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For years limited Monte Carlo simulations have led to the suspicion that the time to failure of hierarchically
organized load-transfer models of fracture is nonzero for sets of infinite size. This fact could have profound
significance in engineering practice and also in geophysics. Here, we develop an exact algebraic iterative
method to compute the successive time intervals for individual breaking in systems of heightn in terms of the
information calculated in the previous heightn21. As a byproduct of this method, rigorous lower and higher
bounds for the time to failure of very large systems are easily obtained. The asymptotic behavior of the
resulting lower bound leads to the evidence that the above-mentioned suspicion is actually true.
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There are few mechanical problems more complex
difficult to cast into a definite physical and theoretical tre
ment than the range of phenomena associated with frac
Furthermore, there are few problems with a wider field
application: material science, engineering, rock mechan
seismology, and earthquake occurrence. Our understan
of fracture processes in heterogeneous materials has rec
improved with the development of simple deterministic a
stochastic algorithms to simulate the process of quasis
loading and static fatigue@1#. The load-transfer models use
here are called fiber-bundle models, because they aros
close connection with the strength of bundles of textile
bers. Since Daniels’s and Coleman’s@2# seminal works,
there has been a long tradition in the use of these mode
analyze failure of heterogeneous materials@3#. Fiber-bundle
models differ by how the load carried by a failed elemen
distributed among the surviving elements in the set. In
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simplest scheme, called equal load sharing~ELS!, the load
supported by failed elements is shared equally among
surviving elements. Important from the geophysical point
view is the hierarchical load-sharing~HLS! rule introduced
by Smalley, Turcotte, and Solla in the seismological lite
ture @4#. In this load-transfer modality the scale invariance
the fracture process is directly taken into account by me
of a scheme of load transfer following the branches o
fractal~Cayley! tree with a fixed coordination numberc. The
HLS geometry nicely simulates the Green’s function asso
ated with the elastic redistribution of stress adjacent to
rupture. In the static case, the strength of an HLS sys
tends to zero as the size of the system,N, approaches infin-
ity, though very slowly, as 1/log(logN) @5#. The dynamic
HLS model was introduced in the geophysical literature
reference@6#; their specific aim was to find out if the chain o
partial failure events preceding the total failure of the
resemble a log-periodic sequence@7#. In the analysis of@6#, it
appeared that, contrary to the static model, the dynamic H
model seemed to have a nonzero time-to-failure as the siz
the system tends to infinity. In this paper we provide e
R1287 ©1999 The American Physical Society
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dence that this conjecture is true by means of an exact a
braic iterative method where trees ofn levels, N5cn, are
solved using the information acquired in the previous cal
lation of trees of n21 levels. As a by-product of this
method, we obtain a rigorous lower bound for the time
failure of infinite size sets which results in being nonzero

In @8# we showed how in fiber-bundle dynamical mode
using a Weibull exponential shape function and a power-
breaking rule, one can devise a probabilistic approach th
equivalent to the usual approach@6#, where the random life-
times are fixed at the beginning and the process evolves
terministically. Without loss of generality, from the probab
listic perspective the set of elements with initial individu
loads s5s051 and suffering successive casualties
equivalent to an inhomogeneous sample of radioactive nu
each with a decay widthsr; r being the so called Weibul
index, which in materials science adopts typical values
tween 2 and 10. As time passes and failures occur, loads
transferred,s changes, and the decay width of the survivi
elements grow. In the probabilistic approach, in each ti
step defined as

d5
1

(
j

s j
r

, ~1!

one element of the sample decays. The indexj runs along all
the surviving elements. The probability of one specific e
ment, m, to fail is pm5sm

r d. Equation~1! is the ordinary
link between the mean time interval for one element to de
in a radioactive sample and the total decay width of
sample as defined above. Due to this analogy, radioact
terms will frequently be used in this Rapid Communicatio
Note that we use loads and times without dimensions.
time to failure,T, of a set is the sum of theN d s. For the
ELS case, the value ofd as defined in Eq.~1! easily leads to
T51/r, which is the correct result for the time to failure o
an infinite ELS set@6#. In this Rapid Communication we wil
apply these ideas to the HLS case obtaining thed s algebra-
ically without having to use Monte Carlo simulations.

