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Abstract

The possible parallelism existing between phase transitions and fracture in disordered materials
is discussed using the well-known 2ber bundle models and a probabilistic approach suited to
smooth 3uctuations near the critical point. Two limiting cases of load redistribution are analyzed:
the global transfer scheme, and the local transfer rule. The models are then studied and contrasted
by de2ning the branching ratio as an order parameter indicative of the distance of the system to
the critical point. In the case of long range interactions, i.e., the global rule, the results indicate
that fracture can be seen as a second-order phase transition, whereas for the case of short range
interactions (the local transfer rule) the bundle fails suddenly with no prior signi2cant precursory
activity signaling the imminent collapse of the system, this case being a 2rst-order like phase
transition. c© 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

Fracture phenomena have attracted a lot of interest in the last several years, both
experimentally and theoretically. In the lab, a disordered material subjected to an
increasing external load can be experimentally studied by measuring the acoustic
emissions before the global rupture. It has been shown [1,2] that this intense precur-
sory activity in the form of bursts of di>erent microscopic sizes follows a well-de2ned
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power law. From the theory side, the understanding of fracture in heterogeneous materi-
als has progressed due to the use of lattice models and large scale numerical simulations
[3]. Recently, the introduction of models of material failure has led to the evidence
that rupture can be viewed as a kind of critical phenomenon [3–8]. Nevertheless, the
question of whether rupture exhibits the properties of a 2rst-order or a second-order
phase transition remains under discussion as well as what is the order parameter that
determines the type of transition.
In this 2eld, it is important to use models that are able to describe the complexity

of the rupture process, although they should be simple enough to permit analytical
insights. To this class of models belong the well-known 2ber bundle models (FBM)
widely used since their introduction more than 40 years ago [9,10]. In static FBM,
a set of 2bers (elements) is located on a supporting lattice and one assigns to its
elements a random strength threshold sampled from a probability distribution. The
lattice is loaded and 2bers break if their loads exceed their threshold values. Now,
one can assume di>erent load transfer rules to mimic the range of interactions among
the 2bers in the set. The global load sharing rule is the simplest theoretical approach
one can adopt to make the problem analytically tractable, which implies that the load
carried by failed elements is equally distributed among the surviving elements of the
system, representing in this way a long range interaction among the constituent parts
of the system. This is a kind of mean 2eld approach to the more extreme local load
sharing scheme, where the interaction among the elements is short range and the load
supported by the failing elements is transferred only to a neighborhood.
Very recently [11], we have developed a probabilistic approach suited to smoothen

the 3uctuations around the point of 2nal collapse. In this paper, we extend the method
to analyze the local load sharing scheme and contrast the two limiting cases of range
interactions: the long range and the short range. While for the case of global load
sharing, we obtain di>erent scaling relations that point out that the fracture of a 2ber
set with long range interactions may be a continuous transition, for the case of short
range interactions, the failure exhibits no signi2cant precursory activity and the system
breaks abruptly showing, in this case, the properties of a 2rst-order transition where
no scaling laws can be identi2ed. The rest of the paper is organized as follows. In
Section 2, we present the standard approach to the FBM. In Section 3, we introduce
the new probabilistic method and the results derived from it and from Monte Carlo
simulations. Finally, Section 4 is devoted to discussion and conclusions.

2. Static �ber bundle models

Let us 2rst recall the basic ingredients of the static FBM and how one proceeds in
numerical simulations. The term static means that time plays no role in the model [12].
The system under consideration is a set of N0 elements (2bers) located in a supporting
lattice each one having at the initial state a zero load and a ;xed strength threshold
value (quenched disorder) sampled randomly from a probability distribution P(�). The
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system is then subjected to an external force F which is shared democratically among
the 2bers, that is, the distribution of the total force produces that each element increases
it load, �, in the same amount. This individual stress acts as the control parameter.
The loading process is done quasistatically, i.e., the external force is increased at a
suJciently slow rate so as to produce a single breaking event when the stress in
the weakest element equals its threshold value. Then, the increase of external force
stops and the load of the broken 2ber is transferred according to the transfer scheme
assumed. In the global load sharing FBM, this implies that the load on 2ber i is given
by �i=F=ns(F), where ns is the number of surviving elements for a given external load
F . In the local load sharing FBM, the above relation does not hold any more because
there the redistribution of load is performed among the nearest neighbors of the failed
2ber giving rise to the appearance of regions with di>erent stress concentrations.
In both schemes, the rupture of a 2ber may induce secondary failures which in turn

