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Time dependence of breakdown in a global fiber-bundle model with continuous damage
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A time-dependent global fiber-bundle model of fracture with continuous damage is formulated in terms of a
set of coupled nonlinear differential equations. A first integral of this set is analytically obtained. The time
evolution of the system is studied by applying a discrete probabilistic method. Several results are discussed
emphasizing their differences with the standard time-dependent model. The results obtained show that with this
simple model a variety of experimental observations can be qualitatively reproduced.
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Fracture in disordered media has attracted much scien
and industrial interest for many years@1–7#; it is, however, a
complex problem for which a definite physical and theore
cal treatment is still lacking. An important class of models
material failure is the fiber-bundle models~FBM! that have
been extensively studied during the past decades@7–12#.
These models consist of a set of parallel fibers having sta
tically distributed strength. The sample is loaded paralle
the fiber direction, and a fiber fails if the load acting on
exceeds a threshold value. When a fiber fails, its load
transferred to other surviving fibers in the bundle, accord
to a specific transfer rule. Among the possible options
load transfer, one simplification that makes the problem a
lytically tractable is the assumption of equal load shar
~ELS!, or global load transfer, which means that after ea
fiber breaks, its stress is equally distributed among the in
fibers. Thus, the ELS option constitutes a sort of mean fi
approximation to other more realistic rules of stress tran
where a stress enhancement occurs in the neighborhoo
failed elements. So far, the failure rule applied in stand
FBM is discontinuous and irreversible, i.e., when the lo
load exceeds the failure threshold of a fiber, the fiber is
moved from the calculation and is never restored. Recent
novel continuous damage law was introduced in these m
els @13,14#. Thus, when the strength threshold of a fiber
exceeded, it yields, and the elastic modulus of the fibe
reduced by a factora (0,a,1). Multiple yields of a given
fiber are allowed. It is argued that this description of dama
in terms of a continuous parameter corresponds to the
sideration of the system at a length scale larger than
typical crack size; i.e., if the smallest elements of the mo
are the fibers, the continuous damage is due to cracking
side the fibers. This generalization of the standard FBM
suitable to describe a variety of elastoplastic constitutive
haviors@15–17#.

FBM come in two settings, static and time-dependent
dynamic. The static version of FBM simulates the failure
materials by quasistatic loading, i.e., by a steady increas
the load over the system up to its macroscopic failure. T
stress on each fiber is the independent variable and
strength of each element is the distributed random varia
On the other hand, the dynamic FBM simulates failure
creep rupture, static fatigue, or delayed rupture, i.e., a~usu-
ally! constant load is imposed on the system and the
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ments break because of fatigue after a period of time. T
time elapsed until the system collapses is the lifetime of
bundle. Time acts as an independent variable, and the in
lifetime of each element, for a prescribed initial stress, is
independent identically distributed random quantity.

The concept of continuous damage in FBM has only be
applied to the static setting. However, time-depend
mechanisms also play a key role in the process of fract
Phenomena such as fatigue and stress corrosion are of ut
importance for real applications. These time-dependent
fects have not been included before in continuous dam
descriptions. So, the precise purpose of this paper is to
mulate for the first time, the time-dependent FBM with co
tinuous damage and compute the differences appearing
respect to the standard dynamic FBM.

In these models the most widely used breaking rate fu
tion is the power law@12#, in which elements break at a rat
proportional to a power of their stresssr, where the expo-
nentr is an integer called the stress corrosion exponent. T
type of breaking rate will be assumed here.

Our analysis will be restricted to the global transfer m
dality, and we will assume that the size of the bundle,N, is
very large. This enables us to formulate the evolution of
system in terms of continuous differential equations. T
type of equations, similar to those appearing in radioactiv
was first used by Coleman@8#, and later in@11#. At this
point, it is worth recalling that for the standard model, t
lifetime T of the bundle can be analytically obtained. In th
case, the differential equation governing the time evolut
of the system reads

dN0

dt
52N0f r, ~1!

where f 5s5N/N0 is the strain of the bundle assuming th
the elastic modulus of the fibers isY51 ands is the indi-
vidual stress acting on one fiber. The solution of Eq.~1!
should fulfill the conditionN0(t50)5N. The integration of
Eq. ~1! is straightforward and the lifetime of the bundle
given byT51/r.