To give a perspective of what is going on in the ruptu
process of a hierarchical set we have drawn in Fig. 1

FIG. 1. Breaking process for the three smallest trees of coo
nationc52 (N51,2,4). The integers in parentheses (r ) represent
the number of breakings that has occurred. Thed s stand for the
time steps elapsed between successive individual breakings an
numbers under the legs indicate the load they bear.
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three smallest cases for trees of coordinationc52. Denoting
by n the number of levels, or height of the tree, i.e.,N
52n, we have consideredn50, 1, and 2. The integers within
parentheses (r ) account for the number of failures existing
the tree. When there are several nonequivalent configurat
corresponding to a givenr , they are labeled as (r ,s), i.e., we
add a new indexs. The total load is conserved except at t
end, when the tree collapses. Referring to the high symm
of loaded fractal trees, note that each of the configurati
explicitly drawn in Fig. 1 represents all those that can
brought to coincidence by the permutation of two legs join
at an apex, at any level in the height hierarchy. Hence we
them nonequivalent configurations or merely configuratio
In general, each configuration (r ,s) is characterized by its
probability p(r ,s), (sp(r ,s)51, and its decay width
G(r ,s). The time step for one-element breaking at the sta
r , is given by

d r5(
s

p~r ,s!
1

G~r ,s!
. ~2!

This is the necessary generalization of Eq.~1! due to the
appearance of nonequivalent configurations for the samr
during the decay process of the tree. In cases of branch
the probability that a configuration chooses a specific dir
tion is equal to the ratio between the partial decay width
that direction and the total width of the parent configuratio
We will compute at a glance thed s of Fig. 1 in order to later

FIG. 2. Width diagrams for the breaking process ofN58. ~a!
Primary diagram. The various configurations are labeled by the
tegers inside the boxes. The integers in parentheses at the rig
the boxes represent the twoN54 configurations juxtaposed to form
each of theN58 configurations. The number accompanying
arrow connecting two boxes stands for the dimensionless pa
decay width of that transition.~b! Effective diagram. This is ob-
tained from~a!, and is used to obtain rigorous bounds for the ne
height,N516. Theas are explained in the text.
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analyze the general case. To be specific, we will always
r52. For n50, we haveG(0)512 and d051/12515T.
For n51, G(0)51211252, d05 1

2 , G(1)522, d15 1
4 and

henceT5 1
2 1 1

4 5 3
4 . For n52, G(0)51211211211254,

d05 1
4 , G(1)52211211256, d15 1

6 ; now we face a
branching, the probability of the transition (1)→(2,1) is 4

6

and the probability of the transition (1)→(2,2) is 2
6 , on the

other hand G(2,1)522122585G(2,2), henced25 4
6 •

1
8

1 2
6 •

1
8 5 1

8 . Finally d35 1
16 and the addition ofd s givesT

5 29
48 .
Now we define the replica of a configuration belonging

a given n, as the same configuration but with the loa
doubled~this is because we are usingc52!. The replica of a
given configuration will be recognized by a prime sign.
other words (r ,s)8 is the replica of (r ,s). Any decay width,
partial or total, related to (r ,s)8 is automatically obtained by
multiplying the corresponding value of (r ,s) by the common
factor cr52r54. This is a consequence of the power-la
breaking rule assumed. The need to define the replicas s
from the observation that any configuration appearing i
stage of breakingr of a givenn, can be built as the juxta
position of two configurations of the leveln21, including
also the replicas of the leveln21 as ingredients of the game
In Fig. 1, one can observe the explicit structure of the c
figurations ofN54 as a juxtaposition of those ofN52 and
its replicas. From this perspective we notice that as the c
figurations for the heightn are formed by juxtaposing two
configurations of the already solved heightn21 and its rep-
licas, with the restriction that the total load must be equa
2n because the total load is conserved, the single-elem
breaking transitions occurring can only be of three typ
One case~a! corresponds to the breaking of one element i
half of the tree while the other half remains as an unaffec
spectator. Another case~b! corresponds to the decay of th
last surviving element in a half of the tree, which provok

FIG. 3. Relation between the explicit and the symbolic notatio
for configurations ofN58, built juxtaposing pairs ofN54. See the
text for details.
se

ms
a

-

n-

o
nt
.

a
d

s

its collapse and the corresponding doubling of the load bo
by the other half. Finally, the third case~c! corresponds to
the scenario in which one half of the tree has already c
lapsed and in the other half one break occurs. In this th
case the decay width is obtained from the information of
replicas. This holds for any heightn, allows the computation
of all the partial decay widths in a tree of heightn from those
obtained in the heightn21, and will be illustrated in Fig. 3.

