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Modified renormalization strategy for sandpile models
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Following the renormalization-group scheme recently developed by Pietrebalo[Phys. Rev. Lett72,
1690(1994] we introduce a simplifying strategy for the renormalization of the relaxation dynamics of sandpile
models. In our scheme, five subcells at a generic dedtem the renormalized cell at the next larger scale.
Now the fixed point has a unique nonzero dynamical component that allows for a great simplification in the
computation of the critical exponent The values obtained are in good agreement with both numerical and
theoretical results previously reporté$1063-651X99)06112-7

PACS numbe(s): 64.60.Ak, 02.50-r, 05.40—a, 05.65+b

The concept of self-organized criticalit$SOQO intro-  lular automatons defined on a lattice where to each site one
duced by Bak, Tang, and Wiesenfe(BTW) [1] has at- assigns a variabléo which we will refer as energyWe let
tracted wide interest to understand a class of dynamicallyhe system evolve by randomly adding units of energy on the
driven systems which self-organize into a statistically stasystem. When the energy of a site reaches a critical value, it
tionary state characterized by the lack of any typical time orelaxes releasing its entire energy to the neighboring sites.
length scale. Numerical results for systems displaying SOThe affected sites may become unstable, triggering new top-
behavior have been extensively reporii2e8], but only afew  pling events and so on until all sites are again stable. Three
theoretical approaches are known to be in agreement withifferent classes of sites can be distinguish@dthose sites
numerical simulations in all dimensions. The major source ofor which the addition of a unit of energy does not induce
difficulties in the study of SOC systems lies in their inherentye|axation(stable sitek (i) those sites for which the addition
complexity, which makes the.models_ analytically tractablegs 5 ynit of energy causes them to become unstéabiécal
only in a few cases. The Abelian version of the BTW sand-gjteq  and(iii) unstable sites that will relax at the next time

pile model, addressed earlier by DHa#, turned out to be gt Open boundary conditions allow the energy to leave the
one of these exceptions. system

Recently, Pietronero, Vespignani, and Zappi&jidevel- In this formalism, we will denote by the density of

oped a new type of real-space renormalization-group ap e sites. These definitions can be extended to a generic

proach for dynamically driven systems, able to describe thecaleb by considering coarse-grained variables. Thus, a cell
self-organized critical state of sandpile models by defining Y -1ing S€-grs . ' '
at scaleb is considered critical if the addition of a unit of

characterization of the phase space in which the renormaliz i . .
tion of the dynamics under repeated change of scale is pog_nergyéE(b) induces a relaxation of the size of the cell, that

sible. In addition, it is also possible to compute the criticallS: the subrelaxation processes span the cell and transfer en-
exponents analytically6]. The method also reveals the na- €9y to some neighbors. According[t), the relaxation pro-
ture of the SOC problems and provides a picture about thE€SS can lead to four different possibilities at coarse-grained
universality classes of different sandpile models. Thislevels: the energy can be distributed to one, two, three, or
scheme of renormalization has been recently improved bfour neighbors with probabilitieg,, p,, ps, andp,, re-
considering increasingly complex proliferation pafi’s8]  spectively. Of course, it is also possible that in certain cases
and extended to forest-fire modé¢B&-11]. the unstable sites at the coarse-grained scale do not transfer
In this Brief Report, we follow the renormalization pro- energy to their nearest neighbors as well as to consider dif-
cedure of Refs[5,6] but using a Greek cross-shaped cell ferent proliferation problems. As ifb,6], we will not con-
instead of a square cell in the renormalization of the relaxsider these casd42]. Then, the probability distribution is
ation dynamics. The critical exponents that characterize th@efined by the vector
stationary state are then computed and they are found to be
in good agreement with previous theoretical results and
large-scale numerical simulations both for the BTW and
two-state model of Manna. We will see that the use of this
particular choice of cells simplifies the renormalization equa-
tions for the BTW model. .

