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Awaking and sleeping of a complex network
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Abstract

A network with a logistic-like local dynamics is considered. We implement a mean-field multiplicative coupling among first-neighbor nodes.
When the coupling parameter is small, the dynamics is dissipated and there is no activity: the network is turned off. For a critical value of the
coupling, a non-null stable synchronized state, which represents a turned on network, emerges. This global bifurcation is independent of the
network topology. We characterize the bistability of the system by studying how to perform the transition, which is now topology dependent, from
the active state to that with no activity, for the particular case of a scale-free network. This could be a naive model for the wakening and sleeping
of a brain-like system, i.e., a multi-component system with two different dynamical behaviors.
c© 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Understanding multi-component systems such as the brain
is a formidable challenge. A multidisciplinary effort, from
medicine, psychiatry, neurobiology and neural computation, is
required to enlighten how it works, processes information and
takes decisions.

Different models have been proposed to catch the
computational principles of mental processes. Neural networks
are considered as a paradigmatic model alternative to the more
traditional models such as finite automata, Turing machines
and Boolean circuits. In fact, neural nets have an inspiration
more grounded in the neurophysiological structure of the
neuronal system. A survey of the underlying results concerning
the computational power and complexity issues of neuronal
network models can be found in Sima and Orponen (2003) and
references therein.

In a certain sense and from a physical point of view, the brain
can be considered as a clock controlled by the internal circadian
rhythm. It is synchronized with the day/night cycle (Winfree,
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1986). Roughly speaking, two states can be associated with
this cycle: awake and asleep. This property is universally
observed in all animals. The cerebral activity is dissociated
from the sensory and motor neurons in the sleep state. This
dissociation is not complete and the brain can still respond to
some sensory stimuli. In fact, there are qualitatively different
patterns of neural activity between different stages of sleep.
Basically, two levels, a deepest and a shallowest, alternate
during sleep. The deepest level of sleep is attained rapidly and,
as sleep progresses, the average level becomes shallower. The
substances that control the connection among neurons monitor
these changes in the neural activity, which is formed out of
composite states occurring in disconnected brain subdivisions.
When the full connections are re-established, the waking state
of the brain is recovered (Bar-Yam, 1997).

So, as is suggested by real measurements of electrical brain
activity, synchrony seems to be a key concept to explain
different aspects of neuronal behavior. The activities of two
or more neurons, which we call a functional unit, are said
to be synchronized when some kind of temporal correlations
exists among them. The conditions for the emergence of these
states are a central issue in the research of neuronal activity
(Borgers & Kopell, 2003; Hansel & Mato, 2003). It has recently
been argued (Eguiluz, Chialvo, Cecchi, Baliki, & Apkarian,
2005) that the distribution of functional connections in the
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human brain follows the same distribution of a scale-free
network. This finding means that there are regions in the brain
that participate in a large number of tasks while most of the
other functional units are only involved in a tiny fraction
of the brain’s activities. The previous network adds to many
examples of such a distribution found in the last few years in
fields as diverse as biological, technological and social systems
(Bornholdt & Schuster, 2002; Dorogovtsev & Mendes, 2003;
Pastor-Satorras & Vespignani, 2004; Strogatz, 2001). These
have been termed scale-free networks, because the probability
of finding an element with k connections to other elements of
the network follows a power law P(k) ∼ k−γ , where γ usually
lies between 2 and 3. The absence of a characteristic scale in the
connectivity patterns of these latter networks manifests itself in
the presence of a few nodes (named hubs) connected to very
many nodes, and a larger number of poorly connected nodes.
The complex character of the structure of the interactions
couples to the dynamical complexity which emerges from the
nonlinear character of the interactions, so that, generally, one
may say that the Structure–Function correlation problem in real
networks has at least two sources of entangled complexity.

