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Abstract

We introduce a general stochastic model for the spread of rumours, and derive mean-field equations that describe the

dynamics of the model on complex social networks (in particular, those mediated by the Internet). We use analytical and

numerical solutions of these equations to examine the threshold behaviour and dynamics of the model on several models of

such networks: random graphs, uncorrelated scale-free networks and scale-free networks with assortative degree

correlations. We show that in both homogeneous networks and random graphs the model exhibits a critical threshold in

the rumour spreading rate below which a rumour cannot propagate in the system. In the case of scale-free networks, on the

other hand, this threshold becomes vanishingly small in the limit of infinite system size. We find that the initial rate at

which a rumour spreads is much higher in scale-free networks than in random graphs, and that the rate at which the

spreading proceeds on scale-free networks is further increased when assortative degree correlations are introduced. The

impact of degree correlations on the final fraction of nodes that ever hears a rumour, however, depends on the interplay

between network topology and the rumour spreading rate. Our results show that scale-free social networks are prone to the

spreading of rumours, just as they are to the spreading of infections. They are relevant to the spreading dynamics of chain

emails, viral advertising and large-scale information dissemination algorithms on the Internet.

r 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Rumours are an important form of social communications, and their spreading plays a significant role in a
variety of human affairs. The spread of rumours can shape the public opinion in a country [1], greatly impact
financial markets [2,3] and cause panic in a society during wars and epidemics outbreaks. The information
content of rumours can range from simple gossip to advanced propaganda and marketing material. Rumour-
like mechanisms form the basis for the phenomena of viral marketing, where companies exploit social
networks of their customers on the Internet in order to promote their products via the so-called ‘word-of-
email’ and ‘word-of-web’ [4]. Finally, rumour-mongering forms the basis for an important class of
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communication protocols, called gossip algorithms, which are used for large-scale information dissemination
on the Internet, and in peer-to-peer file sharing applications [5,6].

Rumours can be viewed as an ‘‘infection of the mind’’, and their spreading shows an interesting resemblance
to that of epidemics. However, unlike epidemic spreading quantitative models and investigations of rumour
spreading dynamics have been rather limited. An standard model of rumour spreading, was introduced many
years ago by Daley and Kendal [7,8]. The Daley–Kendal (DK) model and its variants, such as the
Maki–Thompson (MK) model [9], have been used extensively in the past for quantitative studies of rumour
spreading [10–13]. In the DK model a closed and homogeneously mixed population is subdivided into three
groups, those who are ignorant of the rumour, those who have heard it and actively spread it, and those who
have heard the rumour but have ceased to spread it. These groups are called ignorants, spreaders and stiflers,
respectively. The rumour is propagated through the population by pair-wise contacts between spreaders and
others in the population, following the law of mass action. Any spreader involved in a pair-wise meeting
attempts to ‘infect’ the other individual with the rumour. In the case this other individual is an ignorant, it
becomes a spreader. In the other two cases, either one or both of those involved in the meeting learn that the
rumour is ‘known’ and decide not to tell the rumour anymore, thereby turning into stiflers [8]. In the
Maki–Thompson variant of the above model the rumour is spread by directed contacts of the spreaders with
others in the population. Furthermore, when a spreader contacts another spreader only the initiating spreader
becomes a stifler.

An important shortcoming of the above class of models is that they either do not take into account the
topology of the underlying social interaction networks along which rumours spread (by assuming a
homogeneously mixing population), or use highly simplified models of the topology [11,12]. While such simple
models may adequately describe the spreading process in small-scale social networks, via the word-of-mouth,
they become highly inadequate when applied to the spreading of rumours in large social interaction networks,
in particular, those which are mediated by the Internet. Such networks, which include email networks [14–16],
social networking sites [17] and instant messaging networks [18] typically number in tens of thousands to
millions of nodes. The topology of such large social networks shows highly complex connectivity patterns. In
particular, they are often characterized by a highly right-skewed degree distribution, implying the presence of
a statistically significant number of nodes in these networks with a very large number of social connections
[14,15,17,18].

