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Abstract

We study the synchronization of Kuramoto’s oscillators in small parts of networks known
as motifs. We first report on the system dynamics for the case of a scale-free network and
show the existence of a non-trivial critical point. We compute the probability that network
motifs synchronize, and find that the fitness for synchronization correlates well with motif’s
interconnectedness and structural complexity. Possible implications for present debates about
network evolution in biological and other systems are discussed.
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1. Introduction

During the last years, many scientists have scrutinized the world around us looking
for regularities. One of the most recent findings is the fact that many real systems can
be cast into a common topological structure, called complex networks [1]. Examples
include biological [2,3] social [4] and technological [5] systems that exhibit similar
patterns of interconnections [6]. They are characterized by the existence of key elements

* Corresponding author. Departamento de Fisica Teorica, Faculty of Sciences, Universidad de Zaragoza,
Mathematical Building 3rd Floor, Zaragoza 50009, Spain. Tel.: +34-657962866; fax: +34-976761140.
E-mail address: yamir@unizar.es (Y. Moreno Vega).

0378-4371/$ - see front matter (© 2004 Elsevier B.V. All rights reserved.
doi:10.1016/j.physa.2004.05.033


mailto:yamir@unizar.es

280 Y. Moreno Vega et al. | Physica A 343 (2004) 279-287

in the network which drastically reduce the average distance between all of them, the
so-called small-world property [6]. Additionally, it turns out that for a large number
of real-world systems, the probability that any given element (node) of the system
interacts with (is linked to) k& other components, follows a power-law P(k) ~ k77,
with an exponent y usually estimated between 2 and 3. These networks have been
termed scale-free (SF) networks.

The above property was soon shown to be at the root of distinct behaviors when
several dynamical processes are placed on top of SF networks. These are the cases of
percolation and epidemic spreading processes, intensively studied during the last years
due to their practical relevance in different applications and the availability of analytical
treatments [7-11]. The peculiar topological properties of the underlying network for
these two processes lead to the absence of any percolation or spreading threshold
in the thermodynamic limit, a previously well-established result for regular and
random graphs.

It is then natural to ask whether or not and to what extent the topology of complex
networks influences the behavior of other dynamical processes. In particular, for bio-
logical and other applications, it would be relevant to consider the nodes of a given
network as nonlinear dynamical systems. The behavior of an isolated generic dynami-
cal system in the long-term limit can be described by stable fixed points, limit cycles
or chaotic attractors [12]. However, we have learned in recent years that when many
of such dynamical systems are coupled together, the details matter. In this way, the
study of networks with both dynamical and structural complexity might shed light on
a number of relevant open problems where nonlinearity and spatial complexity coexist.
Dynamical complexity may manifest itself through self-organization, synchronization,
the emergence of order, etc.

In this paper, we study the emergence of collective phase synchronization [13] in
scale-free networks and in simple topological configurations such as triangles, squares
and pentagons with a variable number of internal connections, called network mo-
tifs. To this end, we study the model proposed by Kuramoto several years ago and
show how a large number of the system’s constituents forms a common dynamical
pattern, despite the intrinsic differences in their individual dynamics. On a theoreti-
cal level, we point out that the fitness for synchronization of network motifs corre-
lates well with their conservation in the evolution of protein motifs [14], which might
hint at new connections between graph theory, dynamics on networks and biological
systems.

2. The Kuramoto model in scale-free networks

In order to study how topology influences collective dynamics, we assume that each
network’s component is an oscillator and that each interacts with the others following
the Kuramoto model [15,16]. This choice is due to the remarkable prestige achieved
by synchronization as a cooperative phenomenon within nonlinear science and to the
seniority, elegance and universality of this model. Specifically, each node i is considered
to be a planar rotor characterized by an angular phase, 6;, and a natural frequency w;.
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Linked nodes interact with a coupling strength A according to

do, d

d—tl:w[+iZsin(9j—0i), (1)
J

where k; is the number of neighbors of the rotor i as given by the actual architecture

of the underlying graph. For the present work, the natural frequencies and the initial

values of 6; have been randomly drawn from a uniform distribution g(w) with mean

wo=0 in the interval (—%, %) and (—mn, 1), respectively. Synchronization occurs when 4

exceeds a critical value, at which clusters of frequency-locked oscillators appear. This

state represents the emergence of cooperation between network’s constituents.

