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We introduce a fiber bundle model where the interaction among fibers is modeled by an adjustable stress-
transfer function that can interpolate between the two limiting cases of load redistribution, i.e., the global and
the local load sharing schemes. By varying the range of interaction, several features of the model are numeri-
cally studied and a crossover from mean-field to short-range behavior is obtained. The properties of the two
regimes and the emergence of the crossover in between are explored by numerically studying the dependence
of the ultimate strength of the material on the system size, the distribution of avalanches of breakings, and of
the cluster sizes of broken fibers. Finally, we analyze the moments of the cluster size distributions to accurately
determine the value at which the crossover is observed.
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I. INTRODUCTION (GLS) which means that after each fiber failure, its load is
equally redistributed among all the intact fibers remaining in
Fracture processes have attracted the attention of the s¢he set. This model, known as global fiber bundle model, is a
entific community since many years. Processes involvingnean-field approximation where long-range interactions
heterogeneous systems, for which a definite and complet@mong the elements of the system are assumed and can be
physical description has not been found despite many partiaolved analyticallyf14,18. At the other extreme, one finds
successes of the last decades, are of special theoretical atié local load sharingLLS) fiber bundle model where the
practical interest§41-3]. In particular, the latest develop- load borne by failing elements is transferred to their nearest
ments of statistical mechanics have led to a deeper undeneighbors. This case represents short-range interactions
standing of the breakdown phenomena in heterogeneous syamong the fibers. Other schemes have been proposed with a
tems, but some fundamental questions remain unsolved. Thelative success in describing rupture processes at a large
difficulties arise because in modeling fracture of heterogescale, such as earthquaked].
neous materials, one has to deal with systems formed by Despite their simplicity, FBM’'s are very important be-
many interacting constituents, each one having different stacause they capture most of the main aspects of material dam-
tistical properties related to some breaking characteristics aige and breakdown. They have provided a deeper under-
the material, distributed randomly in space and/or ithe]. standing of fracture processes and have served as a starting
So, the complete analytical solution is in almost all casegoint for more complex models of fiber reinforced compos-
prohibitive and one has to solve the problem by means oites and other micromechanical mod¢&2—24. However,
numerical simulations or to study simplified models that canstress redistribution in actual heterogeneous materials should
be analytically tractabléat least in some limijsin order to  fall somewhere in between LLS and GLS since there is an
gain physical insights that guide our understanding to morémportant fraction of stress redistributed to other intact ele-
complex models. ments not localized in the neighborhood of the failed ones,
The major challenge in dealing with fracture problems isnevertheless maintaining stress concentrations around the
to combine the statistical evolution of damage across théroken fibers. With this aim, several studies have been car-
entire macroscopic system and the associated stress redistiied out during the last two decades and Monte Carlo simu-
butions to accurately predict the point of final rupture of thelations have been used to numerically study the distribution
material. In doing this linkage, one has to take care in ordepf composite strengths in two-dimension@D) and 3D
not to make major simplifications particularly in the redistri- models for different fiber arrangements6,25—29. Never-
bution rule, where a great deal of the physics of the problentheless, in order to obtain reliable conclusions, the number of
is hidden. A very important class of approaches to the fracfibers forming the system has to be very large that makes the
ture problem is the well-known fiber bundle mod&iBM’s) numerical problem, in many cases, too time consuming as to
that were introduced long time ago by Danipd$ and Cole-  perform the study in a reasonable amount of time.
man[5] and have been the subject of intense research during In this paper, we introduce a fiber bundle model where the
the last several yeaft6—20]. FBM'’s are constructed so that interaction among fibers is modeled by an adjustable stress-
a set of fibers is arranged in parallel, each one having &ansfer function that interpolates between the two limiting
statistically distributed strength. The specimen is loaded parcases of load redistribution, i.e., the global and the local load
allel to the fiber direction and the fibers break if the loadsharing schemes. By varying the effective range of interac-
acting on them exceeds their threshold value. Once the fibet®n one observes a crossover from mean-field to short-range
begin to fail one can choose among several load transfdsehavior. To explore the properties of the two regimes and
rules. The simplest case is to assume global load sharinipe emergence of the crossover in between, a comprehensive
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numerical study of the model is performed. We study the
dependence of the ultimate strength of the material on the
system size and found that the system has only one nonzero / \
critical load in the thermodynamic limit. When no critical
point exists, the ultimate strength of the material goes to zero \
exactly as in local load sharing models asl/InN, with Q 1
increasing system sizd. We also study the distribution of ?
avalanches of fiber breaks, and that of the cluster sizes of
broken fibers for the two distinct regimes and perform a mo- XX
ment analysis to accurately determine the crossover value. -
The rest of the paper is organized as follows. The follow- ]
ing section is devoted to present the model and the way in Vg
which numerical simulations are carried out. The results ob-
tained are presented and analyzed in Sec. lll. The final sec- /
tion is devoted to discussions and to state our conclusions.

