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Time dependence of breakdown in a global fiber-bundle model with continuous damage
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A time-dependent global fiber-bundle model of fracture with continuous damage is formulated in terms of a
set of coupled nonlinear differential equations. A first integral of this set is analytically obtained. The time
evolution of the system is studied by applying a discrete probabilistic method. Several results are discussed
emphasizing their differences with the standard time-dependent model. The results obtained show that with this
simple model a variety of experimental observations can be qualitatively reproduced.
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Fracture in disordered media has attracted much scientifiments break because of fatigue after a period of time. The
and industrial interest for many yedis-7]; it is, however, a time elapsed until the system collapses is the lifetime of the
complex problem for which a definite physical and theoreti-bundle. Time acts as an independent variable, and the initial
cal treatment is still lacking. An important class of models oflifetime of each element, for a prescribed initial stress, is the
material failure is the fiber-bundle modgBBM) that have independent identically distributed random quantity.
been extensively studied during the past decddesl?]. The concept of continuous damage in FBM has only been
These models consist of a set of parallel fibers having statiapplied to the static setting. However, time-dependent
tically distributed strength. The sample is loaded parallel tonechanisms also play a key role in the process of fracture.
the fiber direction, and a fiber fails if the load acting on it Phenomena such as fatigue and stress corrosion are of utmost
exceeds a threshold value. When a fiber fails, its load igmportance for real applications. These time-dependent ef-
transferred to other surviving fibers in the bundle, accordindects have not been included before in continuous damage
to a specific transfer rule. Among the possible options ofdescriptions. So, the precise purpose of this paper is to for-
load transfer, one simplification that makes the problem anamulate for the first time, the time-dependent FBM with con-
lytically tractable is the assumption of equal load sharingtinuous damage and compute the differences appearing with
(ELS), or global load transfer, which means that after eaclfespect to the standard dynamic FBM.
fiber breaks, its stress is equally distributed among the intact In these models the most widely used breaking rate func-
fibers. Thus, the ELS option constitutes a sort of mean fieldion is the power law12], in which elements break at a rate
approximation to other more realistic rules of stress transfeproportional to a power of their strese’, where the expo-
where a stress enhancement occurs in the neighborhood B€ntp is an integer called the stress corrosion exponent. This
failed elements. So far, the failure rule applied in standardype of breaking rate will be assumed here.

FBM is discontinuous and irreversible, i.e., when the local Our analysis will be restricted to the global transfer mo-
load exceeds the failure threshold of a fiber, the fiber is redality, and we will assume that the size of the bunilejs
moved from the calculation and is never restored. Recently, ¥ery large. This enables us to formulate the evolution of the
novel continuous damage law was introduced in these modystem in terms of continuous differential equations. This
els[13,14. Thus, when the strength threshold of a fiber istype of equations, similar to those appearing in radioactivity,
exceeded, it yields, and the elastic modulus of the fiber igvas first used by Colemaf8], and later in[11]. At this
reduced by a factoa (0O<a<1). Multiple yields of a given point, it is worth recalling that for the standard model, the
fiber are allowed. It is argued that this description of damagéifetime T of the bundle can be analytically obtained. In this
in terms of a continuous parameter corresponds to the cor¢ase, the differential equation governing the time evolution
sideration of the system at a length scale larger than thef the system reads

typical crack size; i.e., if the smallest elements of the model

are the fibers, the continuous damage is due to cracking in- %: ~NAfP 1)
side the fibers. This generalization of the standard FBM is dt o

suitable to describe a variety of elastoplastic constitutive be-

haviors[15-17. wheref=o=N/Njy is the strain of the bundle assuming that

FBM come in two settings, static and time-dependent otthe elastic modulus of the fibers ¥=1 ando is the indi-
dynamic. The static version of FBM simulates the failure ofvidual stress acting on one fiber. The solution of Eb).
materials by quasistatic loading, i.e., by a steady increase ishould fulfill the conditionNy(t=0)=N. The integration of
the load over the system up to its macroscopic failure. Théeq. (1) is straightforward and the lifetime of the bundle is
stress on each fiber is the independent variable and thgiven by T=1/p.
strength of each element is the distributed random variable. Now, suppose an ELS bundle formed byfibers that
On the other hand, the dynamic FBM simulates failure bybreaks because of stress corrosion under the action of an
creep rupture, static fatigue, or delayed rupture, i.dusa-  external constant loaff=Noy, with oo=1. The breaking
ally) constant load is imposed on the system and the elerate of the fibersI", is assumed to be of the power-law type,
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I'=0o?. As before,f will denote the strain of the bundle and N1=(kN;—Ng)/Ng,