may trigger more failures. This process of induced failure at constant external load,
termed avalanche, stops when all surviving elements carry a load lower than their
thresholds. The system is then loaded again and the process is repeated until the 2nal
catastrophic avalanche provokes the total rupture of the material, which occurs at a
critical load �c that depends on the probability distribution from where the individual
strengths were drawn as well as on the system size. At this point, it is worth recalling
that the exact value of �c can be analytically obtained in the thermodynamic limit for
the global load sharing case while for local load sharing schemes there is no theoretical
approach leading to �c. It is also known that the critical load �c for the global load
sharing FMB is non-zero and independent of N0 for N0→∞, whereas �c tends to zero
as N0 goes to in2nity in the case of local load sharing models [10,13]. Fiber bundle
models have also been recently used in self-organized criticality (SOC), a theoretical
framework widely used for the study of avalanche phenomena in disordered systems.
It has been shown using these models that systems with plastic behavior can reach a
SOC state just before the global rupture [14]. A second case of self-organization with
power law distributions in several quantities corresponds to the situation in which the
fracture process coexists with a healing process [15].
In numerical simulations, the cycle of complete breakdown of the material is per-

formed many times in order to average out the e>ect of 3uctuations. Nevertheless, the
stress history of a particular element is made of steps, so that the 3uctuations around
the critical load can never be completely avoided. Let 2ber k be supporting a stress
�0k at a given step of the failure process. It will continue to support �0k until a global
driving or a stress transfer from one (or more) of the failed elements occurs. At this
moment, element k instantaneously changes its load to �1k = �

0
k + �dist , where �dist is

the load coming from the failed 2bers or from the global driving. So, in a later step,
element k could receive again load, su>ering a second step-like increase in stress. This
step-like stress history continues until 2ber k fails. As we are interested in studying the
behavior of the system as the critical point is approached, it is of utmost importance
to 2nd a simple method that is able to capture the evolution of the system near the
critical point avoiding as much as possible the 3uctuations.
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3. Probabilistic approach to static �ber bundle models

Let there be a set of N0 elements located on a supporting lattice. Suppose that
each element carries a given load �, which is set to zero at the initial state. Fibers
break depending on their strengths which are distributed according to a probability
distribution P(�). Di>erent probability distributions can be considered. In materials
science the Weibull distribution is widely used,

P(�)= 1− e−(�=�0) � ; (1)

where � is the so-called Weibull index, which controls the degree of disorder in the
system (the bigger the Weibull index, the smaller the disorder), and �0 is a load
of reference. In the following, we will assume �0 = 1, and therefore, the loads are
dimensionless. Although the results we show hereafter are for the Weibull distribution
to gain in de2niteness, they have been also obtained for a wide class of distributions.
Besides, for continuous distributions decaying fast enough, the approach to the critical
state does not depend on the detailed form of the disorder [16].
Eq. (1) represents the probability that an element fails under the individual load

�. Now, consider the case in which an element drawn from Eq. (1) supports a load
�1, but breaks under a new load �2. The probability that this happens is given by

p(�1; �2)=
P(�2)− P(�1)
1− P(�1) ; (2)

which is equal to

p(�1; �2)= 1− e−(��2−��1 ) : (3)

So, the probability q(�1; �2) that an element that has survived to the load �1 also
survives to the load �2 will be given by

q(�1; �2)= 1− p(�1; �2)= e−(��2−��1 ) : (4)

All these probabilities depend on the state of stress of each element, which is a complex
function of both the control parameter and the stress redistributions due to 2ber failures.
To mimic the quasistatic increase in load on the system as is applied in MC simulations,
we impose the condition that under an external force F , the next breaking event consists
of one single failure. Now, we will explore how the driving process controls the
approach to global failure in the global load sharing case and in a particular version
of the local load sharing schemes.

