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For years limited Monte Carlo simulations have led to the suspicion that the time to failure of hierarchically
organized load-transfer models of fracture is nonzero for sets of infinite size. This fact could have profound
significance in engineering practice and also in geophysics. Here, we develop an exact algebraic iterative
method to compute the successive time intervals for individual breaking in systems of inéigterms of the
information calculated in the previous height- 1. As a byproduct of this method, rigorous lower and higher
bounds for the time to failure of very large systems are easily obtained. The asymptotic behavior of the
resulting lower bound leads to the evidence that the above-mentioned suspicion is actually true.
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PACS numbd(s): 64.60.Ak, 05.45-a, 64.60.Fr, 91.60.Ba

There are few mechanical problems more complex angimplest scheme, called equal load sharigfS), the load
difficult to cast into a definite physical and theoretical treat-supported by failed elements is shared equally among all
ment than the range of phenomena associated with fractursurviving elements. Important from the geophysical point of
Furthermore, there are few problems with a wider field ofview is the hierarchical load-sharingiLS) rule introduced
application: material science, engineering, rock mechanicdy Smalley, Turcotte, and Solla in the seismological litera-
seismology, and earthquake occurrence. Our understandirigre[4]. In this load-transfer modality the scale invariance of
of fracture processes in heterogeneous materials has recenthe fracture process is directly taken into account by means
improved with the development of simple deterministic andof a scheme of load transfer following the branches of a
stochastic algorithms to simulate the process of quasistatitactal (Cayley tree with a fixed coordination number The
loading and static fatigugl]. The load-transfer models used HLS geometry nicely simulates the Green'’s function associ-
here are called fiber-bundle models, because they arose &ed with the elastic redistribution of stress adjacent to a
close connection with the strength of bundles of textile fi-rupture. In the static case, the strength of an HLS system
bers. Since Daniels’s and Colemar8] seminal works, tends to zero as the size of the systém,approaches infin-
there has been a long tradition in the use of these models ity, though very slowly, as 1/log(loly) [5]. The dynamic
analyze failure of heterogeneous mater{@§ Fiber-bundle HLS model was introduced in the geophysical literature in
models differ by how the load carried by a failed element isreferencd 6]; their specific aim was to find out if the chain of
distributed among the surviving elements in the set. In thepartial failure events preceding the total failure of the set

resemble a log-periodic sequen@é. In the analysis of6], it
appeared that, contrary to the static model, the dynamic HLS
*On leave from Departamento déskra, Technological Univer- model seemed to have a nonzero time-to-failure as the size of
sity of Havana, ISPJAE, Havana 19390, Cuba. the system tends to infinity. In this paper we provide evi-
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numbers under the legs indicate the load they bear. 6:1 wen 6,2 ey ™ 6’V 300 é
dence that this conjecture is true by means of an exact alge- 32, B2 y
braic iterative method where trees oflevels, N=c", are 7]y 7
solved using the information acquired in the previous calcu- 64 ay
lation of trees ofn—1 levels. As a by-product of this 8 @y 8

method, we obtain a rigorous lower bound for the time to
failure of infinite size sets which results in being nonzero. FIG. 2. Width diagrams for the breaking processhof 8. (a)

In [8] we showed how in fiber-bundle dynamical models, Primary diagram. The various configurations are labeled by the in-
using a Weibull exponential shape function and a power-lawegers inside the boxes. The integers in parentheses at the right of
breaking rule, one can devise a probabilistic approach that ithe boxes represent the tWb=4 configurations juxtaposed to form
equivalent to the usual approafd], where the random life- each of theN=8 configurations. The number accompanying an
times are fixed at the beginning and the process evolves détrow connecting two boxes stands for the dimensionless partial
terministically. Without loss of generality, from the probabi- decay width of that transitiontb) Effective diagram. This is ob-
listic perspective the set of elements with initial individual tained from(a), and is used to obtain rigorous bounds for the next
loads o=0,=1 and suffering successive casualties ish€ight.N=16. Theas are explained in the text.
equivalent to an inhomogeneous sample of radioactive nuclei L )
each with a decay widt; p being the so called Weibull three smallest cases for trees of co_ordlnaUQ-nZ. Deno_tmg
index, which in materials science adopts typical values beby N the number of levels, or height of the tree, i.8l,
tween 2 and 10. As time passes and failures occur, loads are2"» We have considerent=0, 1, and 2. The integers within
transferredo changes, and the decay width of the surviving parentheses§ account for the number of failures existing in

elements grow. In the probabilistic approach, in each timghe tree. When there are several nonequivalent configurations
step defined as corresponding to a given they are labeled as (s), i.e., we

add a new indes. The total load is conserved except at the

1 end, when the tree collapses. Referring to the high symmetry

o= , (1)  of loaded fractal trees, note that each of the configurations
2 of explicitly drawn in Fig. 1 represents all those that can be