A number of recent studies have shown that introducing the complex topology of the social networks along
which a rumour spreads can greatly impact the dynamics of the above models. Zanette performed simulations
of the deterministic MK model on both static [19] and dynamic [20] small-world networks. His studies showed
that on small-world networks with varying network randomness the model exhibits a critical transition
between a regime where the rumour ‘‘dies’’ in a small neighbourhood of its origin, and a regime where it
spreads over a finite fraction of the whole population. Moreno et al. studied the stochastic version of the MK
model on scale-free networks, by means of Monte Carlo simulations [21], and numerical solution of a set of
mean-field equations [22]. These studies revealed a complex interplay between the network topology and the
rules of the rumour model and highlighted the great impact of network heterogeneity on the dynamics of
rumour spreading. However, the scope of these studies were limited to uncorrelated networks. An important
characteristic of social networks is the presence of assortative degree correlations, i.e., the degrees of adjacent
vertices is positively correlated [14,15,23,24]. Furthermore, the mean-field equations used in Ref. [22] were
postulated without a derivation.

In this paper we make several contributions to the study of rumour dynamics on complex social
networks. First of all, we introduce a new model of rumour spreading on complex networks which,
in comparison with previous models, provides a more realistic description of this process. Our model
unifies the MK model of rumour spreading with the susceptible-infected-removed (SIR) model of
epidemics, and has both of these models as its limiting cases. Secondly, we describe a formulation
of this model on networks in terms of interacting Markov chains (IMC) [25], and use this framework to
derive, from first-principles, mean-field equations for the dynamics of rumour spreading on complex
networks with arbitrary degree correlations. Finally, we use approximate analytical and exact
numerical solutions of these equations to examine both the steady-state and the time-dependent
behaviour of the model on several models of social networks: homogeneous networks, Erd +os–Rényi
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(ER) random graphs, uncorrelated scale-free networks and scale-free networks with assortative degree
correlations.

We find that, as a function of the rumour spreading rate, our model shows a new critical behaviour on
networks with bounded degree fluctuations, such as random graphs, and that this behaviour is absent in scale-
free networks with unbounded fluctuations in node degree distribution. Furthermore, the initial spreading rate
of a rumour is much higher on scale-free networks as compared to random graphs. This spreading rate is
further increased when assortative degree correlations are introduced. The final fraction of nodes which ever
hears a rumour (we call this the final size of a rumour), however, depends on an interplay between the model
parameters and degree–degree correlations. Our findings are relevant to a number of rumour-like processes
taking place on complex social networks. These include the spreading of chain emails and Internet hoaxes,
viral advertising and large-scale data dissemination in computer and communication networks via the
so-called gossip protocols [5].

The rest of this paper is organized as follows. In Section 2 we describe our rumour model. In Section 3 a
formulation of the model within the framework of IMC is given, and the corresponding mean-field equations
are derived. In Section 4 we present analytical results for the steady-state behaviour of our model for both
homogeneous and inhomogeneous social networks. This is followed in Section 5 by numerical investigations
of the steady state and dynamics of the model on several models of social networks: the ER random graph, the
uncorrelated scale-free networks and the assortatively correlated SF networks. We close this paper in Section 6
with conclusions.

2. A general model for rumour dynamics on social networks

The spread of rumours is a complex socio-psychological process. An adequate modelling of this process
requires both a correct description of the underlying social networks along which rumours spread and a
quantitative formulation of various behavioural mechanisms that motivate individuals to participate in the
spread of a rumour. The model described below is an attempt to formalize and simplify these behavioural
mechanisms in terms of a set of simple but plausible rules.

Our model is defined in the following way. We consider a population consisting of N individuals which, with
respect to the rumour, are subdivided into ignorants, spreaders and stiflers. Following Maki and Thompson
[9], we assume that the rumour spreads by directed contact of the spreaders with others in the population.
However, these contacts can only take place along the links of an undirected social interaction network
G ¼ ðV ;EÞ, where V and E denote the vertices and the edges of the network, respectively. The contacts
between the spreaders and the rest of the population are governed by the following set of rules
�
 Whenever a spreader contacts an ignorant, the ignorant becomes a spreader at a rate l.

�
 When a spreader contacts another spreader or a stifler the initiating spreader becomes a stifler at a rate a.