3.1. Global load sharing case

Let us suppose that after the latest avalanche, there are Nk surviving elements each
one bearing a load �k . The assumption of quasistatic increase in load on the system
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implies that the load �l needed to provoke the failure of only one element is [11]

�l=
[
��k − ln

(
1− 1

Nk

)]1=�
; (5)

where in Eq. (5) Nk =N0 and �k =0 at the initial state. Elevating the external force up
to the Nk�l level, a 2rst element breaks. As we are dealing with a global load sharing
set, the choice of the broken element is irrelevant because all of them are equivalent.
Once the 2rst element fails, the redistribution of its stress takes place which may induce
secondary failures and so on, until the end of the avalanche.
Now, the number of surviving elements in the set after an avalanche has come to

an end can be calculated by the recursive relations [11],

Nj+1 =Njq(�j−1; �j) ; (6)

Nj�j =Nj−1�j−1 ; (7)

Nj =Nj+1 : (8)

Eq. (6) relates the number of surviving elements between two successive avalanche
steps, whereas Eq. (7) allows the computation of the new load acting on the Nj sur-
viving elements. This is possible because we are under a global load sharing scheme
and thus all surviving elements support the same load. Finally, Eq. (8) determines the
end of the ongoing avalanche.
The dynamics of the system is completely determined by Eqs. (5)–(7). In this

way, the size of an avalanche is given by the number of elements that break between
two successive steps of external loading. The total stress accumulated in the system
can be calculated multiplying the number of intact 2bers before an avalanche starts
by the load given by Eq. (5). The critical load, de2ned as the load needed to provoke
the total collapse of the system, is equal to the load on the intact 2bers just before
the 2nal catastrophic avalanche. Note that in this probabilistic approach, in contrast to
Monte Carlo simulations, we need to store only the information concerning the loads
of the intact elements, that is, the threshold dynamics is omitted with the subsequent
advantages of saving computer resources and the possibility of exploring systems of
larger size.
For Eq. (8) to be satis2ed, we can proceed in two di>erent ways in order to de-

termine when an avalanche ends, to which we will refer to as the continuous and
the discrete cases. For the continuous case, the number Nj+1 of surviving elements
is considered a real number. This means that condition (8) is never ful2lled before
the 2nal avalanche. So, condition (8) is replaced in numerical simulations by a factor
��1 that determines the end of an avalanche, i.e., if Nj − Nj+16 � the avalanche
stops; otherwise it continues. In the discrete case, Nj+1 is considered to be an integer
number, so that after each iteration of Eq. (6), Nj+1 has to be rounded up. This is done
comparing the remainder of Nj+1; �, with a random number � uniformly distributed
in the interval [0; 1[. Thus, if �¿ �; Nj+1 is equal to its whole part, and if not, Nj+1
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Fig. 1. Rate of 2ber failure as a function of the distance to the critical point for the continuous version of
the probabilistic global load sharing model for a system of N0 = 50 000 elements and �=2. A line with the
mean-2eld value �= 1

2 of the exponent is plotted for reference.

is equal to its whole part plus one. Next, we check whether condition (8) is satis2ed
for the rounded value of Nj+1 or if a new iteration of Eq. (6) has to be performed.
The continuous approach has the great advantage that the 3uctuations are ruled out,
whereas for the discrete case the results are similar to those obtained by Monte Carlo
simulations where it is necessary to average over many realizations in order to get
accurate mean values. This is because in the global 2ber bundle model the central
limit theorem applies [17,18].
Now, we proceed to explore the behavior of the system near the critical point. In

particular, we are interested in inspecting the evolution of some quantities as the critical
point is reached. In order to avoid unnecessary 3uctuations around the critical point,
the results shown below have been obtained for the continuous case of the probabilistic
approach (�=2). It turns out [11] that the avalanche size close to the critical point
diverges with an exponent �= 1