Il. THE MODEL

The fracture of heterogeneous systems is characterized by
the highly localized concentration of stresses at the crack L

tips, which makes possible the nucleation of new cracks at FIG. 1. lllustration of the model constructiorx indicates a
these regions such that the actual crack grows leading to thgqor that is going to break, an@ is an intact fiber in the square
final collapse of the system. In elastic materials, the stresgice.

redistribution follows a power law,

nal drivings is the size of an avalanchand the number of

Tadd~T "7, (1) : - : -
parallel updatings of the lattice during an avalanche is called

wherea,yq is the stress increase on a material element at 45 lifetime T. L
distancer from the crack tip. The above general relation We now focus on the load transfer process following fiber

covers the cases of global and local load sharings, widelf2ilures. We suppose that, in general, all intact fibers have a
used in fiber bundle models of fracture, as the limiting case§©nZero probability of being affected by the ongoing failure
y—0 andy—c, respectively. event, and that the additional load received by an intact fiber
Motivated by the above result of fracture mechanics wel dépends on its distanag; from fiberj that has just been
introduce a fiber bundle model where the load sharing rulc?mk?”' Furthermore, elastic interaction is as;umed between
takes the form of Eq(1). Suppose a set df parallel fibers the fibers such that the load recglved by. a fiber follows the
are there, each one having statistically distributed strengtROWer law form of Eq(1). Hence, in our discrete model the
taken from a probability distribution functioR and identi- ~Stess-transfer functioR(r;; , ) takes the form
fied by an integer, where =<i<N. In material science, the
Weibull distribution has been proved to be a good empirical
statistical distribution for representing fiber strength,

F(rij!’}/)zzrify! (2)

where vy is our adjustable parametet,is given by the nor-
P(o)=1—e (70" malization conditionZ=(EiE|ri]7)‘1 (the sum runs over
the setl of all intact elementsand r;; is the distance
wherep is the so-called Weibull index, which controls the of the fiber i to the rupture point Xj,y;), i.e., rj
degree of threshold disorder in the systéiime bigger the = \(X;—X;)*+(yi—y;)? in 2D. Periodic boundary condi-
Weibull index, the narrower the range of threshold values tions are assumed so that the largestalue is Ry ax
and o, is a reference load that acts as unity. Thus, to eack= y2(L—1)/2, whereL is the linear size of the system. We
fiberi a random threshold valug,, is assigned. The system note here that the assumption of periodic boundary condi-
is driven by increasing quasistatically the load on it, which istions is for simplicity. In principle, an Ewald summation pro-
performed by locating the fiber, which minimizes— o,  cedure would be more accurate. The model construction is
and adding this amount of load to all the intact fibers in theillustrated in Fig. 1. It is easy to see that in the limijs
system. This provokes the failure of at least one fiber, which-0 and y—o we recover the two extreme cases of load
transfers its load to the surviving elements of the set. Thigedistribution in fiber bundle models: the global load sharing
may provoke other fractures in the system, which in turnand the local load sharing, respectively. We should note here
induce tertiary ruptures and so on until the system fails othat, strictly speaking, for aljy different from the two limits
reaches an equilibrium state where the load on the intaadbove, the range of interaction covers the whole lattice.
fibers is lower than their individual strengths. In this latter However, when changing this exponent, one moves from a
case, the slow external driving is applied again and the provery localizedeffectiverange of interaction to a truly global
cess is repeated up to the macroscopic failure of the materiabne asy approaches zero. So, we will refer henceforth to a
The number of broken fibers between two successive extechange in theeffectiverange of interaction.
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In summary, during an avalanche of failure events, an 045 . . - -
intact fiberi receives at each time stepthe load borne by
the failing element$. Consequently, its load increases by an