In the above, the first rule models the tendency of individuals to accept a rumour only with a certain
probability which, loosely speaking, depends on the urgency or credibility of a rumour. The second rule, on
the other hand, models the tendency of individuals to lose interest in spreading a rumour when they learn,
through contacts with others, that the rumour has become stale news, or is false. In both the DK and the MK
rumour models, and their variants, stifling is the only mechanism that results in cessation of rumour
spreading. In reality, however, cessation can occur also purely as a result of spreaders forgetting to tell the
rumour, or their disinclination to spread the rumour anymore. Following a suggestion in Ref. [8], we take this
important mechanism into account by assuming that individuals may also cease spreading a rumour
spontaneously (i.e., without the need for any contact) at a rate d. The spreading process starts with one (or
more) element(s) becoming informed of a rumour and terminates when no spreaders are left in the population.

3. IMC mean-field equations

We can describe the dynamics of the above model on a network within the framework of the IMC. The IMC
was originally introduced as a means for modelling social processes involving many interacting actors (or
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agents) [25]. More recently they have been applied to the dynamics of cascading failures in electrical power
networks [26], and the spread of malicious software (malware) on the Internet [27]. An IMC consists of N

interacting nodes, with each node having a state that evolves in time according to an internal Markov chain.
Unlike conventional Markov chains, however, the corresponding internal transition probabilities depend not
only on the current state of a node itself, but also on the states of all the nodes to which it is connected. The
overall system evolves according to a global Markov Chain whose state space dimension is the product of
states describing each node. When dealing with large networks, the exponential growth in the state space
renders direct numerical solution of the IMCs extremely difficult, and one has to resort to either Monte Carlo
simulations or approximate solutions. In the case of rumour model, each internal Markov chain can be in one
of the three states: ignorant, spreader or stifler. For this case we derive below a set of coupled rate equations
which describe on a mean-field level the dynamics of the IMC. We note that a similar mean-field approach
may also be applicable to other dynamical processes on networks which can be described within the IMC
framework.

Consider now a node j which is in the ignorant state at time t. We denote with p
j
ii the probability that this

node stays in the ignorant state in the time interval ½t; tþ Dt�, and with p
j
is ¼ 1� p

j
ii the probability that it

makes a transition to the spreader state. It then follows that

p
j
ii ¼ ð1� DtlÞg, (1)

where g ¼ gðtÞ denotes the number of neighbours of node j which are in the spreader state at time t. In order to
progress, we shall coarse-grain the microdynamics of the system by classifying nodes in our network according
to their degree and taking statistical average of the above transition probability over degree classes.

Assuming that a node j has k links, g can be considered as an stochastic variable which has the following
binomial distribution:

Pðg; tÞ ¼
k

g

� �
yðk; tÞgð1� yðk; tÞÞk�g, (2)

where yðk; tÞ is the probability at time t that an edge emanating from an ignorant node with k links points to a
spreader node. This quantity can be written as

yðk; tÞ ¼
X

k0

Pðk0jkÞPðsk0 jikÞ �
X

k0

Pðk0jkÞrsðk0; tÞ. (3)

In this equation Pðk0jkÞ is the degree–degree correlation function, Pðsk0 jikÞ the conditional probability that a
node with k0 links is in the spreader state, given that it is connected to an ignorant node with degree k, and
rsðk0; tÞ is the density of spreader nodes at time t which belong to connectivity class k. In the above equation
the final approximation is obtained by ignoring dynamic correlations between the states of neighbouring
nodes.

The transition probability p̄iiðk; tÞ averaged over all possible values of g is then given by

p̄iiðk; tÞ ¼
Xk

g¼0

k

g

� �
ð1� lDtÞgyðk; tÞgð1� yðk; tÞÞk�g

¼ 1� lDt
X

k0

Pðk0jkÞrsðk0; tÞ

 !k

. ð4Þ

In a similar fashion we can derive an expression for the probability p̄ssðk; tÞ that a spreader node which has k

links stays in this state in the interval ½t; tþ Dt�. In this case, however, we also need to compute the expected
value of the number of stifler neighbours of the node at time t. Following steps similar to the previous
paragraphs we obtain

p̄ssðk; tÞ ¼ 1� aDt
X

k0

Pðk0jkÞðrsðk0; tÞ þ rrðk0; tÞÞ

 !k

ð1� dDtÞ. (5)
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The corresponding probability for a transition from the spreader to the stifler state, p̄srðk; tÞ is given by
p̄srðk; tÞ ¼ 1� p̄ssðk; tÞ.