2 as s∼ (�c − �)−�. A similar behavior, through a
mapping of a fuse network model to the global 2ber bundle model used here, has been
recently reported [6,7]. This mapping between 2ber bundle models and fuse networks
with strong disorder was 2rst noted [19] a few years ago; nevertheless, it has also
been pointed out that 3D fuse networks apparently do not follow the FBM picture
[20]. Note, additionally, that for the probabilistic continuous version, this relation is
obtained for a single realization avoiding, in this way, the large number of iterations
performed in MC simulations. In Fig. 1 we have depicted the derivative of the number
of broken 2bers, (dN=d�), as a function of the distance to the critical point �c−� in a
log–log plot. This rate dN=d� diverges as (�c−�)−� also with �= 1

2 , thus qualifying a
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critical mean 2eld behavior as was already shown [8] by means of analytical analysis
of 2ber bundle models. In Ref. [14], a similar scaling behavior is addressed for the
derivative of the strain carried by the 2bers with respect to the driving force.
Another way to shed light on the critical behavior of this type of system is to de2ne

a branching ratio � for each avalanche. This magnitude represents the probability to
trigger future breaking events given an initial individual failure [21,22] and is related
to the number of broken 2bers by

�=
〈z〉 − 1
〈z〉 : (9)

The above relation can be obtained by thinking of the evolution of fracture as a kind
of branching process [23]. In this process, each node gives rise to a number n of new
branches in the next time step. The average number 〈n〉 of new branches is called the
branching ratio. Let us denote by nt the number of branches at a given step t of the
branching process, and by tmax the total number of time steps before it dies. Then,

�= 〈n〉=
∑tmax−1

t = 0 nt+1∑tmax
t = 0 nt

;

and

�=1− n0∑tmax
t = 0 nt

:

As n0 = 1; �=1 − (1=ntot) where ntot is the total number of nodes developed in the
branching process. For a fracture process, ntot is equal to average number of failure
events. So, Eq. (9) de2nes the branching ratio. We represent by 〈z〉 the average number
of elements that fail in one avalanche, which is a function of the control parameter
� and coincides with s. This analogy between fracture and branching processes has
been previously used to study the criticality in the process of fragmentation of Hg
drops [24]. The branching ratio will then act as the order parameter. It takes the value
1 when the system is critical, thereby representing a measure of the distance of the
system from the critical state [22]. We would like to remark here two characteristics
of the branching ratio de2ned as above. First, it coincides with its general de2nition
for a branching process. Here, the values of the branching ratio are always less than
or equal to one because we are analyzing an irreversible breaking process that cannot
continue forever, so that a value of the branching ratio greater than one would imply
a physically unreachable situation. Secondly, we have introduced a de2nition in terms
of the avalanche size and not in terms of the cluster size. The avalanche size in 2ber
bundle models is a measure of causally connected broken sites while the cluster size is
a measure of spatially connected broken sites. It is clear that in the global 2ber bundle
model, the spatial correlations are ruled out and then the distribution of avalanche sizes
does not coincide with the distribution of cluster sizes.
We have numerically computed � for the continuous version of the probabilistic

model. The results obtained for a system of N0 = 50 000 elements and �=2 have been
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Fig. 2. Evolution of the branching ratio as the critical point is approached in the continuous probabilistic
method (N0 = 50 000). Note that at the critical point the branching ratio reaches the unity.