Using henceforth a convenient symbolic notation, in F
2~a! we have built what we call the primary width diagra
for n53 resulting from the juxtapositions of pairs of con
figurations of the previous diagram ofn52 and its replicas.
It is implicitly understood that time flows downward alon
with the breaking process. In Fig. 2~a! the boxes represen
n53 configurations, and at their right, the two quantities
parentheses indicate the twon52 configurations forming
them. The value of the partial width connecting a parent a
a daughter is written at the end of the corresponding arr
The sum of all the partial widths of a parent configuration
a branching is always equal to the total decay width,G, of
the parent. From this primary width diagram one deduces
probability of any primary configuration at any stager of
breaking, and consequentlyd r is obtained using Eq.~2!. Fi-
nally, by adding all theds we calculateT(n53). To illus-
trate the connection between the explicit configurations
those of Fig. 1 and the somewhat hermetic notation of Fig
in Fig. 3, we have shown three explicit examples relat
them. Figure 3 is self-explanatory. The three examples c
respond to the cases~a!, ~b!, and~c! mentioned before.

By iterating this procedure, that is, by forming the p
mary diagram of then11 height by juxtaposing the configu
rations of the primary diagram of the heightn, we can, in
principle, exactly obtain the total time to failure of trees
successively doubled size. Two examples areT(n53)
5 63 451

123 200 and T(n54)5 21 216 889 046 182 831
46 300 977 698 976 000. The problem

s
FIG. 4. Dimensionless lifetime,T, for a fractal tree of heightn:

the circles are obtained from Monte Carlo simulations; the conti
ous lines are the stringent bounds, and the dotted lines are the
bounds.
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arises from the vast amount of configurations one has
handle in the successive primary diagrams. This fact eve
ally blocks the possibility of obtaining exact results for tre
high enough as to be able to gauge the asymptotic beha
of T in HLS sets. That is why, taking advantage of the ge
eral perspective gained with the exact algebraic meth
henceforth our more modest goal will be to set rigoro
bounds forT. This task is much simpler.

To set bounds, we will define effective diagrams in whi
for eachr there is only one configuration which results fro
fusing in some specific appropriate way all the configu
tions labeled by the differents values; see Fig. 2~b!. These
effective configurations are connected by effective de
widths denoted byar . Thus, the effective diagram for anyn
is calculated from its primary diagram, and then is used
build a primary diagram of the next heightn11. Forn50, 1,
and 2, ar5G(r ) because;r , the G(r ,s) are equal to a
unique valueG(r ). The point is how to definear for n>3,
so that all thed(r )(n>4) and henceT(n>4) are systemati-
cally lower ~or higher! than its exact result. This goal i
easily accomplished using

ar5Gmax~r ! @or Gmin~r !#, ~3!

i.e., by assuming that the configuration of maximum~mini-
mum! width saturates the single element decay of the st
r . Better rigorous boundings are obtained using the geom
ric mean~or the harmonic mean!, namely

ar5)
s

G~r ,s!p~r ,s! S or
1

(
s

p~r ,s!
1

G~r ,s!
D . ~4!

The bounds obtained from these formulas are plotted in
4. It is clear that those based on Eq.~3! are poor; in fact, the
lower bound goes quickly to zero. On the other hand, th
based on Eq.~4! are stringent and useful. The value obtain
-
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for the lower ~higher! bound to T, from Eq. ~4!, will be
called Tl (Th). The arithmetic mean, i.e., ar

5(sp(r ,s)G(r ,s) also leads to a lower bound but it is not a
good as that coming from the geometric mean. The bou
emerging from these three means are rigorous because w
configurations of different decay width are fused, the form
the generated function appearing in the calculus of theds are
concave~convex!. This will be explained elsewhere.

We have fitted the data points ofTl by an exponential
function of the formTl5Tl ,`1ae2b(n2n0), Tl ,` , a, b, and
n0 being fitting parameters. The success of this fitting
crucial because this exponential decay to a nonzero lim
the hallmark of our claim. By choosing subsets formed o
by points representing big systems we observe a clear s
ration of the asymptotic time-to-failure towardsTl ,`

50.325 3760.000 01. An analogous analysis ofTh leads to
Th,`50.339 8460.000 01. Similar fittings of the Monte
Carlo data points are inconclusive, due to the intrinsic no
ness of the MC results and the limited size of the simula
sets ~N,216 elements!. What this result implies is that a
system with a hierarchical scheme of load transfer an
power-law breaking rule~c52, r52! has a time-to-failure
for sets of infinite size,T` , such that 0.325 37<T`

<0.339 84. Thus, there is an associated zero-probability
failing for T,T` and a probability equal to one of failing fo
T.T` . The critical point behavior is thus confirmed. Invo
ing conventional universality arguments one deduces
this property holds for a hierarchical structure of any co
dination. The case of dynamical HLS sets using an expon
tial breaking rule will be reported shortly.
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