The above transition probabilities can be used to set up a system of coupled Chapman–Kolmogorov
equations for the probability distributions of the population of ignorants, spreaders and stiflers within each
connectivity class. However, ignoring fluctuations around expected values we can also obtain a set of
deterministic rate equations for the expected values of these quantities.

Denote with Iðk; tÞ;Sðk; tÞ;Rðk; tÞ the expected values of the populations of nodes belonging to connectivity
class k which at time t are in the ignorant, spreader or stifler state, respectively. The event that an ignorant
node in class k will make a transition to the spreader state during ½t; tþ Dt� is a Bernoulli random variable with
probability ð1� piiðk; tÞÞ of success. As a sum of i.i.d random Bernoulli variables, the total number of
successful transitions in this time interval has a binomial distribution, with an expected value given by
Iðk; tÞð1� piiðk; tÞÞ. Hence the rate of change in the expected value of the population of ignorant nodes
belonging to class k is given by

Iðk; tþ DtÞ ¼ Iðk; tÞ � Iðk; tÞ 1� 1� lDt
X

k0

rsðk0; tÞPðk0jkÞ

 !k
2
4

3
5. (6)

Similarly, we can write the corresponding rate of change in the population of spreaders and stiflers as follows

Sðk; tþ DtÞ ¼ Sðk; tÞ þ Iðk; tÞ 1� 1� lDt
X

k0

rsðk0; tÞPðk0jkÞ

 !k
2
4

3
5

� Sðk; tÞ 1� 1� aDt
X

k0

ðrsðk0; tÞ þ rrðk0; tÞÞPðk0jkÞ

 !k

ð1� dDtÞ

2
4

3
5 ð7Þ

Rðk; tþ DtÞ ¼ Rðk; tÞ

þ Sðk; tÞ 1� 1� aDt
X

k0

ðrsðk0; tÞ þ rrðk0; tÞÞPðk0jkÞ

 !k

ð1� dDtÞ

2
4

3
5 ð8Þ

In the above riðk; tÞrsðk; tÞ, and rrðk; tÞ are the fraction of nodes belonging to class k which are in the
ignorant, spreader and stifler states, respectively. These quantities satisfy the normalization condition
riðk; tÞ þ rsðk; tÞ þ rrðk; tÞ ¼ 1. In the limit Dt! 0 we obtain

qriðk; tÞ

qt
¼ �klriðk; tÞ

X
k0

rsðk0; tÞPðk0jkÞ, (9)

qrsðk; tÞ

qt
¼ klriðk; tÞ

X
k0

rsðk0; tÞPðk0jkÞ � karsðk; tÞ
X

k0

ðrsðk0; tÞ þ rrðk0; tÞÞPðk0jkÞ � drsðk; tÞ, (10)

qrrðk; tÞ

qt
¼ karsðk; tÞ

X
k0

ðrsðk0; tÞ þ rrðk0; tÞÞPðk0jkÞ þ drsðk; tÞ. (11)

For future reference we note here that information on the underlying network is incorporated in the above
equations solely via the degree–degree correlation function. Thus, in our analytical and numerical studies
reported in the next section we do not need to generate any actual network. All that is required is either an
analytical expression for Pðk0jkÞ or a numerical representation of this quantity.
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4. Analysis

4.1. Homogeneous networks

In order to understand some basic features of our rumour model we first consider the case of homogeneous
networks, in which degree fluctuations are very small and there are no degree correlations. In this case the
rumour equations become:

driðtÞ

dt
¼ �lk̄riðtÞrsðtÞ, (12)

drsðtÞ

dt
¼ lk̄riðtÞrsðtÞ � ak̄rsðtÞðrsðtÞ þ rrðtÞÞ � drsðtÞ, (13)

drrðtÞ

dt
¼ ak̄rsðtÞðrsðtÞ þ rrðtÞÞ þ drsðtÞ, (14)

where k̄ denotes the constant degree distribution of the network (or the average value for networks in which
the probability of finding a node with a different connectivity decays exponentially fast).