Fig. 3. Behavior of the branching ratio near the critical point. The straight line satis2es relation
(1− �)∼ (�c−�)�, with �=0:5. This plot has been obtained for a uniform distribution of 2ber’s strengths.

plotted in Fig. 2. It can be seen in this 2gure that the branching ratio approaches the
unity as the critical load is reached. In the 2gure, the values of � are collected for
all the avalanches except for that which provokes the catastrophic event leading to the
collapse of the system. So, this dependency of � with � means that very close to the
critical point, the initial failure provokes the breaking of another 2ber which in turn
induces tertiary ruptures and so on. This is the result that should be expected from
the divergence of the avalanche size at the critical point. Fig. 3 shows the behavior
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Fig. 4. Branching ratio for di>erent system sizes (�=2) for the global load sharing case. As the size of
the system is increased the value of the branching ratio for the last non-catastrophic avalanche approaches
unity.

of the order parameter near the critical point. As can be seen, near the critical point,
the relation 1− �∼ (�c− �)�, where �= 1

2 applies. Note the similarity of the behavior
with those obtained for the magnetization in known magnetic systems with second-order
phase transitions. It is of additional interest to note that the branching ratio also captures
the feature that the precursory activity is signi2cant only for strong disorder (for the
Weibull distribution, small values of �); whereas for small disorder the system behaves
more similar to the breakdown of homogeneous materials. On the other hand, the
branching ratio does not depend on the size of the system for large systems, in contrast
to previous results in other fracturing systems [22]. In Fig. 4 we illustrate this behavior
by plotting the value of the branching ratio for the last non-catastrophic avalanche, �∗,
as a function of the system size. In all cases, the numerical simulations were performed
for �=2. It is clear from the 2gure that �∗ reaches the unity as N0 goes to in2nity.

3.2. Local load sharing case

It is well-known that the local load sharing FBM is much more complicated than the
global load sharing case. The complexity of the fracture problem increase because the
load borne by failed elements is transferred to nearest neighbors and then there appear
regions of stress concentration throughout the system. The distribution of load is now
not homogeneous, and we have to carry on several lists to record the individual load
of the 2bers in the system. However, with the probabilistic approach, we are able to
study a few things about the behavior of the system, which are suJcient to remark
the great di>erences between the long range and the short range interactions schemes.
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One important di>erence between the two schemes is that contrary to the global load
sharing case, in the local scheme there is no signi2cant precursory activity signaling
the approach to the 2nal collapse and the system undergoes an abrupt catastrophic
avalanche. For maximum simplicity, we consider next a one-dimensional periodic local
load system where the stress transfer is done by adding the load of the failed element
always to the element on its right. Despite its simplicity, it has been shown [25] that
the general properties of this particular model are identical to those of more complex
local schemes.
The probability that the system fails in only one avalanche is given by

p(�1; �2)p(�1; �3)p(�1; �4) : : : p(�1; �N0 ) ; (10)

where �i= i�1 and �1 is

�1 =
(
0− ln

(
1− 1

N0

))1=�

:

That is, the probability of having a one-step failure is given by the probability that
an element fails under a load �2 having survived to the load �1, multiplied by the
probability that the next element in the lattice also fails under the new load �3 having
survived to the load �1 and so on.
On the other hand, Eq. (4) takes the form

q(i; j)= e−�
�
1 ( j

�−i�) ; (11)

which gives the probability that an element that has survived to the load i�1 also
survives to a new load j�1, being �1 the load that produces the 2rst breaking event
in the system at the initial state. The probability that the 2rst avalanche consists of,
for example in one failure, is given by q(1; 2). The 2rst avalanche will have size two
with probability p(1; 2)q(1; 3). In general, the probability that the 2rst avalanche does
not provoke the rupture of the whole system, i.e., be 2nite, is given by

P1 =
∞∑
l= 1

�lq(1; l+ 1) ; (12)

where

�l=p(1; 2)p(1; 3) : : : p(1; l)=
l∏

i = 2

p(1; i); l¡N0 ;

with �1 = 1. Thus, the average size of the 2rst avalanche, derived from Eq. (12) is

S1 =
∞∑
l= 1

l�lq(1; l+ 1) : (13)