. . . 4 _
In what follows, we will focus on the sandpile critical with the normahza_\tlon conditio;_,p;=1. ,
height models in two dimensions. Sandpile models are cel- SO: the properties of the system are fully characterized by

the distribution b,l5) at each scale. The relation betwegen
andP can be derived by noting that in the stationary state the
*On leave from Departamento déskra, Technological Univer- inflow of energy equals the flow of energy out of the system
sity of Havana, ISPJAE, Havana 19390, Cuba. [13]. This implies[6]

P=(p1,P2.,P3,Pa) 1)
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FIG. 2. A series of relaxation procesges— p;— p,. Open dots
o represent stable sites, filled dots critical sites, and encircled dots
unstable sites. Note that the last relaxation affects only one neigh-
bor despite having two outward arroWsee also Fig. }1
FIG. 1. Greek cross-shaped cell used in the renormalization pro-
cedure. The central subcelencircled dox and its four nearest Equation(3) gives the probability that a cell at scd& has
neighbors(black dot$ are displayed. The length scaling factor is the corresponding number of critical subcells at stife V.
V5. As an example of the general procedure, in Fig. 2 we have
drawn a series of relaxation procesggs-p;— p, at scale
w_ L b~ that contributes to the renormalization p{ at the
pr=—, (2 Jlarger scald®, starting from a configuration af=3 criti-
Z ipi(k) cal subcells. The process consists of the following relaxation
! events that span the cell from left to right satisfying the span-
, ) o ... hing condition. First, the unstable subcell on the left relaxes
Whlch allow us to evaluate the stationary distribution of criti- {5\ ard the other critical subcejthe center one, Fig.(B)],
cal sites at each scaleof coarse graining. . which occurs with probability (1/4)("*), where the index
Now, we define a renormalization transformation for the(k—l) denotes that the relaxation takes place at scale
relaxation dynamics. We will use a cell-to-site transforma-y 1) secong, we consider the process in which the new
:3%22 k?ysf?via;ik;itet:rseét":h\(lavr;ilgre]resiﬁégﬁl)l étezdg?s 'f unstable subcell also relaxes toward the subcell on the right
: through anothep; procesgFig. 2(c)], which again happens

We have chosen this type of cell for two reasons: one, beWith a probability (1/4p(1"’1). Finally, the subcell on the

cause it implies the use of greater cells formed by five sub-. : -
cells at the finer scale, that is, when we scale up, five subcells ght rgsfl)becomq unstable and trgns_fers with probab_|l|ty
2/3)p5 two units of energy, one inside and one outside

form a new one at the larger scale; and second, one is int 2 SN .
itively tempted to follow the geometry of the relaxation that the original cell of sizeb™ [Fig. 2(d)]. The series of pro-

takes place in numerical simulations of sandpile models witffesses described contributes to the renormalizatiopidf
energy transfer to north, east, south, and west neightiéfs Nevertheless, it is necessary to note that the relaxations dis-

The length scaling factor is thért¥/b 1= /5 (see Fig. p!ayed in Figs. 2a)—2(d) gre_not all ﬁhe processes that con-
1). Therefore, at a generic scaté, each cell is character- fribute to the renormalization op¥ through ap;—p;
ized by an indexa, ranging from one to five, indicating its — P2 Series. Figure @) shows ap, relaxation event that,
number of critical subcells at the smaller scalé—1) |n  although involving two neighboring sites outside the original
order to ensure the connectivity properties of the avalanché‘(?kq of size b®, also CO”'f(fklPLlJ)teS to the renormalization of
in the renormalization procedure, only those configurationg1” With probability (1/6)py™ *'. This is a new characteris-
with three or more subcells at scdl& 1) can span the cell, tic inherent to the cell-to-site transformation chosen. Now, if
transferring energy to neighboring cells. Thus, the starting We take into account all the processes that leag{fb, for
relaxation processgst“ ) at scaleb®* ) are renormalized @=3, one gets
in the correspondent proces®’ at scaleb®). Besides, it has 1(/1 1 1
been show16] that site correlations are averaged out in thep(K =Z{ | Z nk=1) 4 = nk=1) 4 (k=1) | = y(k=1)