] brought to coincidence by the permutation of two legs joined

at an apex, at any level in the height hierarchy. Hence we call

one element of the Samp|e decays_ The in"daxns a|0ng all them nonequivalent Configurations or merely Configurations.

the surviving elements. The probability of one specific ele-In general, each configuration,6) is characterized by its

ment, m, to fail is p,=0%,5. Equation(1) is the ordinary ~Probability p(r,s), Zsp(r,s)=1, and its decay width

link between the mean time interval for one element to decay (T-S). The time step for one-element breaking at the stage

in a radioactive sample and the total decay width of thel» iS given by

sample as defined above. Due to this analogy, radioactivity

terms will frequently be used in this Rapid Communication. S ZE n(r,s) 1 ©

Note that we use loads and times without dimensions. The T4 " I(r,s)’

time to failure, T, of a set is the sum of thH &s. For the

ELS case, the value af as defined in Eq(l) easily leads to This is the necessary generalization of Ef) due to the

T=1/p, which is the correct result for the time to failure of appearance of nonequivalent configurations for the same

an infinite ELS sef6]. In this Rapid Communication we will during the decay process of the tree. In cases of branching,

apply these ideas to the HLS case obtaining dsealgebra- the probability that a configuration chooses a specific direc-

ically without having to use Monte Carlo simulations. tion is equal to the ratio between the partial decay width in
To give a perspective of what is going on in the rupturethat direction and the total width of the parent configuration.

process of a hierarchical set we have drawn in Fig. 1 th&Ve will compute at a glance th&s of Fig. 1 in order to later
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trre FIG. 4. Dimensionless lifetimédl], for a fractal tree of height:
FIG. 3. Relation between the explicit and the symbolic notationsthe circles are obtained from Monte Carlo simulations; the continu-
for configurations oN=28, built juxtaposing pairs oR=4. See the ous lines are the stringent bounds, and the dotted lines are the gross
text for details. bounds.

analyze the general case. To be specific, we will always usis collapse and the corresponding doubling of the load borne
p=2. Forn=0, we havel'(0)= 12 and §p=1/1?= 1 T. by the other half. Finally, the third cage) corresponds to
Forn=1,T(0)=12+1?=2, §,=3, I'(1)=22, §;,=; and  the scenario in which one half of the tree has already col-
henceT=§+%=%. Forn=2, I'(0)=1%+ 124124 12=4, lapsed and in the other half one break occurs. In this third
So=3%, T(1)=2%2+12+12=6, §,=%; now we face a case the decay width is obtained from the information of the
branching, the probability of the transition (4:»)(2,1) is 2 replicas. This holds for any height allows the computation
and the probability of the transition (1) (2,2) is2, on the of all the partial decay widths in a tree of heighfrom those
other handI'(2,1)=2%+2?=8=T'(2,2), henced,=3-3  obtained in the height—1, and will be illustrated in Fig. 3.
+2 6, =1 Finally 53=% and the addition ofds givesT Using henceforth a convenient symbolic notation, in Fig.
2(a) we have built what we call the primary width diagram
Now we define the replica of a configuration belonging tofor n=3 resulting from the juxtapositions of pairs of con-
a givenn, as the same configuration but with the loadsfigurations of the previous diagram nf=2 and its replicas.
doubled(this is because we are usiog 2). The replica of a It is implicitly understood that time flows downward along
given configuration will be recognized by a prime sign. Inwith the breaking process. In Fig(#2 the boxes represent
other words (,s)’ is the replica of (,s). Any decay width, n=3 configurations, and at their right, the two quantities in
partial or total, related tor(s)’ is automatically obtained by parentheses indicate the two=2 configurations forming
multiplying the corresponding value of ) by the common them. The value of the partial width connecting a parent and
factor c’=2P=4. This is a consequence of the power-lawa daughter is written at the end of the corresponding arrow.
breaking rule assumed. The need to define the replicas sterifie sum of all the partial widths of a parent configuration in
from the observation that any configuration appearing in @ branching is always equal to the total decay widthpf
stage of breaking of a givenn, can be built as the juxta- the parent. From this primary width diagram one deduces the
position of two configurations of the level—1, including  probability of any primary configuration at any stageof
also the replicas of the leval- 1 as ingredients of the game. breaking, and consequentdy is obtained using Eq2). Fi-
In Fig. 1, one can observe the explicit structure of the connally, by adding all thess we calculateT (n=3). To illus-
figurations ofN=4 as a juxtaposition of those &f=2 and trate the connection between the explicit configurations as
its replicas. From this perspective we notice that as the corthose of Fig. 1 and the somewhat hermetic notation of Fig. 2,
figurations for the height are formed by juxtaposing two in Fig. 3, we have shown three explicit examples relating
configurations of the already solved height 1 and its rep- them. Figure 3 is self-explanatory. The three examples cor-
licas, with the restriction that the total load must be equal torespond to the casea), (b), and(c) mentioned before.
2" because the total load is conserved, the single-element By iterating this procedure, that is, by forming the pri-
breaking transitions occurring can only be of three typesmary diagram of the+ 1 height by juxtaposing the configu-
One casda) corresponds to the breaking of one element in arations of the primary diagram of the height we can, in
half of the tree while the other half remains as an unaffectegbrinciple, exactly obtain the total time to failure of trees of
spectator. Another cag®) corresponds to the decay of the successively doubled size. Two examples drgn=3)