The above system of equations can be integrated analytically using an standard approach. In the infinite
time limit, when rsð1Þ ¼ 0, we obtain the following transcendal equation for R ¼ rrð1Þ, the final fraction of
nodes which ever hear the rumour (we call this the final rumour size)

R ¼ 1� e��R, (15)

where

� ¼
ðaþ lÞk̄
dþ ak̄

. (16)

Eq. (15) admits a non-zero solution only if �41. For da0 this condition is fulfilled provided

l
d

k̄41, (17)

which is precisely the same threshold condition as found in the SIR model of epidemic spreading on homogeneous
networks [28,29]. On the other hand, in the special case d ¼ 0 (i.e., when the forgetting mechanism is absent)
� ¼ 1þ l=a41, and so Eq. (15) always admits a non-zero solution, in agreement with the result in Ref. [22].

The above result shows, however, that the presence of a forgetting mechanism results in the appearance of a
finite threshold in the rumour spreading rate below which rumours cannot spread in homogeneous networks.
Furthermore, the value of the threshold is independent of a (i.e., the stifling mechanism), and is the same as
that for the SIR model of epidemics on such networks. This result can be understood by noting that in the
above equations the terms corresponding to the stifling mechanism are of second order in rs, while the terms
corresponding to the forgetting mechanism are only of first order in this quantity. Thus in the initial state of
the spreading process, where rs � 0 and rr � 0, the effect of stifling is negligible relative to that of forgetting,
and the dynamics of the model reduces to that of the SIR model.

4.2. Inhomogeneous networks

Next we consider uncorrelated inhomogeneous networks. In such networks the degree–degree correlations
can be written as (Ref. [30]):

Pðk0jkÞ ¼ qðk0Þ ¼
k0Pðk0Þ

hki
, (18)

where Pðk0Þ is the degree distribution and hki is the average degree. In this case the dynamic of rumour
spreading is describe by Eqs. (9)–(11). Eq. (9) can be integrated exactly to yield

riðk; tÞ ¼ riðk; 0Þe�lkfðtÞ, (19)
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where riðk; 0Þ is the initial density of ignorant nodes with connectivity k, and we have introduced the auxiliary
function

fðtÞ ¼
X

k

qðkÞ

Z t

0

rsðk; t0Þdt0 �

Z t

0

hhrsðk; t0Þiidt0. (20)

In the above equation and hereafter we use the shorthand notation

hhOðkÞii ¼
X

k

qðkÞOðkÞ (21)

with

qðkÞ ¼
kPðkÞ

hki
. (22)

In order to obtain an expression for the final size of the rumour, R, it is more convenient to work with f.
Assuming an homogeneous initial distribution of ignorants, riðk; 0Þ ¼ ri

0, we can obtain a differential
equation for this quantity by multiplying Eq. (10) with qðkÞ and summing over k. This yields after some
elementary manipulations:

df
dt
¼ 1� hhe�lkfii � df� a

Z t

0

½1� hhe�lkfðt0Þii� hhkrsðk; t0Þiidt0, (23)

where, without loss of generality, we have also put ri
0 � 1.

In the limit t!1 we have df=dt ¼ 0, and Eq. (23) becomes:

0 ¼ 1� hhe�lkf1ii � df1 � a
Z 1
0

½1� hhe�lkfðt0Þii�hhkrsðk; t0Þii dt0, (24)

where f1 ¼ limt!1 fðtÞ.
For a ¼ 0 Eq. (24) can be solved explicitly to obtain F1 [28]. For aa0 we solve (24) to leading order in a.

Integrating Eq. (10) to zero order in a we obtain

rsðk; tÞ ¼ 1� e�lkf � d
Z t

0

edðt�t0Þ½1� e�lkfðt0Þ�dt0 þOðaÞ. (25)

Close to the critical threshold both fðtÞ and f1 are small. Writing fðtÞ ¼ f1f ðtÞ, where f ðtÞ is a finite
function, and working to leading order in f1, we obtain

rsðk; tÞ ’ �dlkf1

Z t

0

edðt�t0Þf ðt0Þdt0 þOðf2
1Þ þOðaÞ. (26)

Inserting this in Eq. (24) and expanding the exponential to the relevant order in f1 we find