In this work, the question of the double (both struc-
tural and dynamical) source of entangled complexity is ad-
dressed (Llinás, 2003). Specifically, a simple model that can
be thought off as an over-simplified model of the sleep–wake
cycle of the the brain is proposed. The two basic configurations
present in our model, namely the switched on and the switched
off states, are formally suggested as a metaphor for the asleep
and awake states. How the transition between those states can
take place is also indicated. In particular, we show that, as far
as bistability is concerned, the underlying structure of the sys-
tem (structural complexity) is not important. This is in sharp
contrast with other results on dynamics on top of complex net-
works, where the structure radically influences the behavior of
the system (Strogatz, 2001). In Section 2, a model for a general
network showing bistability is proposed and analyzed. In Sec-
tion 3, the transition between the active and the inactive states
is studied. As our model is thought of as a system made up of
functional units, and they seem to be distributed according to a
power law, we focus our attention on the on–off transition for
the case of a random scale-free network. The last section con-
tains our discussion and conclusions.

2. The model

The brain is a complex networked system in which millions
of neurons are unidirectionally and locally interconnected
(Cajal, 1906). On a larger scale, the brain can be divided into
functional modules or regions made up of many neurons. As
we have said in the introduction, it is well established that
the sleep regime shows phases of high activity, specially the
rapid eye movement (REM) stage, but, in the naive picture we
outline here, all the sleeping stages are considered to be part
of a global phase with a differentiated activity. Thus, a simple
approach can consider a functional unit, i.e. a neuron or group
of neurons (in the following, neuron or functional unit are used
indistinctly), as a discrete dynamical system with two possible
states: active (meaning one type of activity) or not (meaning
another type of activity). The nonlinear processing of synaptic
inputs in cortical neurons has been shown by Kuhn, Aertsen,
and Rotter (2004). They studied the response of a model neuron
with a simultaneous increase in excitation and inhibition. They
found that the firing rate of the model neuron first increases,
reaches a maximum, and then decreases at higher input rates.
Functionally, this means that the firing rate, commonly assumed
to be the carrier of information in the brain, is a non-monotonic
function of balanced input. These findings do not depend on
details of the model and, hence, are relevant to cells of other
cortical areas as well. Hence, in our vision of the brain as
a networked system, if x i

n , with 0 < x i
n < 1, represents a

measurement of the i th functional unit activity at time n, it
can be reasonable to take the most elemental local nonlinearity,
for instance a logistic evolution (May, 1976), which presents
a quadratic term, as a first toy-model for the local neuronal
activity:

x i
n+1 = p̄ x i

n(1 − x i
n). (1)

This presents only one stable state for each p̄. For p̄ < 1, the
dynamics dissipates to zero, x i

n = 0, then it can represent the
functional unit with no activity. For 1 < p̄ < 4, the dynamics is
non-null and it would represent an active functional unit. This
local transition is controlled by the parameter p̄. The functional
dependence of this local coupling on the neighboring states is
essential in order to get a good brain-like behavior (i.e. as far
as the bistability of the sleep–wake cycle is concerned) of the
network. As a first approach, we can take p̄ as a linear function,
depending on the actual mean value, X i

n , of the neighboring
signal activity and expanding the interval (1, 4) in the form:

p̄ = p (3X i
n + 1), (2)

with

X i
n =

1
Ni

Ni∑
j=1

x j
n . (3)

Ni is the number of neighbors of the i th functional unit, and p,
which gives us an idea of the interaction of the functional unit
with its first-neighbor functional units, is the control parameter.
This parameter runs in the range 0 < p < pmax, where pmax �

1. Let us note here that there is an unrealistic bi-directionality in
the local neuronal connectivity in this unsophisticated image of
brain-like systems. This is not a drawback, since networks with
such local dynamics show an interesting bistability that can
mimic the brain-like behavior. Hence, the dynamical behavior
of these networks present an attractive global null configuration
that will be identified as the turned off state of the network.
Also, they show a completely synchronized non-null stable
configuration that we identify as the turned on state of the
network. Therefore, a critical level of noise to transit from the
turned off state to the turned on state is needed for a given
value of p. The different sleep states, including dreams in the
human brain, could be interpreted within this panorama as a
noisy neuronal activity which does not reach that critical value.
The transition from the on state to the off state can be performed
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either by decreasing the coupling p or by making the activity
of some units zero. All these dynamical properties are universal
for different kinds of local evolution rules of the same type as
Eq. (1), the so-called unimodal maps.