) S . p 3]\gP2 7 P3 Py 2 P1

stationary state. Therefore, taking into account this fact and
the spanning rule, we can write the weight of each configu-

. . . 3 4 1
ration « in the stationary state as % Ep(1'<—1).4_ §p(2'<—1).|.§p(3'<—1))]
W,,_3=2p3%(1—p)?
(a=3)T 24P pP)"s 2((1 , — 3 _
t3 (Zp(lk 1)+§p(zk D Zpgk Y pe 1))
_ 4
Wia=2)=4p"(1=p), 3

1

_ 3 7 . i

Wio=5)=p°.
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a=3 evolves to a fixed point regardless of the distribution of criti-
cal sites at the small-scale dynamics.
As in Refs.[5,6], both models have the same fixed point,
| ol but here there is an important difference in relation to the
value of the fixed point. We obtain for the fixed point the
0e=1/3 0g=2/3 value (p*,p*)=(%,0,0,0,1), that is, in the BTW model one
t=2 =3 starts from the fixed point. This is indeed not the case for the
a=4 two-state model of Manna, for which we need to iterate Eq.
— — 1 (5) more than 20 times to reach the same fixed point. We
believe that this is a consequence of our renormalization
I strategy for the relaxation dynamics and constitutes a great
simplification in the calculation of the dynamical exponzant
[ | In fact, we were expecting the existence of a critical fixed-
wg = 1/4 g1 = 2/4 g2 = 1/4 point value different from that reported in Ref®,6] al-

fs=2 far=3 fa2=3 though the critical exponents should be very close since they
0=5 are determined by the properties of the system at large
scales.
* * The exponentr that characterizes the power-law ava-
e | @] o | @ o] o lanche size distribution can be obtained following the proce-
dure of[6]. Consider the probabilit) ,k-1) 9 that the re-
i * laxation processes that are active at sdalé ') do not
“’ts =_12/5 ";afg extend beyond the larger scdl€. This is expressed 4§]
= =
FIG. 3. Full set of possible initial configurations of critical sites fb(k) P(rd
and their multiplicitiesw. We have only depicted the configurations p(k=1) (rdr p® 2(1=7)
that fulfill the spanning rule ¢=3,4,5). Thet’s refer to the non- K= — = —( (kl)> =1—(4/5)2(-7,
contemporary time steps needed to have a relaxation that spans the j P(r)dr b
whole cell. The indices anda stand for symmetric and nonsym- pk=1)
metric configurations. (6)
where in Eq(4) the factorst and? refer to the multiplicities Equation(6) also satisfies

of the configurationgsee Fig. 3.

In a similar way (though much more complicatedone K= p¥(1—p*)+p3(1—p* )2+ p(1—p* )3+ pX(1—p*)*.
obtains expressions fgp® (i=2,3,4) for =3 and im- )
poses the normalization conditiab?_,pf=1. The proce-
dure is repeated taking into account the configurations withrhen, the exponent is given by
a=4 anda=5 critical sites and the renormalized probabili-
ties at levelk are finally derived by averaging over the con-
figurations of differenta values including their statistical Tzl_lw
weights W,(p*~Y). Therefore, the probabilitiep™ at 2 In(\5)
length scaleb™ will be given by

=1.235. (8)

This value ofr is in very good agreement with the value
obtained in[5,6] and with large-scale numerical simulations,
K) _ k=1)yn(k—1 ) .
i( )_(123 W, (p' ))pi( Na) 5 which give 7=1.27 for the two-state model of Manna and
7=1.29 for the BTW sandpile mod¢L7].