0 ¼ f1½lhhkii � d� l2hhk2
iið1=2þ ahhkiiIÞf1� þOða2Þ þOðf3

1Þ, (27)

where I is a finite and positive-defined integral. The non-trivial solution of this equation is given by

f1 ¼
lhhkii � d

l2hhk2
iið1

2
þ aIhhkiiÞ

. (28)

Noting that hhkii ¼ hk2
i=hki and hhk2

ii ¼ hk3
i=hki we obtain

f1 ¼
2hki

hk2
i

hki
l� d

� �

l2hk3
i 1þ 2aI

hk2
i

hki

� � . (29)
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This yields a positive value for f1 provided that

l
d
X
hki

hk2
i
. (30)

Thus, to leading order in a, the critical rumour threshold is independent of the stifling mechanism and is the
same as for the SIR model [28,29]. In particular, for d ¼ 1 the critical rumour spreading threshold is given by
lc ¼ hki=hk

2
i, and Eq. (29) simplifies to

f1 ¼
2hkiðl� lcÞ

l2hk3
iðlc þ 2aIÞ

. (31)

Finally, R is given by

R ¼
X

k

PðkÞð1� e�lkf1Þ. (32)

The solution to the above equation depends on the form of PðkÞ. In particular, for homogeneous networks
where all the moments of the degree distribution are bounded, we can expand the exponential in Eq. (32) to
obtain

R �
X

k

PðkÞlkf1 ¼
2hki2ðl� lcÞ

lhk3
iðlc þ 2aIÞ

, (33)

which shows that R�ðl� lcÞ in the vicinity of the rumour threshold. For heterogeneous networks, one must
solve (32) explicitly. This can be done for example, as for the SIR model [28].

5. Numerical results

5.1. Random graphs and uncorrelated scale-free networks

We consider first uncorrelated networks, for which the degree–degree correlations are given by Eq. (18). We
shall consider two classes of such networks. The first class is the Erd +os–Rényi random networks, which for
large N have a Poisson degree distribution:

PðkÞ ¼ e�k hki
k

k!
. (34)

The above degree distribution peaks at an average value hki and shows small fluctuations around this value.
The second class we consider are scale-free networks which have a power law degree distribution:

PðkÞ ¼
Ak�g kminpk

0 otherwise:

�
(35)

In the above equation kmin is the minimum degree of the networks and A is a normalization constant. Recent
studies of social networks on the Internet indicates that many of these networks show highly right-skewed
degree distributions, which could often be modelled by a power-law degree distribution [15,17,18]. For
2pgp3 the variance of the above degree distribution becomes infinite in the limit of infinite system size while
the average degree distribution remains finite. We shall consider henceforth SF networks with g ¼ 3.

Our studies of uncorrelated networks were performed using the above forms of PðkÞ to represent ER and SF
networks, respectively. The size of the networks considered was N ¼ 105 and 106, and the average degree was
fixed at hki ¼ 7. For each network considered we generated a sequence of N random integers distributed
according to its degree distribution. The coupled set of differential (9)–(11) were then solved numerically using
an standard finite difference scheme, and numerical convergence with respect to the step size was checked
numerically. In the following and throughout the paper all calculations reported are performed by starting the
rumour from a randomly chosen initial spreader, and averaging the results over 300 runs with different initial
spreaders. The calculations reported below were performed for networks consisting of N ¼ 106 nodes.
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Fig. 1. The final size of the rumour, R is shown as a function of the spreading rate l for the ER network of size 106. The results are shown
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Fig. 2. R is plotted as a function of l� lc for the ER network of size 106, using different values of a. Solid lines show our numerical fits to
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b, with b ¼ 1.
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In our first set of calculations we set d ¼ 1 and investigate the dynamics as a function of the rumour
spreading rate l and the stifling rate a. First we focus on the impact of network topology on the final size of a
rumour, R, which for inhomogeneous networks is obtained from

R ¼
X

k

rrðk; t1Þ, (36)

where t1 denotes a sufficiently long time at which the spreading process has reached its steady state (i.e., no
spreaders are left in the network). In Fig. 1 R corresponding to the ER network is plotted as a function of l,
and for several different values of the stifling parameter a. It can be seen that in this network R exhibits a
critical threshold lc below which a rumour cannot spread in the network. Furthermore, just as in the case of
homogeneous networks, the value of the threshold does not depend on a, and is at lc ¼ 0:12507. This value is
in excellent agreement with the analytical results obtained in the previous section. We also verified numerically
that, in agreement with our analytical findings, the behaviour of R in the vicinity of the critical point can be
described with the form

R�Aðl� lcÞ, (37)
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where A ¼ AðaÞ is a smooth and monotonically decreasing function of a. The results are shown in Fig. 2 where
R is plotted as function of l for a range of values of a, together with the corresponding fits.