Let us mention at this point that phase synchronization
and cluster formation in coupled maps on different networks
have been studied, for instance, in Jalan and Amritkar (2003).
The results exposed in that work are very different from
those explained here. Specifically, they found that perfect
synchronization leads to clusters with a very small number
of nodes. In contrast, robust bistability between two perfectly
synchronized states is obtained in our system, as is shown in
the next sections.

2.1. System of two functional units

Let us start with the simplest case of two interconnected
(x1, x2) functional units. The dynamics (1) is given in this case
by the coupled equations:

x1
n+1 = p (3x2

n + 1) x1
n(1 − x1

n), (4)

x2
n+1 = p (3x1

n + 1) x2
n(1 − x2

n). (5)

Depending on the coupling, p different dynamical regimes are
obtained (see the details and nomenclature in references by
López-Ruiz and Fournier-Prunaret (2004, 2003)):

• For 0 < p < 0.75, the dynamics vanishes. The two
functional unit network does not have long-term activity.
The whole square [0, 1] × [0, 1] of initial conditions shrinks
to the turned off configuration, that is, the fixed point xθ =

(0, 0).
• For 0.75 < p < 0.86, the synchronized state, x+ = (x̄, x̄),

with x̄ =
1
3 {1 + (4 −

3
p )

1
2 }, which arises from a saddle-

node bifurcation for the critical value p0 = 0.75, is a stable
turned on state. This state coexists with xθ . The system now
presents bistability and, depending on the initial conditions,
the final state can be xθ or x+. Switching on the system
from xθ requires a level of noise in both functional units
sufficient to render the activity on the basin of attraction
of x+. Conversely, switching off the two functional unit
network can be done, for instance, by making the activity of
one functional unit zero, or by making the coupling p lower
than p0.

• For 0.86 < p < 0.95, the active state of the network is now
a period-two oscillation. This new dynamical state bifurcates
from x+ for p = pc = 0.86. A smaller noise is necessary
to activate the system from xθ . Making the activity of one
functional unit zero continues to be a good strategy to turn
off the network.

• For 0.95 < p < 1, the active state acquires a new frequency
and presents quasiperiodicity. It is still possible to switch off
the network by putting one of the functional units to zero.

• For 1 < p < 1.03, bistability is lost. When p = p f = 1,
the turned off state, xθ , loses stability and the only stable
dynamical state for p > p f is now the turned on network.
The network stores the information in a quasiperiodic state.
• For 1.03 < p < 1.08, a more complex active state
is obtained. In this range, the network can store more
complicated information in the stable chaotic state, which
is now present in the system.

• For p > 1.0843, the network loses stability and it cannot
store information anymore. Observe that pmax = 1.0843 in
this system.

Let us remark that the system of two functional units
exhibits, from a qualitative point of view, the properties that
we are looking for in a primitive brain-like system: bistability
between an active state and another state with no activity in
the range p0 < p < p f , a necessary noisy level to attain
the activation of the network from the switch off state, and
two different possible strategies to turn off the system from the
active state, by decreasing the coupling under a critical value or
by putting one of the functional units to zero.

We proceed now to show that these same properties are still
present when the local dynamics of type (1) is mounted on a
general complex network.

2.2. System of many functional units

The complete synchronization (Boccaletti, Kurths, Osipov,
Valladares & Zhou, 2002) of the network means that x i

n = xn
for all i , with i = 1, 2, . . . , N and N � 1. In this regime, we
also have X i

n = xn . The time evolution of the network on the
synchronization manifold is then given by the cubic mapping:

xn+1 = p (3xn + 1) xn(1 − xn). (6)

The fixed points of this system are found by solving xn+1 = xn .
The solutions are xθ = 0 and x± =

1
3 {1 ± (4 −

3
p )

1
2 }. The first

state xθ is stable for 0 < p < 1 and x± take birth after a saddle-
node bifurcation for p = p0 = 0.75. The node x+ is stable for
0.75 < p < 1.157 and the saddle x− is unstable. Therefore
bistability between the states

x i
n = xθ , ∀i −→ TURNED OFF STATE, (7)

x i
n = x+, ∀i −→ TURNED ON STATE, (8)

seems to be possible also for p > p0 = 0.75 in
the case of many interacting units. But stability on the
synchronization manifold does not imply the global stability
of it. Small transverse perturbations to this manifold can make
the synchronized states unstable. Let us then suppose a general
local perturbation δx i

n of the element activity,

x i
n = x∗ + δx i

n, (9)

with x∗ representing a synchronized state, xθ or x+. We define
the perturbation of the local mean-field as