Now, suppose an ELS bundle formed byN fibers that
breaks because of stress corrosion under the action o
external constant loadF5Ns0, with s051. The breaking
rate of the fibers,G, is assumed to be of the power-law typ
©2001 The American Physical Society06-1
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G5sr. As before,f will denote the strain of the bundle an
Y51 will represent the initial stiffness of the individual fi
bers. The original dynamic FBM is generalized by allowi
that one fiber can fail more than once, and thus we define
integern as the maximum value of failures allowed per fibe
Besides, the parametera (,1) will represent the factor o
reduction in the stiffness of the fibers when they fail. As
to n partial yielding events are permitted per fiber, at a
time the population of fibers will be sorted inn12 lists.
Thus N5N01N11•••1Nn1N8, where Nj ( j 50, . . . ,n)
denotes the number of elements that have failedj times.N8
denotes the number of elements that have failedn11 times,
and therefore are inactive~i.e., they do not support load any
more!. At t50, theN elements of the bundle form the lis
zero, N05N, and at t5T, N85N. The specification, at a
given timet, of the value ofNj , for j 50,1, . . . ,n, provides
the state of the system. In our continuous formulation theNj
will be real positive numbers lower thanN.

As the external loadF5N is supported by the presen
active fibers, we have

N5 f ~N01aN11a2N21•••1anNn!, ~2!

and hencef 5N/(N01aN11a2N21•••1anNn).
The time evolution equations are:

dN0

dt
5 f r~2N0!,

dN1

dt
5 f r~N02kN1!,

dN2

dt
5 f rk~N12kN2!, ~3!

A

dNn

dt
5 f rkn21~Nn212kNn!,

where the ubiquitous constant factork representsk5ar. This
is a system of coupled, first-order, nonlinear different
equations. Its solution must fulfill the initial condition

N0~ t50!5N,
~4!

Nj~ t50!50, j Þ0.

On the right-hand side of Eq.~3!, the positive terms rep
resent the sources and the negative ones represent the
of the various lists. Equation~3! does not have an analyti
solution. However, a first integral can be given expressingNj
( j Þ0) in terms ofN0. The source of nonlinearity in Eq.~3!
is the factor f r on the right-hand side. This factor can b
eliminated by reformulating the system of equations in su
a way thatN0 is the new independent variable andNj ( j
Þ0) the dependent variables. Denoting by a prime the
rivative with respect toN0, one easily obtains
06610
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N185~kN12N0!/N0 ,

N285k~kN22N1!/N0 ,
~5!

A A

Nn85kn21~kNn2Nn21!/N0 .

This coupled set of first-order linear differential equatio
must fulfill

Nj~N05N!50, j Þ0 ~6!

as initial conditions.
The solutions of Eq.~5! fulfilling Eq. ~6! for an arbitrary

index l, l 51,2, . . . ,n, are

Nl5(
j 50

l

aj
( l )N0

kj
. ~7!

This ansatz is easily proved by induction, and theaj
( l )

coefficients are recursively calculated,

aj
( l 11)5

klaj
( l )

~kl 112kl !
, j 50,1,2, . . . ,l ,

~8!

al 11
( l 11)5

S 2(
j 50

l

aj
( l 11)Nkj D

Nkl 11 .

These exact functionsNj5Nj (N0), j Þ0 can be used as th
base of an elegant numerical method suited to compute
time-dependent solution of Eq.~3!. This will be commented
on in a forthcoming publication. In this paper, however, w
will use Eq. ~7! merely to test the accuracy of another a
proximated method, a discrete probabilistic one@12,18,19#,
that will be used to solve Eq.~3!. In this case of an ELS
model with continuous damage, the elementary time step
one fiber to yield is given by@12#

d5
1

N0f r1N1~a f !r1N2~a2f !r1•••1Nn~anf !r
, ~9!

with

f 5
N

N01aN11a2N21•••1anNn

. ~10!

Thus, d is the inverse of the total ‘‘decay width’’ of the
system. The total decay width is the sum of the contribut
of all the lists j 50,1, . . . ,n. And each list contributes with a
term

G j5Njs j
r5Nj~aj f !r. ~11!

The probability that the individual failure takes place
the list j is equal topj5G jd. With this natural assignment o
probabilities, it is apparent that( j 50

n pj51. In the process of
6-2
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breaking, a set ofN elements andn allowed partial yields, we
will have a total ofN(n11) deltas, whose sum( i 51

N(n11)d i

5T, is the lifetime of the bundle. This method starts from
initial state, (N0 ,N1 ,N2 , . . . ,Nn ,N8)5(N,0,0, . . .,0,0) and
ends in (0,0,0, . . . ,0,N).