last surviving element in a half of the tree, which provokes= 3% and T(n=4)=t5523389038182830 The problem

col

blN
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arises from the vast amount of configurations one has téor the lower (highep bound toT, from Eq. (4), will be
handle in the successive primary diagrams. This fact eventwalled T, (T,). The arithmetic mean, i.e., a,

ally blocks the possibility of obtaining exact results for trees=3 p(r,s)I'(r,s) also leads to a lower bound but it is not as
high enough as to be able to gauge the asymptotic behavigood as that coming from the geometric mean. The bounds
of T in HLS sets. That is why, taking advantage of the gen-emerging from these three means are rigorous because when
eral perspective gained with the exact algebraic methodsonfigurations of different decay width are fused, the form of

henceforth our more modest goal will be to set rigorousihe generated function appearing in the calculus ofshare

bounds forT. This task is much simpler.

To set bounds, we will define effective diagrams in which
for eachr there is only one configuration which results from
fusing in some specific appropriate way all the configura
tions labeled by the differerg values; see Fig. (®). These
effective configurations are connected by effective deca

build a primary diagram of the next height-1. Forn=0, 1,
and 2,a,=I'(r) becauseVr, the I'(r,s) are equal to a
unique valuel'(r). The point is how to defina, for n=3,
so that all thes(r)(n=4) and hencd(n=4) are systemati-
cally lower (or highep than its exact result. This goal is
easily accomplished using

ar=Imadr) [or Tmin(r)], )

i.e., by assuming that the configuration of maximgmini-
mum) width saturates the single element decay of the stag
r. Better rigorous boundings are obtained using the geome
ric mean(or the harmonic meannamely

1

25 p(r,s)

a, =[] r(r,s)P"® | or (4)

1

I'(r,s)

concave(conveX. This will be explained elsewhere.
We have fitted the data points @i by an exponential
function of the formT,=T, ..+ae (""" T, a, b, and

Ny being fitting parameters. The success of this fitting is
rucial because this exponential decay to a nonzero limit is
he hallmark of our claim. By choosing subsets formed only

ration of the asymptotic time-to-failure towards ..
=0.325370.00001. An analogous analysis Bf leads to
Th-=0.33984-0.00001. Similar fittings of the Monte
Carlo data points are inconclusive, due to the intrinsic noisi-
ness of the MC results and the limited size of the simulated
sets (N<2'® elements What this result implies is that a
system with a hierarchical scheme of load transfer and a
power-law breaking ruléc=2, p=2) has a time-to-failure
for sets of infinite size,T., such that 0.3253%T,
=<0.33984. Thus, there is an associated zero-probability of
iling for T<T., and a probability equal to one of failing for
[>T, . The critical point behavior is thus confirmed. Invok-
ing conventional universality arguments one deduces that
this property holds for a hierarchical structure of any coor-
dination. The case of dynamical HLS sets using an exponen-
tial breaking rule will be reported shortly.
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