amount,
04

oi(t+7n)=o(t+7—1)+ ZB( ) oj(t+7=1)F(rij,v),
jeB(r

3 v’ 035 |

where the sum runs over the $&7) of elements that have
failed in a time stepr. Thus,oi(to+T)=31_,0(to+ 7) is
the total load that elemerntreceives during an avalanche 03
initiated atty and which ended dat+ T. In this way, when an
avalanche ends, the external field is applied again and an
other avalanche is initiated. The process is repeated until n
. S : 0.25 ' : ' :
intact elements remain in the system and the ultimate 0 2 4 6 8 10
strength of the materiat, is defined as the maximum load Y
the system can support before its complete breakdown.

Unfortunately, the complete analytical approach to the FIG. 2. UItimate strength of_ the material. for different system
general model introduced here is inaccessible. There are $#Z€s a@s a function of the effective range of interactjor cross-
few cases where this task can be achieved such as the gloler from mean-field to short-range behavior is clearly observed.
load sharing model where the load acting on surviving ele-
ments for a given external forcE is known [14,18 and depends on the system size. This would mean that there
some 1D model$30—-32 (which are irrelevant for practical might be two transition points in the model, for which the
purposes The main difficulty is that in order to analytically system displays qualitatively and quantitatively different be-
solve the problem, one needs to know the transition probhaviors. Fory< vy, the ultimate strength of the bundle be-
abilities for all the possible paths leading the system from thénaves as in the limiting case of global load sharing, whereas
state in which all the elements are intact to the state in whiclior y= vy, the local load sharing behavior seems to prevail.
they have failed. This calculation eventually becomes imposNevertheless, the most important feature is that when de-
sible for large system sizes. So, the first step is to learn fronereasing the effective range of interaction in the thermody-
Monte Carlo simulations which, furthermore, allows us tonamic limit, for y> v, the critical load is zero. This obser-
better understand the physical mechanisms of fracture and tgtion is further supported by Fig. 3, where we have plotted
study models difficult to handle analytically as well as tothe evolution ofo as a function of 1/IiN for different val-

guide our search for analytical calculations. ues of the exponent. Here, the two limiting cases are again
clearly differentiated. For large,, all the curves decrease
IIl. MONTE CARLO SIMULATION OF THE FAILURE whenN—« as
PROCESS

: . : . 045
We have carried out large scale numerical simulations of

the model described above in two dimensions. The fibers art % oyt
identified with the sites of a square lattice of linear size i:gs
with periodic boundary conditions. The failure process is 40 | o2
then simulated by varying the effective range of interaction I/I/I/I Ny
between fibers by controlling and recording the avalanche Ly22
size distribution, the cluster size distribution, and the ulti- :Ytgf
mate strength of the material for several system sizes. Eacl” 035 | V=3
numerical simulation was performed over at least 50 differ- iﬁ
ent realizations of the disorder distribution. *1=9

Figure 2 shows the ultimate strength of the material for
different values of the parameterand several system sizes
from L=233 to L=257. Clearly, two distinct regions can be
distinguished. For smal, o is independent, within statis-
tical errors, of both the effective range of interaction and the ¢.25 ‘ ) ) )
system size. At a given point= vy,, a crossover is observed, 0.080 0.100 0‘1201 0.140 0.160 0.180
where v, falls in the vicinity of y=2. The regiony> vy, /in®)
might eventually be further divided into two parts, the first  FiG. 3. variation of the material strength witk for several
region characterized by the dependence of the ultimat@alues ofy. Note that wheny increases the critical load vanishes in
strength of the bundle on both the system size and the effeghe thermodynamic limit, whereas, for smallit has a nonzero
tive range of interaction; and a second region wheg@nly  value independent of the system size.

