-L. Barabdsi, Halting viruses in scale-free networks. Phys. Rev. E 65 (2002)
055103.

V. M. Eguiluz and K. Klemm, Epidemic Threshold in Structured Scale-Free Networks. Phys.
Rev. Lett. 89 (2002) 108701.

M. Bogund, R. Pastor-Satorras and A. Vespignani, Absence of Epidemic Threshold in Scale-
Free Networks with Degree Correlations. Phys. Rev. Lett. 90 (2003) 028701.

Y. Moreno, R. Pastor-Satorras, and A. Vespignani, Epidemic outbreaks in complex hetero-
geneous networks. Eur. Phys. J. B 26 (2002) 521-529.

Y. Moreno, and A. Vazquez, Disease spreading in structured scale-free networks Eur. Phys.
J. B 31 (2003) 265-271.

A. Vazquez, and Y. Moreno, Resilience to damage of graphs with degree correlations. Phys.
Rev. E 67 (2003) 015101.

Y. Moreno, J. B. Gémez, and A. F. Pacheco, Epidemic incidence in correlated complex
networks. Phys. Rev. E 68 (2003) 035103.

M. E. J. Newman, The Structure and Function of Complex Networks. SIAM Review 45 (2003)
167-256.

N.T.J. Bailey, The mathematical Theory of Infectious Diseases (Griffin, London, 1975); J.D.
Murray, Mathematical Biology (Springer Verlag, Berlin, 1993).

[23] R. Pastor-Satorras and A. Vespignani, Epidemic dynamics in finite-size scale-free networks.

Phys. Rev. E 65 (2002) 035108.

[24] A. Vézquez, M. Bogund, Y. Moreno, R. Pastor-Satorras and A. Vespignani, Topology and

correlations in structured scale-free networks. Phys. Rev. E 67 (2003) 046111.

[25] S. N. Dorogovtsev and J. F. F. Mendes, Evolution of Networks. From Biological Nets to the

Internet and the WWW, Oxford University Press, Oxford, U.K., (2003).

Received on October 21, 2004. Revised on February 24, 2005.

E-mail address: duhwang@ino.it
E-mail address: stefano@ino.it
E-mail address: yamir@unizar.es
E-mail address: rilopez@unizar.es