A second independent critical exponent can also be com-

! : o () puted. This is the so-called dynamical exponetitat relates
respectively. As the computation of the probablhtpéé N the spatial scale to the time scalé through the power law

Eq. (5) is rather lengthy and cumbersome, we have deveIEerl As pointed out if6], the calculation o could be an

o.pe? athct COd? .E) foraﬁte all the pl)'olytrjomtlal tefrm C?{.Gfﬁ'enormous and laborious task because the knowledge of the
clents that contribute 1o the renormatization transtorma Ion'fixed-point value is not sufficient and we have to know the

Now, we proceed to explore the scale-lnvarlant(E?gaworcomplete form of the renormalized dynamics. Nevertheless,

of EE)e model by finding the fixed-point solutiop; as we said before, the use of our larger cells in the renormal-
=p;” . In order to do this, we start from the shortest lengthjzation transformation leads to a fixed point with a unique
scale characterized bW@),p(o)) and study how it evolves nonzero component in the vectot . This constitutes a great
under repeated iteration of the transformati@y. For the  gjmpiification in the derivation of the complete structure of
two-state model of Mannfg2] the parameters;)éo),ﬁ(o) are the renormalized dynamics. In what follows, we will derive
(p19,0,1,0,0), whereas for the BTW sandpile we haveat a glance the dynamical critical exponent for the BTW
(p19,0,0,0,1). Here, the initial value of the density of critical sandpile model. In order to obtain the dynamical exponent,
sites p(® is irrelevant for the dynamics since the systemwe have to calculate the average numgerof noncontem-

5

with W, (p*~ 1) and p~1) given by Eq.(3) and Eq.(2),
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porary processes at sca& 1) needed to have a relaxation TABLE I. Values of the critical exponents for the BTW sanpile
process at the larger scat®®, which is related withz ~ model @=2). We have included the values obtained from large-

through scale simulations and those derived &).
In(t) In(t) o Method T a N z
= b® |\ In(y5)’ ©  re (6] 1.253  1.432 1506  1.168
In 0D Simulations{17,2] 1.29 1.38 1.44 1.21
This paper 1.235 1.38 1.47 1.236

In Fig. 3 we have depicted the possible starting configura-

tions for the different values at. The time steps needed to N _

have a relaxation process at the larger scale are also showr2/4 [18]. The other critical exponents can be derived from
Such a simplification in the calculus is possible because wécaling relationg19]. Table | summarizes the values of the
have to consider only the relaxations that contribute to théritical exponents obtained for the BTW sandpile model and
renormalization ofp, at larger scale. As can be seen, wethose reported by previous renormalization scheme and nu-
need two time steps for the symmetric configuratitthese  merical simulations.

in which the initial unstable site is located at the center of the In this Brief Report, we have introduced an alternative
cell) and three for the nonsymmetric configuratidtitose in ~ renormalization strategy that simplifies the analytical deriva-
which the initial unstable site is located in one of the criticaltion of the critical exponents that characterize the dynamics

boundary sites of the cellTherefore, of sandpile models. By using larger cells, formed by five
1 subcells of the finer scale, we obtain a fixed point with a

_ / unigue nonzero dynamical component which allow us to de-

v E ; t'{@)Walp), (10 rive the whole form of the renormalized dynamics in a more

— Wal(p) direct and simple way. The values of the exponents obtained

here are in good agreement with those previously reported.
wheret’(a) is the weighted average of the time steps takingBesides, as in similar analytical predictions, the two-state
into account the different additional statistical weights due tomodel of Manna and the BTW sandpile model belong to the
multiplicities w in each configurationy (see Fig. 3. Now, same universality clag®0]. The results confirm the robust-
evaluating Eq(10) at the fixed point we obtain ness of the renormalization-group approach.

7=1.236. (11) It is a pleasure to thank A. Vespignani for stimulating
discussions and G. Caldarelli for useful correspondence.
numerical resultz=1.21 [2] and with the exact valug
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