0.30
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FIG. 4. Avalanche size distributions for different values of the f
exponent of the stress-transfer functign The upper group of
curves can be very well fitted with a straight line with a slape

50 —
-3 (L=257).

FIG. 5. Snapshots of the clusters just before the complete break-
o down of the material. The change in the structure of the clusters can
oe(N)~ —. (4) be seen. The values of are(a) y=0, (b) y.=2.2,(c) y=3, and
InN (d) y=9.

very well fitted by a power lawP(m)~m~7, with 7~3, the
This qualifies for a genuine short-range behavior as found igalue obtained for long-range interactiois’—20.
LLS models where the same relation was obtained for the As soon as the localized nature of the interaction becomes
asymptotic Strength of the bund]é9,2(f] It is worth nOting dominant (7> yc), the power law dependence of the ava-
that in the model we are analyzing, the limiting case of localianche size distribution with the exponent 2 does not ap-
load sharing corresponds to models in which short-range inply anymore. The lack of a characteristic size is a fingerprint
teractions are considered to affect the nearest and the nexf a highly fluctuating activity that could be related to the
nearest neighbors. In the transition region, the maximumyery nature of the long-range interactions. The avalanche
load the system can support also decreases as we approaghe distribution is a measure of causally connected broken

the thermodynamic limit, but in this case much slower thansites and the spatial correlations in this limit are ruled out.
for y> .. It has been pointed out that for some modalities

of stress transfer, which can be considered as intermediat- 10°

between GLS and LLSy. decreases for large system sizes

following the relationo.~1/In(InN) as in the case of hier-

archical load transfer mod€]l83]. In our case, we have fitted

our results with this relation but we have not obtained a 10

single collapsed curve because the slopes continuously var

until the LLS limit is reached. Finally, the region where the

ultimate stress does not depend on the system size shows tt—~

behavior expected for the standard GLS model, where theg 10

critical load can be exactly computed as=(pe) ¥ for

the Weibull distribution. The numerical values obtained for

p=2 are in good agreement with this latter expression. 10°
The fracture process can also be investigated by looking

at the precursory activity before the complete breakdown.

The statistical properties of rupture sequences are characte %

ized by the avalanche size distribution that from the experi- 10 10° . ) 3

mental point of view could be related to the acoustic emis-

sions generated during the fracture of materidd—37. §

Figure 4 shows the avalanche size distribution for different FIG. 6. Cluster size distributions for different values of the

values ofy. Again, we observe that for decreasing the effeC-gress-transfer function exponeptClearly, two different groups of

tive range Of interactio(increasi.ngy) there is a crossoverin  cyrves can be distinguished as found for other quantities also (
the distribution of avalanche sizes. The upper curves can be257).
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All the intact elements have a nonzero chance to fail inde- In the limit where the long-range interaction dominates,
pendently of the(spatia) rupture history, and any given ele- the clusters are randomly distributed on the lattice indicating
ment could be near to its rupture point regardless of its pothat there is no correlated crack growth in the system as well
sition in the lattice. This is not indeed the case wheiis  as that the stress is not concentrated in the regions. The clus-
large enough and the short-range interaction prevails. Nowviger structure of the limiting case af=0 can be mapped to
the spatial correlations are important and concentration opercolation clusters on a square lattice generated with the
stress takes place in the fibers located at the perimeter of grobability 0<P(c.)<1, whereo, is the fracture strength
already formed cluster. Fibers far away from the clusters obf the fiber bundle. However, the value Bfo.) depends on
broken elements have significantly lower stresses and thuse Weibull indexp and is normally different from the criti-
the size of the largest avalanche as well as the number afal percolation probabilityp.=0.592 746 of the square lat-
failed fibers belonging to the same avalanche is reducedice. EqualityP (o) = p. is obtained forp=1.1132, hence,
leading to a lower precursory activity. for physically relevanp values used in simulations the sys-