Y=1 will represent the initial stiffness of the individual fi-

bers. The original dynamic FBM is generalized by allowing Nz=k(kN,—N3)/No,

that one fiber can fail more than once, and thus we define the (5)

integern as the maximum value of failures allowed per fiber.
Besides, the parameter(<1) will represent the factor of
reduction in the stiffness of the fibers when they fail. As up N;=K""1(kNy—Np_1)/No.
to n partial yielding events are permitted per fiber, at any
time the population of fibers will be sorted im+2 lists.
Thus N=No+N;+---+N,+N’, where N; (j=0,...,n)
denotes the number of elements that have fgiléches.N’ N:(Ng=N)=0, j#0 (6)
denotes the number of elements that have failed. times, !

and therefore are inactivée., they do not support load any- as initial conditions.

morg). At t=0, theN elements of the bundle form the list  The solutions of Eq(5) fulfilling Eq. (6) for an arbitrary
zero, No=N, and att=T, N'=N. The specification, at a indexl, |=1,2,...n, are
given timet, of the value ofN;, for j=0,1,...n, provides

the state of the system. In our continuous formulationNhe

This coupled set of first-order linear differential equations
must fulfill

j
will be real positive numbers lower thax Ny = Zo alNg . ()
As the external load-=N is supported by the present
active fibers, we have This ansatz is easily proved by induction, and ﬁf@
ffici ivel Icul
N=f(Ng+aN;+a2Nyt - - - +a"N, ), @ coefficients are recursively calculated,
Q!
and hence =N/(No+aN; +a2N,+ - - - +a"N,). RS L ST PO
The time evolution equations are: ! (k'K
8
dNO_fp N I (1+1) Kl ( )
gt (7 No -3, "N
a|(|++11)= = T+1
dN, N
gt~ "(No—kNy),
t These exact functiond; =N;(No), j#0 can be used as the
base of an elegant numerical method suited to compute the
&: £oK(Ny— kN,) 3) time-dependent solution of E3). This will be commented
dt ! 20 on in a forthcoming publication. In this paper, however, we
will use Eq.(7) merely to test the accuracy of another ap-
proximated method, a discrete probabilistic di&,18,19,
that will be used to solve Eq3). In this case of an ELS
N, - model with continuous damage, the elementary time step for
gr KT (Np-a—kNy), one fiber to yield is given by12]

where the ubiquitous constant factorepresent&=a’. This 1

is a system of coupled, first-order, nonlinear differential - Nof?+Ny(af)?+ NZ(aZf)p+...+Nn(anf)p’ ©
equations. Its solution must fulfill the initial condition
with
No(t=0)=N,
4 N
(=0 i f= . 10)
Nj(t=0)=0, j#0. No+aN;+a®Ny+ - - - +a"N, (

On the right-hand side of Eq3), the positive terms rep- Thus, § is the inverse of the total “decay width” of the
resent the sources and the negative ones represent the Siikgitem. The total decay width is the sum of the contribution
of the various lists. EquatiofB) does not have an analytic of g the listsj=0,1, ... n. And each list contributes with a
solution. However, a first integral can be given expressing  erm
(j#0) in terms ofNy. The source of nonlinearity in E¢3)
is the factorf? on the right-hand side. This factor can be rj:NjglpzNj(ajf)p_ (12)
eliminated by reformulating the system of equations in such
a way thatN, is the new independent variable ahy (j The probability that the individual failure takes place in
#0) the dependent variables. Denoting by a prime the dethe listj is equal top;=1";6. With this natural assignment of

rivative with respect td\,, one easily obtains probabilities, it is apparent thél}‘:(,pj =1. In the process of
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FIG. 1. Results of the probabilistic methadbtted curvescom- FIG. 3. Behavior of the material strain near the macroscopic
pared with the analytical prediction in E€f). The parameters used Point of rupture forN=10% a=0.8, p=2 and the values of
in the simulation areN=10%, a=0.8, andp=2. The fibers are indicated in the figure. The scaling relation satisffes(T—1)#,
allowed to breakn=4 times. with = —1/p.