Next we turn to our results for the SF network. In Fig. 3 results for R in this network are shown. In this case
we also observe the presence of an a-independent rumour threshold, albeit for much smaller spreading rates
than for the ER network. We have verified numerically that in this case the threshold is approached with zero
slope, as can also be gleaned from Fig. 3. Since the value of the threshold is independent of a, we can use the
well-known result for the SIR model (the a ¼ 0 case) to conclude that in the limit of infinite system size the
threshold seen in the SF network will approach zero. It is therefore not an intrinsic property of rumour
spreading on this network.

In order to further analyse the behaviour of R in SF networks, we have numerically fitted our results to the
stretched exponential form,

R� expð�C=lÞ, (38)
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Fig. 3. The final size of the rumour, R is shown as a function of the spreading rate l for the SF network of size 106. The results are shown

for several values of the stifling parameter a.
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Fig. 4. R (in log scale) in the SF network of size 106 is plotted as a function of 1=l and several values of a. Solid lines are our numerical fits

to the stretched exponential form R ¼ BðaÞ expð�CðaÞ=lÞ.
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with C depending only weakly on a. This form was found to describe the epidemic prevalence in both the SIS
and the SIR model of epidemics [28,31]. The results are displayed in Fig. 4, and they clearly indicate that the
stretched exponential form also nicely describes the behaviour of R in our rumour model. This result provides
further support for our conjecture that the general rumour model does not exhibit any threshold behaviour on
SF networks (at least in the limit of infinite systems size).

In addition to investigating the impact of network topology on the steady-state properties of the model, it is
of great interest to understand how the time-dependent behaviour of the model is affected by topology. In
Figs. 5 and 6 we display, as representative examples, time evolution of, respectively, the total fractions of
stiflers and spreaders, in both networks for l ¼ 1 and two sets of values of the cessation parameters:
fd ¼ 1; a ¼ 0g, and fd ¼ 0; a ¼ 1g. The first set of parameters corresponds to a spreading process in which
cessation results purely from spontaneous forgetting of a rumour by spreaders, or their disinclination to
spread the rumour any further. The second set corresponds to a scenario where individuals keep spreading the
rumour until they become stiflers due to their contacts with other spreaders or stiflers in the network. As can
be seen in Fig. 5, in the first scenario the initial spreading rate of a rumour on the SF network is much faster
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Fig. 5. Time evolution of the density of stiflers is shown on the ER (dashed lines) and the SF network (solid lines) when the dynamics

starts with a single spreader node. Results are shown for two sets of values of the cessation parameters fa ¼ 0; d ¼ 1} and fa ¼ 1; d ¼ 0g.

The network sizes are N ¼ 106.
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Fig. 6. Time evolution of the density of spreaders is shown for the same networks, model parameters and initial conditions as in Fig. 5.
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than on the ER network. In fact, we find that the time required for the rumour to reach 50% of nodes in the
ER random graph is nearly twice as long as the corresponding time on the SF networks. This large difference
in the spreading rate is due to the presence of highly connected nodes (social hubs) in the SF network, whose
presence greatly speeds up the spreading of a rumour. We note that in this scenario not only a rumour spreads
initially faster on SF networks, but it also reaches a higher fraction of nodes at the end of the spreading
process.

It can be seen from Figs. 5 and 6 that in the second spreading scenario (i.e., when stifling is the only
mechanism for cessation) the initial spreading rate on the SF network is, once again, higher than on the ER
network. However, unlike the previous situation, the ultimate size of the rumour is higher on the ER network.
This behaviour is due to the conflicting roles that hubs play when the stifling mechanism is switched on.
Initially the presence of hubs speeds up the spreading but once they turn into stiflers they also effectively
impede further spreading of the rumour.
5.2. Assortatively correlated scale-free networks

Recent studies have revealed that social networks display assortative degree correlations, implying that
highly connected vertices preferably connect to vertices which are also highly connected [23]. In order to study
the impact of such correlations on the dynamics of our model, we make use of the following ansatz for the
degree–degree correlation function [32]

Pðk0jkÞ ¼ ð1� bÞqðk0Þ þ bdkk0 ; ð0pbo1Þ. (39)

The above form allows us to study in a controlled way the impact of degree correlations on the spreading of
rumour.