A further characterization of what is going on in the frac- tem is belowp, at complete breakdown. This argument also
ture process can be carried out by focusing on the propertigastifies the exponential-like shape of the cluster size distri-
of clusters of broken fibers. The clusters formed during thebutions of GLS in Fig. 6. This picture radically changes
evolution of the fracture process are sets of spatially conwhen the short-range interaction prevails. In this case, the
nected broken sites on the square latfied2]. We consider stress transfer is limited to a neighborhood of the failed ele-
the clusters just before the global failure and they are definethents and there appear regions where a few isolated cracks
taking into account solely the nearest neighbor connectionglrive the rupture of the material by growth and coalescence.
It is important to note that the case of global load sharingThus, the probability of the existence of a weak region some-
does not assume any spatial structure of fibers since it correvhere in the system is high and a weak region in the bundle
sponds to the mean-field approach. However, in our case it imay be responsible for the failure of the material. The dif-
obtained as a limiting case of a local load sharing model orfierences in the structure of clusters also explain the lack of a
a square lattice, which justifies the cluster analysis for GLritical strength wheiN goes to infinity in models with local
also. Figure 5 illustrates how the cluster structure just beforeearrangement of stress. Since in the GLS model the clusters
complete breakdown changes for various valuesyofMe  are randomly dispersed across the entire lattice, the system
have also recorded the cluster size distribution as a functionan “store” more damage or stress, whereas for LLS models
of the effective range of interaction. Figure 6 shows the sizea small increment of the external field may provoke a run
distributionn(s;) of the two-dimensional clusters for several away event ending with the macroscopic breakdown of the
values of the exponent of the load sharing function. Thematerial.
distributions have clearly two groups as found for other Up to now, the change of the behavior of the system was
guantities also. observed for a certain value gfanalyzing various measured

046148-5



HIDALGO, MORENO, KUN, AND HERRMANN PHYSICAL REVIEW E65 046148

guantities. All these numerical results suggest that the cross- 1
over between the two regimes occurs in the vicinity yof
=2. Further support for the precise value gf can be ob-
tained by studying the change in the cluster structure of bro-
ken fibers. The moments of(s;) defined as

o——oL=33
=—=a L =65
o—oL=129

M= j skn(s)ds, (5)

wherem, is the kth moment, describe much of the physics
associated with the breakdown process. We will use these & a)
moments to quantitatively characterize the point where the 10
crossover from mean-field to short-range behavior takes

place. The zero momei,=m, is the total number of clus- 10
ters in the system and is plotted in Figayas a function of

the parametery. Figure 7b) represents the variation of the 107 ¢
total number of broken site.. (the first momentN.=m;)
whenvy increases. It turns out that up to a certain value of the 16
effective range of interactio\. remains constant and then g
it decreases fast until a second plateau seems to arise. Note oo |

that the constant value f; for smally is in agreement with oy,
the value of the fraction of broken fibers just before the 10° | ——L=257
breakdown of the material in mean-field models. This prop- b)

erty clearly indicates a change in the evolution of the failure 167
process and may serve as a criterion to calculate the cross- 10
over point. However, a more abrupt change is observed in m
the average cluster sizs.) at varyingy. According to the 2
moments description, the average cluster size is equal to the
second moment of the cluster distribution divided by the
total number of broken sites, i.gs.)=m,/m;. It can be
seen in Fig. @) that(s;) has a sharp maximum at=2.2
+0.1, and thus the average cluster size drastically changes at
this point, which again suggests the crossover point to be in
the vicinity of y,=2.

We now discuss the finite size scalifigSS of the ava-
lanche distributions. For local load sharing one expects that
the cutoff in the avalanche distribution does not scale With
while for global load sharing the cutoff should scale with the
size of the system. We have plotted in Fig. 8 the avalanche v
size distribution for several system sizes. As it can be ob-
served, the FSS hypothesis is verified for the values of th(fah
exponenty corresponding to the glob&Fig. 8b)] and the e

™ P(m)

FIG. 8. Finite size scaling analysi®) Scaling of the cutoff with
system size for the local load sharing ca$g,scaling of the

- - . cutoff with the system size for the global load sharing case,(end
local [Fig. 8a)] load sharing cases. Figuréc8 shows the average cluster sizés.)=m,/m, for different system sizes. Note

moment analysis for five different system sizes in the aNYGhat in (c) the position ofy, does not change.