The original Kuramoto model corresponds to the simplest case of globally coupled
(all-to-all), equally weighted oscillators where the coupling strength A =K/N to ensure
that the model is well behaved in the thermodynamic limit [15,16]. For this model and
without any interaction, K =0, the oscillators follow their own dynamics as determined
by their natural frequencies and thus the system is unable to synchronize. However,
as K increases the population of rotors becomes more coherent and few oscillators
form a small cluster of ordered (synchronized) states. If K is further increased, the
synchronized pack tends to recruit more and more oscillators and eventually the system
settles into a unique and totally synchronous state. The onset of synchronization occurs
at a critical value of the coupling strength, K. = 2/ng(wq). The second-order phase
transition is characterized by the order parameter

N
1 "
r(t) = NE el (2)
Jj=1

which behaves when both N — oo and ¢ — 0o as r ~ (K — K. )? for K > K. being
B=3.

Inzorder to study the dynamics of the model on top of complex heterogeneous
networks, we first generated SF nets using the BA procedure [17]. In this model,
starting from a set of m( nodes, one preferentially attaches each time step a newly
introduced node to m older ones. The procedure is repeated N — mg times and a
network made up of N nodes with a power law degree distribution P(k) ~ k—7 with
y=3 and average connectivity (k)=2m builds up. This network is a clear example of a
highly heterogeneous network in that the degree distribution has unbounded fluctuations
when N — oo.

We have performed extensive simulations of the model [18] through numerical
integration of the equations of motion Eq. (1). In the case of random SF networks
the global dynamics of the system is qualitatively the same as for the original
Kuramoto model. The phase diagram of the system is shown in Fig. 1 for a net-
work of N = 10* nodes and several values of the average connectivity (k) = 2m,
where 7 is the order parameter as given by Eq. (2). Starting from small values of
the coupling strength, the interactions do not overcome the tendency of each rotor to
oscillate according to its individual dynamics. In this state, the behaviour of the system
is completely incoherent and no synchronization is achieved. This picture persists until
a certain critical value /. is crossed. At this point some elements lock their frequency
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Fig. 1. Phase diagram of the Kuramoto model in random scale-free networks for several average connectivity
values (k) = 2m. The onset of synchronization occurs at a nonzero value of 4 in all cases. Although not
shown, the transition follows the mean-field behavior exhibited by the globally coupled map. Each value of
r is the result of at least 10 network realizations and 1000 iterations for N = 10* nodes.

and a cluster of synchronized nodes comes up. This constitutes the onset of synchro-
nization. Beyond this value, there are several groups or clusters within which the nodes
are either synchronized and locked or still governed by their intrinsic dynamics and
thus in an asynchronous state. The first groups add to r and it departs from zero as
/. is increased beyond A.. Finally, after further increasing the value of A, more and
more nodes cluster around the mean phase and the system eventually settles into a
completely synchronized state where r ~ 1.

On the other hand, Fig. 1 also provides evidence that the critical point at which
synchronization is attained in these SF networks is not zero [18]. This is more clearly
appreciated if one eliminates the dependency observed in the figure of the parameter r
on the average connectivity of the network (k). If in Eq. (1) the term A is substituted
by 2/{k), the (k)-dependency is avoided and all curves in Fig. 1 collapse into a single
one, showing a critical coupling strength 4. = 0.25(3) signaling that even for large
values of the average connectivity, 4. is not equal to zero. Additionally, finite-size
scaling analysis [18] shows that the transition remains of the second-order type as for
the case of fully connected networks.

3. Synchronization of network motifs
Let us now turn our attention to small geometrical structures known as motifs

[19-21] instead of looking at the whole network. These structures can be defined
as graph components which are observed in a given network more frequently than in a
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Fig. 2. Probability of synchronization for five topological motifs. Configurations are according to Table 1.
Each value of Py is the result of 1000 iterations over the distribution of w; for each value of A. The
horizontal line marks the threshold of Pgy,. for the computation of 2*. See the text for further details.

completely random graph with identical P(k). Triangles and rectangular loops are
among these graph components, also known as cycles. They are important because
they express the degree of redundancy and multiplicity of paths among nodes in the
topology of the network and reveal the existence of hierarchical levels. Hence, the
extension of the study of synchronization phenomena to motifs is also relevant.

We have computed for all motifs up to N =4 nodes the probability, Py, that
synchronization occurs. This probability is an increasing function of A, and is calculated
for each A by randomly drawing the values of the natural frequencies ; from a uniform
distribution in the interval (f%,%). Starting from A = 0, one averages, for every A/,
over many realizations of w; and computes the relative number of simulations where
synchronization is accomplished, Py,,.. We define A*, which varies from motif to motif,
as the value of / beyond which Pg,. > % The lower A* is for a motif, the better it
synchronizes. In Fig. 2, we have represented P, as a function of A for several motifs.