Using the above degree–degree correlation function we numerically solved Eqs. (9)–(11) for a SF network
characterized by g ¼ 3 and hki ¼ 7. The network size was fixed at N ¼ 100; 000, and we used two values for
the correlation parameter: b ¼ 0:2 and b ¼ 0:4. Fig. 7 displays R as a function of l, and for a ¼ 0:5; 0:75; 1 (the
value of d was fixed at 1).

It can be seen that below l � 0:5 a rumour will reach a somewhat smaller fraction of nodes on the correlated
networks than on the uncorrelated ones. However, for larger values of l this behaviour reverses, and the final
size of the rumour in assortatively correlated networks shows a higher value than in the uncorrelated network.
We thus conclude that the qualitative impact of degree correlations on the final size of a rumour depends very
much on the rumour spreading rate.
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Fig. 7. The final size of the rumour is plotted as a function of l and for several values of a in the SF network of size 105. Results are shown

in the absence (solid lines) of assortative degree–degree correlations and in the presence of such correlations. The correlation strengths

used are b ¼ 0:2 (short dashed lines) and b ¼ 0:4 (long dashed lines).
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Finally, we investigate the effect of assortative correlations on the speed of rumour spreading. In Fig. 8 we
show our results for the time evolution of the total fraction of spreaders, SðtÞ, in scale-free networks consisting
of N ¼ 100; 000 nodes and for a correlation strength ranging from b ¼ 0 to 0.4. In these calculations the value
of l was fixed at 1, and we considered two values of a: 0,1. It can be seen that the initial rate at which a rumour
spreads increases with an increase in the strength of assortative correlations regardless of the value of a.
However, for a ¼ 1 the rumour also dies out faster when such correlations are stronger.
6. Conclusions

In this paper we introduced a general model of rumour spreading on complex networks. Unlike previous
rumour models, our model incorporates two distinct mechanisms that cause cessation of a rumour, stifling and
forgetting. We used an IMC formulation of the model to derive deterministic mean-field equations for the
dynamics of the model on complex networks. Using these equations, we investigated analytically and
numerically the behaviour of the model on ER random graphs and scale-free networks with exponent g ¼ 3.
The critical behaviour, the dynamics and the stationary state of our model on these networks are significantly
different from the results obtained for the dynamics of simpler rumour models on complex networks [19–22].
In particular, our results show the presence of a critical threshold in the rumour spreading rate below which a
rumour cannot spread in ER networks. The value of this threshold was found to be independent of the stifling
mechanism, and to be the same as the critical infection rate of the SIR epidemic model. Such a threshold is
also present in the finite-size SF networks we studied, albeit at a much smaller value. However, in SF networks
this threshold is reached with a zero slope and its value becomes vanishingly small in the limit of infinite
network size. We also found the initial rate of spreading of a rumour to be much higher on scale-free networks
than on ER random graphs. An effect which is caused by the presence of hubs in these networks, which
efficiently disseminate a rumour once they become informed. Our results show that SF networks are prone to
the spreading of rumours, just as they are to the spreading of infections.

Finally, we used a local ansatz for the degree–degree correlation function in order to numerically investigate
the impact of assortative degree correlations on the speed of rumour spreading on SF networks. These
correlations were found to speed up the initial rate of spreading in SF networks. However, their impact on the
final fraction of nodes which hear a rumour depends very much on the rate of rumour spreading.

In the present work we assumed the underlying network to be static, i.e., a time-independent network
topology. In reality, however, many social and communication networks are highly dynamic. An example of
such time-dependent social networks is Internet chatrooms, where individuals continuously make new social
contacts and break old ones. Modelling spreading processes on such dynamic networks is highly challenging,
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in particular, when the time scale at which network topology changes becomes comparable with the time scale
of the process dynamics. We aim to tackle this highly interesting problem in future work.
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