2.0=y=<2.5. It can be seen that the position of the maximum

of the m,/m; curves is always ayy=2.2+0.1, it does not correlated crack growth in the system, and the fiber failure
scale with the system size. To determine the position of théhat results in the catastrophic avalanche occurs at a random
crossover point more accurately we also analyzed the behayosition in the system. As long as this microscopic damage
ior of a characterizing the strength of logarithmic size effectmechanism holds when changing the expongrthe system

in Eqg. (4), as a function ofy. From these studies it turned out will behave globally in a global load sharing manner. On the
that consistent interpretation of the numerical results can bether hand, when the load sharing is very localized, at the
given assuming that the crossover occurs in the vicinity obeginning of the failure process we get random nucleation of
v.=2.0 but stronger statement cannot be drawn due to theicrocracks but later, correlated growth of clusters of broken

limited precision of calculations. fibers occurs. It then follows that along the perimeter of the
clusters there is a high stress concentration and the final ava-
IV. DISCUSSION AND CONCLUSIONS lanche is driven by a fiber located at the perimeter of one of

the clustergthe dominant onke At the fibers far away from
In the limiting case of global load sharing, the breaking ofthe perimeter, the stress concentration is significantly lower,
fibers is a completely random nucleation process, there is nand the stress distribution is very inhomogeneous. In the case
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of localized load sharing this mechanism gives rise also tdundle type where the interaction among fibers is considered
the logarithmic size effect as obtained also for the randonto decay as a power law of the distance from an intact ele-
fuse model[38]. ment to the rupture point. Two very different regimes are
An interesting aspect to be explored in future work isfound as the exponent of the stress-transfer function varies
whether there is a second transition point in the model wheand a crossover point is identified @t y. . The strength of
the y dependence o, seems to disappear or it is just a the material fory< y, does not depend on both the system
crossover. In the case of localized load sharing the global;,e andy qualifying for mean-field behavior, whereas for
failure is caused, as noted before, by the instability of a clusgne short-range regime, the critical load vanishes in the ther-
ter of broken fibers, defining a critical cluster size. Further'modynamic limit. The behavior of the model at both sides of
more, the exact value of. might depend on the amount of he crossover point was numerically studied by recording the
disorder in the system, which will also be a subject of futuregyglanche and the cluster size distributions. The numerical
studies. Preliminary studies of this issue indicate that thgesyits suggest that the crossover point falls in the vicinity of
transition valuey. gets slightly smaller as the system be- y.=2.0. Finally, we have outlined some general ideas that

comes more homogeneo(iacreasingp). _ will be the subject of a forthcoming publication.
Before setting our conclusions, we would like to remark

that a similar transition to the one obtained here has been
observed in other models. It is well known that long-range
interactions between spins can affect the critical behavior of
magnets. If we consider the addition of a tef . V(r Y.M. thanks A. F. Pacheco and A. Vespignani for useful
—r")s(r)s(r’) to an Ising Hamiltonian, whereV(r) comments on the manuscript. This work began while one of
~r~ (@9 corresponds to a long-range interaction decayinghe authors(Y.M.) was visiting the Institute for Computa-

as a power law, a crossover to long-range behavior is obtonal PhysicgICALl) at the University of Stuttgart. Its finan-
tained provided thar<2— 7,,, where 7, is the value of cial support is gratefully acknowledged. F.K. acknowledges
the critical exponenty for short-range forcd39—-41. A  financial support of the Bgai Janos Foundation of the Hun-
similar behavior has also been reported in percolation phegarian Academy of Sciences and of the Research Contract
nomena with long-range correlatiop42]. No. FKFP 0118/2001. This work was supported by Project

In summary, we have studied a fracture model of the fibeNo. SFB381 and by NATO Grant No. PST.CLG.977311.
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