The simplest case of the dimer (#1 in the Table) can be deduced analytically. Using
the same notation as in Eq. (1), here we have

d01 d02

— =) + Asin(6, — 6;), =wy + Asin(0; — 6,) . 3)

dr dr
To solve these equations, we introduce the new variables
2)&
f=0-0, kx=wy—w, c=—. (4)
K

Thus, f is the phase difference between the rotors, x is the difference in the natu-
ral frequencies and ¢ is a dimensionless constant equal to twice the ratio A/x. From
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Eq. (3) we obtain,

df

Wi —csnp) 4 (5)

The integration of Eq. (5) leads to three solutions depending on the value of ¢. The
three distinct results of the integral in Eq. (5) indicate a different functional behavior
of the system when ¢ < 1, c=1 and when ¢ > 1. In fact, c=1 is the critical point. In
consequence, from the definition of ¢ in Eq. (4), the critical coupling of this system
corresponds to

K

X*:Ez(wz—wl)ﬂ. (6)
Recalling that the ws are drawn from a uniform probability distribution in the interval
(—%, %) with a mean equal to zero, i.e., w;=—w,=w, we have that the synchronization

condition reduces to 4 > w. The probability Py, is then equal to Py, = 1/% =24, for

A< %, and Pgy,e =1 for 2> % Thus, for the dimer we have A* = %. For the other
motifs, Pg,. has been calculated numerically by means of a fourth-order Runge—Kutta
method. The results are summarized in Fig. 2 for several motifs (see also Table 1).
From Fig. 2, one realizes that for a fixed motif’s size, the way in which connections
are established determines the synchronization threshold of that motif configuration. For
instance, configurations 4, 6 and 9 correspond to motifs made up of four oscillators with
a variable number of connections among them. However, their 1* are quite different.
This indicates that the details of the local and internal connections matter. In partic-
ular, we observe that the higher the interconnection between motif’s constituents, the

lower A*.

4. Discussions and conclusions

We now show how the present study may provide useful hints to a better under-
standing of several experimental observations in biological systems. Recent advances in
network analysis and modeling have provided a promising approach to understanding
basic biological organization [22,23]. In this context, quantitative evidence has been
recently reported [14] that in Saccharomyces cerevisiae, the proteins organized in def-
inite cohesive patterns of interaction, and these patterns themselves, are conserved in
the evolution across species in a substantially higher degree than those that do not
participate in such specific motifs. A second finding [14] is that the conservation of
proteins in distinct topological motifs correlates with their interconnectedness.

These observations take place in the context of activities occurring within a living cell
and which no doubt, are of extreme complexity. Non-linear dynamics prevails at this
level of organization, where units that interact according to simple rules can generate
unexpected complex patterns [12]. On a theoretical level, one may hypothesize that the
observed persistence across evolution is due to some mechanism aimed at optimizing
the cooperation between neighboring nodes. A first approach would then be to see if
the same structures favor the synchronization as a cooperative phenomenon.
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Table 1

The third column gives the value of the coupling strength beyond which the motif synchronizes with proba-
bility Pgne > % Natural conservation rates (NCR) reported in the table are taken from Ref. [14]. The values
reported are sorted in such a way that for a fixed N, the NCR values are in increasing order. Although not
shown due to the lack of NCR values, our conclusions hold for five-node and higher motifs. In particular, it
is straightforward to conclude from the mean-field description of the Kuramoto model (all-to-all architecture)
that as N increases, the synchronization threshold decreases

# Motif A NCR (%)
1 [ ) 0.25 13.67

2 oo 0.28 4.99

3 A 0.16 20.51
4 < 0.31 0.73

5 0.32 2.64

6 I:I 0.20 6.71

7 IS: 0.22 7.67

8 IZI 0.18 18.68

9 m 0.14 32.53

Table 1 summarizes the results found in Ref. [14] and the values of A* for the Ku-
ramoto’s model in the same motifs. It is surprising the existence of a possible correla-
tion between conservation and fitness for synchronization of network motifs. Namely,
the lower 4*, the higher the natural conservation rate. From Table 1, one observes that:
(1) A7 < /4; < A3, for the chain-like motifs; (ii) A5 > A7 > A§ > A5, for motifs ordered
in increasing degree of complexity, i.e., when one can go from the lower configuration
(5) to next one by adding a new link arbitrarily; and (iii) 45 > A{ > 4§ > 45, when
interconnectedness between motif constituents increases. This may indicate that motifs
displaying an improved fitness to develop cooperative activities are preserved across
evolution with a higher probability.
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The results here obtained for topological motifs may be seen on a more general basis
concerning the architecture of real biological and social networks. It is known that for
most of these networks, the probability of finding cycles (motifs) in their structure is
higher than that expected from a completely random graph with the same connectivity
distribution. For social and biological networks, friendship or business relationships
and natural selection seem to be at the origin of such cycles. From this perspective,
one may assume that these networks have been shaped during their evolution by some
kind of optimization mechanism that improves on a local level their ability to develop
cooperation. If a new link is created and afterwards it reveals as not beneficial, then
it is removed at later times.