δX i
n =

3
Ni

Ni∑
j=1

δx j
n . (10)

If these expressions are introduced into Eq. (1), the time
evolution of the local perturbations are found:

δx i
n+1 = p (3x∗ + 1)(1 − 2x∗)δx i

n + p x∗(1 − x∗)δX i
n . (11)
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The dynamics for the local mean-field perturbation is derived
by substituting this last expression in relation (10). We obtain:

δX i
n+1 = p (3x∗ + 1)(1 − 2x∗)δX i

n + 3p x∗(1 − x∗)

×
1
Ni

Ni∑
j=1

δX j
n . (12)

We now express the local mean-field perturbations of the first-
neighbors as functions of the local mean-field perturbation δX i

n
by defining the local operational quantity σ n

i :

1
Ni

Ni∑
j=1

δX j
n = σ i

n δX i
n, (13)

which is determined by the dynamics itself. If we put together
Eqs. (11) and (12), the linear stability of the synchronized states
holds as follows:(

δx i
n+1

δX i
n+1

)

=

(
p (3x∗ + 1)(1 − 2x∗) p x∗(1 − x∗)

0 p (3x∗ + 1)(1 − 2x∗) + 3p σ i
n x∗(1 − x∗)

)

×

(
δx i

n
δX i

n

)
. (14)

Let us observe that the only dependency on the network
topology is included in the quantity σ i

n . The rest of the
stability matrix is the same for all the nodes and therefore it
is independent of the local and global network organization.

The turned off state is x∗ = xθ = 0. The eigenvalues of the
stability matrix are, in this case, λ1 = λ2 = p. Then, this state
is an attractive state in the interval 0 < p < 1. It loses stability
for p = 1, then the highest value p f of the parameter p where
bistability is still possible satisfies p f ≤ 1.

The turned on state x+ verifies x∗ = x+ =
1
3 {1 + (4 −

3
p )

1
2 }.

If we suppose σ i
n = σ , the eigenvalues of the stability matrix are

λ1 = 2−2p− p(4−
3
p )

1
2 and λ2 = λ1+

σ
3 (3−2p+ p(4−

3
p )

1
2 ).

Let us observe that λ1 = −1 for p = 1. This implies that the
parameter pc for which the synchronized state x+ loses stability
verifies pc ≤ 1. Depending on the sign of σ , we can distinguish
two cases in the behavior of pc:

• If 0 < σ < 1, we find that | λ2 |< 1. Then x+ bifurcates
through a global flip bifurcation for p = pc = 1. In this
case, the bifurcation of the synchronized state x+ for pc = 1
coincides with the loss of the network bistability for p f = 1.
Hence pc = p f = 1 for this kind of network, and the
bistability holds between xθ and x+ in the parameter interval
p0 = 0.75 < p < pc = p f = 1. As an example, an all-
to-all network shows this behavior, because σ = 1. This is
represented in the inset of Fig. 1.

• If −1 < σ < 0, then λ2 = −1 is obtained for a
p = pc smaller than 1. Therefore it is now possible to
obtain an active state different from x+ in the interval pc <

p < p f . For instance, simulations show that the global flip
bifurcation of the synchronized state for a scale-free network
occurs for pc = 0.87 ± 0.01. A value of p = 0.866 is
Fig. 1. Stable states (xθ , x+) of the network for 0 < p < 1. Let us observe the
two zones of bistability: p0 < p < pc and pc < p < p f . The main figure
corresponds to a scale-free network made up of N = 104 elements: p0 = 0.75,
pc = 0.87 ± 0.01 and p f = 1. The inset shows the same graph but in an all-
to-all network of the same size: p0 = 0.75, pc = p f = 1. Initial conditions
for the xi s were drawn from a uniform probability distribution in the interval
(0, 1).

obtained from the stability matrix by taking σ = −1. For
this particular network, it is also found that p f = 1. Then,
bistability is possible in the range p0 = 0.75 < p < p f =

1 for this kind of configuration. But now an active state
with different dynamical regimes is observed in the interval
pc = 0.87 < p < p f = 1. If we identify the capacity
of information storage with the possibility of the system to
access complex dynamical states, then we could assert, in
this sense, that a scale-free network has the possibility of
storing more elaborate information in the bistable region that
an all-to-all network.

