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Fracture model with variable range of interaction
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We introduce a fiber bundle model where the interaction among fibers is modeled by an adjustable stress-
transfer function that can interpolate between the two limiting cases of load redistribution, i.e., the global and
the local load sharing schemes. By varying the range of interaction, several features of the model are numeri-
cally studied and a crossover from mean-field to short-range behavior is obtained. The properties of the two
regimes and the emergence of the crossover in between are explored by numerically studying the dependence
of the ultimate strength of the material on the system size, the distribution of avalanches of breakings, and of
the cluster sizes of broken fibers. Finally, we analyze the moments of the cluster size distributions to accurately
determine the value at which the crossover is observed.
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I. INTRODUCTION

Fracture processes have attracted the attention of the
entific community since many years. Processes involv
heterogeneous systems, for which a definite and comp
physical description has not been found despite many pa
successes of the last decades, are of special theoretica
practical interests@1–3#. In particular, the latest develop
ments of statistical mechanics have led to a deeper un
standing of the breakdown phenomena in heterogeneous
tems, but some fundamental questions remain unsolved.
difficulties arise because in modeling fracture of hetero
neous materials, one has to deal with systems formed
many interacting constituents, each one having different
tistical properties related to some breaking characteristic
the material, distributed randomly in space and/or time@1,2#.
So, the complete analytical solution is in almost all ca
prohibitive and one has to solve the problem by means
numerical simulations or to study simplified models that c
be analytically tractable~at least in some limits! in order to
gain physical insights that guide our understanding to m
complex models.

The major challenge in dealing with fracture problems
to combine the statistical evolution of damage across
entire macroscopic system and the associated stress red
butions to accurately predict the point of final rupture of t
material. In doing this linkage, one has to take care in or
not to make major simplifications particularly in the redist
bution rule, where a great deal of the physics of the prob
is hidden. A very important class of approaches to the fr
ture problem is the well-known fiber bundle models~FBM’s!
that were introduced long time ago by Daniels@4# and Cole-
man@5# and have been the subject of intense research du
the last several years@6–20#. FBM’s are constructed so tha
a set of fibers is arranged in parallel, each one havin
statistically distributed strength. The specimen is loaded
allel to the fiber direction and the fibers break if the lo
acting on them exceeds their threshold value. Once the fi
begin to fail one can choose among several load tran
rules. The simplest case is to assume global load sha
1063-651X/2002/65~4!/046148~8!/$20.00 65 0461
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~GLS! which means that after each fiber failure, its load
equally redistributed among all the intact fibers remaining
the set. This model, known as global fiber bundle model,
mean-field approximation where long-range interactio
among the elements of the system are assumed and ca
solved analytically@14,18#. At the other extreme, one find
the local load sharing~LLS! fiber bundle model where the
load borne by failing elements is transferred to their nea
neighbors. This case represents short-range interact
among the fibers. Other schemes have been proposed w
relative success in describing rupture processes at a l
scale, such as earthquakes@21#.

Despite their simplicity, FBM’s are very important be
cause they capture most of the main aspects of material d
age and breakdown. They have provided a deeper un
standing of fracture processes and have served as a sta
point for more complex models of fiber reinforced compo
ites and other micromechanical models@22–24#. However,
stress redistribution in actual heterogeneous materials sh
fall somewhere in between LLS and GLS since there is
important fraction of stress redistributed to other intact e
ments not localized in the neighborhood of the failed on
nevertheless maintaining stress concentrations around
broken fibers. With this aim, several studies have been
ried out during the last two decades and Monte Carlo sim
lations have been used to numerically study the distribut
of composite strengths in two-dimensional~2D! and 3D
models for different fiber arrangements@16,25–29#. Never-
theless, in order to obtain reliable conclusions, the numbe
fibers forming the system has to be very large that makes
numerical problem, in many cases, too time consuming a
perform the study in a reasonable amount of time.

In this paper, we introduce a fiber bundle model where
interaction among fibers is modeled by an adjustable str
transfer function that interpolates between the two limiti
cases of load redistribution, i.e., the global and the local lo
sharing schemes. By varying the effective range of inter
tion one observes a crossover from mean-field to short-ra
behavior. To explore the properties of the two regimes a
the emergence of the crossover in between, a comprehen
©2002 The American Physical Society48-1
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numerical study of the model is performed. We study
dependence of the ultimate strength of the material on
system size and found that the system has only one non
critical load in the thermodynamic limit. When no critica
point exists, the ultimate strength of the material goes to z
exactly as in local load sharing models as;1/lnN, with
increasing system sizeN. We also study the distribution o
avalanches of fiber breaks, and that of the cluster size
broken fibers for the two distinct regimes and perform a m
ment analysis to accurately determine the crossover valu

The rest of the paper is organized as follows. The follo
ing section is devoted to present the model and the wa
which numerical simulations are carried out. The results
tained are presented and analyzed in Sec. III. The final
tion is devoted to discussions and to state our conclusio

II. THE MODEL

The fracture of heterogeneous systems is characterize
the highly localized concentration of stresses at the cr
tips, which makes possible the nucleation of new cracks
these regions such that the actual crack grows leading to
final collapse of the system. In elastic materials, the str
redistribution follows a power law,

sadd;r 2g, ~1!

wheresadd is the stress increase on a material element
distancer from the crack tip. The above general relatio
covers the cases of global and local load sharings, wid
used in fiber bundle models of fracture, as the limiting ca
g→0 andg→`, respectively.