Numerical simulations of the continuous case, the discrete approximation (both de2ned
as above for the global load sharing scheme) and Monte Carlo method con2rm the
validity of Eq. (13). For example, for �=2 and N0 = 1000 we obtain S1 = 1:0030;
S1 = 1:0022 and S1 = 1:0039, respectively. This result is valid only for the 2rst avalanche
in the system.
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We have also veri2ed by means of Monte Carlo simulations that for this local transfer
rule, there is no power law in the distribution of avalanche sizes. Besides, no scaling
relations appear and the system is more sensitive to parameters such as the degree of
disorder (�) and the size of the system N0. Catastrophic avalanches arise very often
in the 2rst stages of the rupture process.
Finally, we illustrate how one can describe the precursory activity when it is limited

to a few steps before the global rupture. Let us solve the particular situation in which
the 2rst avalanche is 2nite and the second provokes the 2nal breakdown of the system.
The load needed to break the 2rst element at the initial state is

�1 =
(
−ln

(
1− 1

N0

))1=�

�
(

1
N0

)1=�

; N0�1 :

So ��1 � 1=N0, and

q(1; 2)= e−(2�−1)1=N0 : (14)

If the value of q(1; 2) in Eq. (14) is bigger than 0.5, then the fracture will likely
consist of one single event of rupture and the avalanche will not progress beyond this
2rst failure. As shown above, for �=2 a system size of N0 = 1000 elements is enough
to produce 2rst avalanches of size 1 on average. Next, the driving force is increased
and the new load acting on the surviving N0 − 1 2bers is

�2 =
(
��1 − ln

(
1− 1

N0 − 1

))1=�

�
(

2
N0

)1=�

; N0 − 1�1

that is, ��2 = 2=N0. In the derivation of �2 it has been assumed that the second avalanche
starts with high probability in a 2ber di>erent from that which is located just in the
crack tip of the 2rst avalanche. This approximation is well-justi2ed by numerical simu-
lations of this local load model for which it is known that the 2rst breaking events are
randomly distributed in the sample, leading to the appearance of several small cracks
which much later coalesce and grow provoking the 2nal breakdown. Now, there are
(N0 − 2) elements bearing a load �2 and one element supporting a load �2 + �1. The
system will experience on average the 2nal breakdown in this second breaking event
if the probability

q′(1; 2)= e−(2�−1)2=N0 (15)

is lower than 0.5. Nevertheless, q(1; 2) and q′(1; 2) are not independent since the
relation

q′(1; 2)= (q(1; 2))2 (16)

has to be veri2ed. This dependence, together with the restrictions q(1; 2)¿ 0:5 and
q′(1; 2)¡ 0:5 leads to 0:5¡q(1; 2)¡ 0:7 and 0:25¡q′(1; 2)¡ 0:5 as acceptable val-
ues for q(1; 2) and q′(1; 2) in order to have a two-step system collapse. This approxi-
mation seems reasonable taking into account the way in which numerical simulations
of the continuous and the discrete versions of the probabilistic approach proceed. So,
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the condition for the 2rst avalanche to be 2nite and that the second breaks the system
is reduced to

N0 � 2�+1 − 2 (17)

for q(1; 2)=0:6, a value in the middle of its range. This relationship between N0 and �
is con2rmed in numerical simulations. The situation considered above corresponds to a
very brittle rupture since the ratio of the size of the typical local damage that induces
the system failure to the system size is very close to one (N0 − 1)=N0. Expression
(17), although very simple, gives a rough estimate of the qualitative relation between
the size of the system and the amount of disorder when the degree of brittleness of
the fracture is high. The situation analyzed becomes important and more accurate as we
go to larger system sizes because for the local load transfer rule and a larger number
N of 2bers, the probability to 2nd a weak region somewhere in the system is high and
due to the local redistribution rule, the crack will propagate fast enough to break the
whole system in a few steps (strictly speaking, in the thermodynamic limit the critical
load is zero).

4. Discussion and conclusions

We have proposed a probabilistic approach to 2ber bundle models of fracture. The
cases of long range interactions among the 2bers of the bundle and a local load sharing
transfer scheme (short range interactions) were considered in order to investigate the
behavior of the system near the global breakdown of the material. The results obtained
for the local scheme indicate that the system undergoes a kind of 2rst-order phase tran-
sition in agreement with previous reports [6,7,26]. The system fails with no signi2cant
precursors announcing the incipient rupture, and no scaling relations can be found even
for large system sizes and strong disorder. We illustrated this behavior by considering
the situation of a two-step global failure. In this particular case, several quantities have
a discrete jump at the critical point, like the branching ratio � which goes from zero
to (N0 − 2)=N0 − 1, i.e., from zero to one in the limit of N0 → ∞.