Let us note that σ also indicates a different behavior of
local dissipation, as expression (13) suggests. A positive σ

means a local in-phase oscillation of the node signal and mean-
field perturbations. A negative σ means a local out-of-phase
oscillation between those signal perturbations. Hence, σ also
brings some kind of structural network information. In all the
cases, the stability loss of the completely synchronized state is
mediated by a global flip bifurcation. The new dynamical state
arising from that active state for p = pc is a periodic pattern
with a local period-two oscillation. The increase in the coupling
parameter monitors other global bifurcations that can lead the
system towards a pattern of local chaotic oscillations.

3. Transition between on–off states

We now proceed to show the different strategies for
switching on and off a random scale-free network. The choice
of this network is suggested by the recent work (Eguiluz
et al., 2005; Buzsàki, Geisler, Henze, & Wang, 2004) on
the distribution of connections among functional units in the
brain. They find it to be a power-law distribution. Following
this insight, we generate a scale-free network following
the Barabási–Albert (BA) recipe (Barabási & Albert, 1999;
Barabási, Albert, & Jeong, 1999). In this model, starting from



106 R. López-Ruiz et al. / Neural Networks 20 (2007) 102–108
a set of m0 nodes, one preferentially attaches, at each time
step, a newly introduced node to m older nodes. The procedure
is repeated N − m0 times and a network of size N with a
power-law degree distribution P(k) ∼ k−γ with γ = 3 and
average connectivity 〈k〉 = 2m builds up. This network is a
clear example of a highly heterogenous network, in that the
degree distribution has unbounded fluctuations when N → ∞.
The exponent reported for the brain functional network has
γ < 3. However, studies of percolation and epidemic spreading
(Callaway, Newman, Strogatz & Watts, 2000; Moreno, Pastor-
Satorras, & Vespignani, 2002; Pastor-Satorras & Vespignani,
2004; Vázquez & Moreno, 2003) on top of scale-free networks
has shown that the results obtained for γ = 3 are consistent
with those corresponding to lower values of γ , with γ > 2.
Therefore, we expect that the results shown henceforth are not
biased by the use of a different exponent. As explained before,
network bistability between the active and inactive states is
possible here in the interval p0 = 0.75 < p < p f = 1 (Fig. 1).

3.1. Switching off the network

Two different strategies can be followed to carry the network
from the active state to that with no activity (Fig. 1).

• Route I: By doing the coupling p lower than p0. This is
the easiest and more natural way of performing such an
operation. In our naive picture of a brain-like system, it
could represent the decrease (or increase, depending on the
specific function) of the synaptic substances that provokes
the transition from the awake to the asleep state. The flux
of these chemical activators is controlled by the internal
circadian clock, which is present in all animals, and which
seems to be the result of living during millions of years under
the day/night cycle.

• Route II: By switching off a critical fraction of functional
units for a fixed p. Evidently, at first sight, this strategy
has no relation to the behavior of a real brain-like system.
Thus, this is done by looking over all the elements of the
network, and considering that the element activity is set to
zero with probability λ (which implies that, on average, λN
elements are reset to zero). The result of this operation is
shown in Fig. 2. Here, the relative size of the biggest (giant)
cluster of connected active nodes in the network versus λ

is plotted for different ps. Note that this procedure does
not take into account the existence of connectivity classes,
but all nodes are equally treated. The procedure is thus
equivalent to simulations of random failure in percolation
studies (Callaway et al., 2000). The strategy in which highly
connected functional units are first put to zero is more
aggressive and leads to quite different results.

Each curve presents three different zones, depending on
λ:
– the robust phase: For small λ, the network is stable and

only those states put to zero have no activity. There is a
linear dependence on the giant cluster size with λ. In this
stage, the switched off nodes do not have the capacity to
transmit its actual state to its active neighbors.
Fig. 2. Turning off a scale-free network. Three different phases in the behavior
of the giant cluster size versus λ (fraction of switched off nodes) are observed.
These three phases are illustrated for p = 0.96: the robust phase, the weak
phase, and the catastrophic phase (see the text). Other network parameters are
as those of Fig. 1.