In summary, we have studied the synchronization of Kuramoto’s phase coupled oscil-
lators for the cases of scale-free networks and motifs. The results obtained indicate that
the architecture of random SF networks allows synchronization at a small value of the
coupling strength 4. Additionally, motifs with high interconnectedness show the lower
synchronization thresholds. Moreover, the results presented here for the Kuramoto’s
model hold for other non-linear dynamical systems, including chaotic oscillators [24].
Our results then lead to a twofold conclusion. On one hand, they suggest that non-linear
mechanisms may be key ingredients for the understanding of the evolution of networks
at a local scale. On the other hand, as recently unraveled for protein and other bio-
logical networks, the real topology of the systems under analysis is worth taking into
account [25]. Finally, we point out that the kind of models studied here together with
the spatial complexity of the underlying net is relevant for cell biology. A recent
example can be found in the discovery that an ultradian clock (oscillator) shapes
genome expression in the yeast Saccharomyces cerevisiae [26].

Acknowledgements

Y. M. acknowledges financial support from a BIFI research grant. This work has
been partially supported by the Spanish DGICYT Project BFM2002-01798.

References

[1] S.H. Strogatz, Nature (London) 410 (2001) 268.
[2] H. Jeong, S.P. Mason, A.-L. Barabasi, Z.N. Oltvai, Nature (London) 411 (2001) 41.
[3] R.V. Solé, J.M. Montoya, Proc. R. Soc. London B 268 (2001) 2039.
[4] M.E.J. Newman, Proc. Natl. Acad. Sci. USA 98 (2001) 404.
[5] A. Vazquez, R. Pastor-Satorras, A. Vespignani, Phys. Rev. E 65 (2002) 066130.
[6] D.J. Watts, H.S. Strogatz, Nature 393 (1998) 440.
[7] D.S. Callaway, M.E.J. Newman, S.H. Strogatz, D.J. Watts, Phys. Rev. Lett. 85 (2000) 5468.
[8] R. Pastor-Satorras, A. Vespignani, Phys. Rev. Lett. 86 (2001) 3200.
[9] Y. Moreno, R. Pastor-Satorras, A. Vespignani, Eur. Phys. J. B 26 (2002) 521.
[10] A. Vazquez, Y. Moreno, Phys. Rev. E 67 (2003) 015101(R).
[11] Y. Moreno, J.B. Gémez, A.F. Pacheco, Phys. Rev. E 68 (2003) 035103(R).
[12] S.H. Strogatz, Nonlinear Dynamics and Chaos, Perseus Books, Reading, MA, 1994.
[13] A. Pikovsky, M. Rosenblum, J. Kurths, Synchronization: A Universal Concept in Nonlinear Science,
Cambridge University Press, Cambridge, 2001.



Y. Moreno Vega et al.| Physica A 343 (2004) 279-287 287

[14
[15
[16
[17

S. Wuchty, Z.N. Oltvai, A.-L. Barabasi, Nat. Genet. 35 (2003) 176—179.
Y. Kuramoto, Chemical Oscillations, Waves, and Turbulence, Springer, Berlin, 1984.
S.H. Strogatz, Physica D 143 (2000) 1.
A.-L. Barabasi, R. Albert, Science 286 (1999) 509;
A.-L. Barabasi, R. Albert, H. Jeong, Physica A 272 (1999) 173.
[18] Y. Moreno, A.F. Pacheco, unpublished, preprint cond-mat/0401266 (2004).
[19] S. Itzkovitz, R. Milo, N. Kashtan, G. Ziv, U. Alon, Phys. Rev. E 68 (2003) 026127.
[20] R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii, U. Alon, Science 298 (2002) 824.
[21] G. Bianconi, A. Capocci, Phys. Rev. Lett. 90 (2003) 078701.
[22] J. Hasty, D. McMillen, J.J. Collins, Nature 420 (2002) 224-230.
]
]
]
]

—

[23] H. Kitano, Science 295 (2002) 1662.

[24] M. Barahona, L.M. Pecora, Phys. Rev. Lett. 89 (2002) 054101.

[25] A. Vespignani, Nat. Genet. 35 (2003) 118.

[26] R.R. Klevecz, J. Bolen, G. Forrest, D.B. Murray, Proc. Natl. Acad. Sci. USA 101 (2004) 1200.



	Fitness for synchronization of network motifs
	Introduction
	The Kuramoto model in scale-free networks
	Synchronization of network motifs
	Discussions and conclusions
	Acknowledgements
	References