The results obtained with this method are shown in Fi
1–3. In each simulation, one has to fix the vector (N,r,a,n),
under the hypothesis thatF5N and Y51. The standard
model is obtained by settingn50. In Fig. 1, for a vector
(104,2,0.8,4), we compare the prediction of this method
N1(N0) andN2(N0) with the analytic result expressed in E
~7!. It is apparent that the agreement is excellent. In Fig
the behavior of the bundle strainf, as a function of time, is
plotted for the same vector of parameters as before but
sidering also the cases ofn50 andn51. Here, one appre
ciates how the hypothesis of continuous damage lead
increasing the bundle’s lifetime. It is interesting to note th
at the time at which the system collapses, the relationF

FIG. 1. Results of the probabilistic method~dotted curves! com-
pared with the analytical prediction in Eq.~7!. The parameters use
in the simulation areN5104, a50.8, andr52. The fibers are
allowed to breakn54 times.

FIG. 2. Bundle’s strain~f ! as a function of dimensionless tim
for different values ofn ~from left to right n50, 1, and 4). The
model parameters are the same as Fig. 1. Multiple failures lea
increase in the lifetime of the bundle.
06610
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5anfc holds, i.e., the ultimate strain of the bundle,f c , is
related to the external load imposed over the system thro
the factora2n. This is also the case for the static continuo
damage model@14# but substitutingF by F/N. Finally, Fig. 3
shows the behavior of the bundle’s strain near the poin
macroscopic rupture. It turns out that the strain scales w
the distance to the critical point,T2t, as f ;(T2t)b with
b521/r. This result is universal, i.e., the material a
proaches its macroscopic collapse in this way regardles
the number of allowed partial yields. Universal behaviors
quite important in fracture processes because of the intri
and unavoidable sample to sample variations. Thus, altho
the lifetime of the bundle varies from one realization to a
other, the strain of the bundle would satisfy, for a givenr
value, the same scaling function near the point of mac
scopic collapse regardless ofn. It is worth noting that this
feature is not observed only in our simple model. For e
ample, in a similar~in spirit! although more complicated
model where viscoelastic cells are introduced, the same
havior near the critical point is found@20#.

Up to now, we have assumed that the external load ac
on the bundle isF5N. If we consider thatF is modified in a
factorf, Ff5fN, then the lifetime of referenceT would be
modified in the following way,

Tf5
T

fr
. ~12!

Thus, we see that this exact property that works for the s
dard dynamic FBM with any load transfer rule and t
power-law breaking rate@9# extends to the continuous dam
age version of this model.

Throughout this paper, we have considered brittle failu
after n damage events. Nevertheless, in order to desc
macroscopic strain hardening instead of global failure,
should allow the fibers to have aan residual stiffness after
having yieldedn times.
to

FIG. 3. Behavior of the material strain near the macrosco
point of rupture forN5104, a50.8, r52 and the values ofn
indicated in the figure. The scaling relation satisfiesf ;(T2t)b,
with b521/r.
6-3
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Figure 4 shows the creep complianceJ(t), defined as
J(t)5 f (t)/F, as a function of dimensionless timet for dif-
ferent values ofn. It can be seen that the model qualitative

FIG. 4. The creep complianceJ(t) as a function of dimension
less time for different values ofn (n51, 2, and 4 asJ increases!.
The behavior is qualitatively the same as that obtained in cr
experiments on amorphous materials.
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06610
reproduces the behavior ofJ(t) observed in experiments o
amorphous materials@21#. For short times, the compliance
very slowly time dependent. As time passes,J(t) becomes
very strongly time dependent and finally the system
proaches a plastic state for which the compliance is ag
very slowly time dependent. This confirms that the behav
of J(t) depends on the time scale of the experiment@21#.

In short, we have introduced a novel time-depend
model of fracture with continuous damage for the breakdo
of materials. The model was formulated in terms of a set
coupled nonlinear differential equations and the time evo
tion of the system was studied by applying a discrete pro
bilistic method. This model is potentially useful to descri
some elastoplastic behaviors observed in real material f
ture processes. Besides, it could guide our understandin
more complex time-dependent models of fracture with c
tinuous damage.
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