The scenario is quite di>erent for the global load sharing FMB. In this case, the type
of phase transition is not very clear. There are basically two possible ways in which
such a transition may occur. In a 2rst-order phase transition, we 2nd discontinuous
behavior in various quantities as we pass through the critical point. Contrary to this
case, in a second-order (or continuous) phase transition, the 3uctuations are correlated
over all length scales, therefore, not only does the correlation length diverges continu-
ously as the critical point is approached, but also other quantities show scaling [27]. A
particular case is the 2rst-order phase transition close to a spinodal-like instability, for
which scaling relations can be obtained despite that some macroscopic quantities, like
the elastic modulus, have a discrete, 2nite jump at the critical point [28]. The question
then is whether the global load sharing FBM is a case of a second-order transition or
a 2rst-order spinodal transition.
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Fig. 5. Fraction of unbroken 2bers just before the 2nal breakdown in the probablistic model of the global
load sharing case as a function of the system size (�=2). The horizontal line shows the exact value in the
thermodynamic limit.

The results obtained with the probabilistic approach seem not to support the claim
of Ref. [5] that the failure of a 2ber bundle model under a global load sharing transfer
scheme behaves as a 2rst-order phase transition close to a spinodal point. There, by
simulating models of electric breakdown and fracture, the authors presented ample
numerical and theoretical evidence of several scaling relations and of the discrete jump
of the macroscopic properties. We have obtained the same scaling relation for the rate
of 2ber failures as the critical point is reached, as well as for the avalanche sizes, which
also diverge at the transition. Note that the scaling exponent derived from numerical
simulations of the continuous version of the probabilistic approach 2ts very well the
mean 2eld result �= 1

2 . Besides, the fraction of unbroken 2bers just before the global
rupture has a discontinuity, which is not size dependent for big systems as can be
observed in Fig. 5. It has also been shown by analytic means that the distribution of
avalanche sizes in the case of global load sharing transfer rule follows a universal
power law with an exponent − 5

2 [29–32].
However, we should notice that in driven disordered systems, the concepts related to

spinodal nucleation are not suJciently well-established. In particular, it seems that the
2nite size of the system makes it possible that the last catastrophic avalanche provokes
the elastic modulus to drop to zero with a 2nite, and very likely, N-dependent jump.
Thus, from our point of view, it is not enough to set the conclusion that fracture can
be described as a 2rst-order phase transition.
Our alternative point of view is to consider the branching ratio de2ned previously

as a measure of the distance of the system from the critical point. According to the
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results obtained, the branching ratio goes continuously from zero to one. The branching
ratio measures the probability that a 2ber that has failed triggers none, one or more
breaking events. Therefore, a branching ratio equal to one at the critical point implies
that, on average, one failure will induce another failure so that the system reaches a
state where any perturbation propagates across the entire system, which is, in essence,
a critical phase. This invokes a continuous phase transition as claimed in other analysis
of fracture models [33]. Note, additionally, that what changes discontinuously at �c is
the rate of change of � rather than � itself.
In summary, we have introduced a probabilistic approach to 2ber bundle models

which allows to avoid the 3uctuations near the critical point. The di>erent rupture
behaviours of the system for the global load sharing scheme and the local one were
shown. For the short range interactions case, the rupture is no-doubt of the 2rst-order
phase transition type. For the global transfer rule, several scaling relations were obtained
with mean 2eld critical exponents. The branching ratio was de2ned as an appropriate
order parameter. According to the results obtained, the branching ratio goes continu-
ously from zero to one. This suggests that fracture in heterogeneous systems with long
range interactions can be described as a phase transition of the second-order type, at
least within the FBM picture.
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