breaking, a set dl elements and allowed partial yields, we =a"f. holds, i.e., the ultimate strain of the bundle,, is
will have a total ofN(n+1) deltas, whose surEiN:(q“)ai related to the external load imposed over the system through
=T, is the lifetime of the bundle. This method starts from anthe factora™". This is also the case for the static continuous
initial state, (No,N;,N5, ... ,N,,N")=(N,0,0,...,0,0) and damage moddll4] but substituting= by F/N. Finally, Fig. 3
ends in (0,0,0...,0N). shows the behavior of the bundle’s strain near the point of
The results obtained with this method are shown in Figsmacroscopic rupture. It turns out that the strain scales with
1-3. In each simulation, one has to fix the vectdrg,a,n),  the distance to the critical poinT,—t, asf~(T—t)# with
under the hypothesis th& =N and Y=1. The standard B=—1/p. This result is universal, i.e., the material ap-
model is obtained by setting=0. In Fig. 1, for a vector proaches its macroscopic collapse in this way regardless of
(10%,2,0.8,4), we compare the prediction of this method forthe number of allowed partial yields. Universal behaviors are
N;(No) andN,(N,) with the analytic result expressed in Eq. quite important in fracture processes because of the intrinsic
(7). It is apparent that the agreement is excellent. In Fig. 2and unavoidable sample to sample variations. Thus, although
the behavior of the bundle strafnas a function of time, is the lifetime of the bundle varies from one realization to an-
plotted for the same vector of parameters as before but corpther, the strain of the bundle would satisfy, for a giyen
sidering also the cases of=0 andn=1. Here, one appre- Value, the same scaling function near the point of macro-
ciates how the hypothesis of continuous damage leads t¥copic collapse regardless of It is worth noting that this
increasing the bundle’s lifetime. It is interesting to note thatfeature is not observed only in our simple model. For ex-
at the time at which the system collapses, the relafion ample, in a similar(in spirit) although more complicated
model where viscoelastic cells are introduced, the same be-
100000 . . . . . . . . havior near the critical point is foun@0].
Up to now, we have assumed that the external load acting

on the bundle i$==N. If we consider thaF is modified in a
10000 ¢ : j factor ¢, F ,= ¢N, then the lifetime of referencéwould be
modified in the following way,
o 1000 | -
& T
= 100 . Tp=—. (12
¢P
10 | 1 .
! ‘ ) Thus, we see that this exact property that works for the stan-

dard dynamic FBM with any load transfer rule and the
power-law breaking ratg9] extends to the continuous dam-
age version of this model.

Throughout this paper, we have considered brittle failure

FIG. 2. Bundle’s strair(f) as a function of dimensionless time after n damage events. Nevertheless, in order to describe
for different values ofn (from left to right n=0, 1, and 4). The macroscopic strain hardening instead of global failure, we
model parameters are the same as Fig. 1. Multiple failures lead tshould allow the fibers to have &' residual stiffness after
increase in the lifetime of the bundle. having yieldedn times.
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FIG. 4. The creep compliancKt) as a function of dimension-
less time for different values af (n=1, 2, and 4 ag) increases
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reproduces the behavior d{t) observed in experiments on
amorphous materia[®1]. For short times, the compliance is
very slowly time dependent. As time passé§,) becomes
very strongly time dependent and finally the system ap-
proaches a plastic state for which the compliance is again
very slowly time dependent. This confirms that the behavior
of J(t) depends on the time scale of the experin&iil.

In short, we have introduced a novel time-dependent
model of fracture with continuous damage for the breakdown
of materials. The model was formulated in terms of a set of
coupled nonlinear differential equations and the time evolu-
tion of the system was studied by applying a discrete proba-
bilistic method. This model is potentially useful to describe
some elastoplastic behaviors observed in real material frac-
ture processes. Besides, it could guide our understanding to
more complex time-dependent models of fracture with con-
tinuous damage.

The behavior is qualitatively the same as that obtained in creep A.E.P. thanks Javier Ribera for discussions. Y.M thanks
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Figure 4 shows the creep compliandét), defined as
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