– the weak phase: For an intermediate λ, the nodes with
null activity can influence its neighborhood and switch off
some of them. The linearity between the size of the giant
cluster and λ shows a higher absolute value of the slope
than in the robust zone.

– the catastrophic phase: When a critical λc is reached, the
system undergoes a crisis. The sudden drop in this zone
means that a small increase of the inactive nodes leads
the system to a catastrophe; that is, the null activity is
propagated through the whole network and it becomes
completely down.

It is worth noticing that, when the system is outside the
bistability region for p > 1, the catastrophic phase does not
take place. Instead, the turned off nodes do not spread its
dynamical state and the neighboring nodes do not die out. This
is because the dynamics of an isolated node is self-sustained
when p > 1. Consequently, we observe that the network breaks
down into many small clusters and the transition resembles that
of percolation in scale-free nets (Callaway et al., 2000; Vázquez
& Moreno, 2003).

3.2. Switching on the network

Two equivalent strategies can be followed for the case of
turning on the network (Fig. 3):

• (I) For a fixed p, we can increase the maximum value ε of
the noisy signal, which is randomly distributed in the interval
(0, ε) over the whole system. When ε attains a critical value
εc, the noisy configuration can leave the basin of attraction of
xθ , whose boundary seems to have the form in phase space
of a “hollow cane” around it, and then the network rapidly
evolves toward the turned on state;

• (II) If this operation is executed by letting ε be fixed and
by increasing the coupling parameter p, the final result of
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Fig. 3. Turning on a scale-free network. For a fixed p, a noisy signal randomly
distributed in the interval (0, ε) is assigned to every node. When ε reaches the
critical level εc , the network becomes switched on. Other network parameters
are as those of Fig. 1.

switching on the network is reached when p takes the value
for which ε = εc. The final result is identical in both cases.

Let us remark that the strategy equivalent to the former
Route II, that is, the switching on of a critical fraction of
functional units, is not possible in this case. It is a consequence
of the fact that a switched off functional unit can not be excited
by its neighbors and it will maintain indefinitely the same
dynamical state (xi = 0).

Finally, let us note that, from Fig. 3, a bigger p requires a
smaller εc to switch on the net. Observe that this behavior could
be interpreted in our approach as the smaller level of noise that
is needed for waking a brain-like system that it is departing
from the sleeping state.

4. Conclusions

One of the most challenging scientific problems today is
to understand how the millions of neurons of our brain give
rise to the emergent property of thinking. Different aspects of
neurocomputation touch on this problem: how the brain stores
information and how the brain processes it to take decisions
or to create new information. Other universal properties of
this system are more evident. One of them is the existence of
a regular daily behavior: the sleep–wake cycle. The internal
circadian rhythm is closely synchronized with the cycle of
sun light. Roughly speaking, and depending on the particular
species, the brain is awake during the day and it is asleep
during the night, or vice versa. Hence, at first sight, this bistable
behavior seems not to depend on the precise architecture of the
brain.

In this work, we have studied a general network with local
logistic dynamics that presents global bistability between an
active synchronized state and another synchronized state with
no activity. This property is topology and size independent. This
is a direct consequence of the local mean-field multiplicative
coupling between the first-neighbors. Different routes to transit
from one state to the other have been explored for the important
case of a scale-free network. If a formal and naive relationship
is established between the switched off and switched on
states of that network, and the sleep–wake states of a brain,
respectively, one would be tempted to assert that this model,
regardless of its simplicity, is a good qualitative representation
for explaining that specific bistability. Furthermore, on more
theoretical grounds, the results obtained here point out the
complex interplay between structure and dynamics. While the
point at which bistability first appears does not depend on
the topology of the underlying network, later bifurcations take
place at points that are topology dependent. Additional analysis
of the kind followed here might clarify the actual relation
between topology and function in networked systems where
complex structures coexist with nonlinear dynamics.
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López-Ruiz, R., & Fournier-Prunaret, D. (2004). Complex behavior in a
discrete logistic model for the symbiotic interaction of two species.
Mathematical Biosciences and Engineering, 1(2), 307–324.
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