Motivated by the above result of fracture mechanics
introduce a fiber bundle model where the load sharing r
takes the form of Eq.~1!. Suppose a set ofN parallel fibers
are there, each one having statistically distributed stren
taken from a probability distribution functionP and identi-
fied by an integeri, where 1< i<N. In material science, the
Weibull distribution has been proved to be a good empiri
statistical distribution for representing fiber strength,

P~s!512e2(s/s0)r
,

wherer is the so-called Weibull index, which controls th
degree of threshold disorder in the system~the bigger the
Weibull index, the narrower the range of threshold value!,
and s0 is a reference load that acts as unity. Thus, to e
fiber i a random threshold values i th is assigned. The system
is driven by increasing quasistatically the load on it, which
performed by locating the fiber, which minimizess i2s i th
and adding this amount of load to all the intact fibers in
system. This provokes the failure of at least one fiber, wh
transfers its load to the surviving elements of the set. T
may provoke other fractures in the system, which in tu
induce tertiary ruptures and so on until the system fails
reaches an equilibrium state where the load on the in
fibers is lower than their individual strengths. In this latt
case, the slow external driving is applied again and the p
cess is repeated up to the macroscopic failure of the mate
The number of broken fibers between two successive ex
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nal drivings is the size of an avalanches and the number of
parallel updatings of the lattice during an avalanche is ca
its lifetime T.

We now focus on the load transfer process following fib
failures. We suppose that, in general, all intact fibers hav
nonzero probability of being affected by the ongoing failu
event, and that the additional load received by an intact fi
i depends on its distancer i j from fiber j that has just been
broken. Furthermore, elastic interaction is assumed betw
the fibers such that the load received by a fiber follows
power law form of Eq.~1!. Hence, in our discrete model th
stress-transfer functionF(r i j ,g) takes the form

F~r i j ,g!5Zri j
2g , ~2!

whereg is our adjustable parameter,Z is given by the nor-
malization conditionZ5(( i PI r i j

2g)21 ~the sum runs over
the set I of all intact elements! and r i j is the distance
of the fiber i to the rupture point (xj ,yj ), i.e., r i j

5A(xi2xj )
21(yi2yj )

2 in 2D. Periodic boundary condi
tions are assumed so that the largestr value is Rmax

5A2(L21)/2, whereL is the linear size of the system. W
note here that the assumption of periodic boundary con
tions is for simplicity. In principle, an Ewald summation pro
cedure would be more accurate. The model constructio
illustrated in Fig. 1. It is easy to see that in the limitsg
→0 and g→` we recover the two extreme cases of lo
redistribution in fiber bundle models: the global load shar
and the local load sharing, respectively. We should note h
that, strictly speaking, for allg different from the two limits
above, the range of interaction covers the whole latti
However, when changing this exponent, one moves from
very localizedeffectiverange of interaction to a truly globa
one asg approaches zero. So, we will refer henceforth to
change in theeffectiverange of interaction.

FIG. 1. Illustration of the model construction.3 indicates a
fiber that is going to break, ands is an intact fiber in the square
lattice.
8-2
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In summary, during an avalanche of failure events,
intact fiber i receives at each time stept the load borne by
the failing elementsj. Consequently, its load increases by
amount,

s i~ t1t!5s i~ t1t21!1 (
j PB(t)

s j~ t1t21!F~r i j ,g!,

~3!

where the sum runs over the setB(t) of elements that have
failed in a time stept. Thus,s i(t01T)5(t51

T s i(t01t) is
the total load that elementi receives during an avalanch
initiated att0 and which ended att01T. In this way, when an
avalanche ends, the external field is applied again and
other avalanche is initiated. The process is repeated unt
intact elements remain in the system and the ultim
strength of the materialsc , is defined as the maximum loa
the system can support before its complete breakdown.

Unfortunately, the complete analytical approach to
general model introduced here is inaccessible. There a
few cases where this task can be achieved such as the g
load sharing model where the load acting on surviving e
ments for a given external forceF is known @14,18# and
some 1D models@30–32# ~which are irrelevant for practica
purposes!. The main difficulty is that in order to analyticall
solve the problem, one needs to know the transition pr
abilities for all the possible paths leading the system from
state in which all the elements are intact to the state in wh
they have failed. This calculation eventually becomes imp
sible for large system sizes. So, the first step is to learn f
Monte Carlo simulations which, furthermore, allows us
better understand the physical mechanisms of fracture an
study models difficult to handle analytically as well as
guide our search for analytical calculations.

III. MONTE CARLO SIMULATION OF THE FAILURE
PROCESS

We have carried out large scale numerical simulations
the model described above in two dimensions. The fibers
identified with the sites of a square lattice of linear sizeL
with periodic boundary conditions. The failure process
then simulated by varying the effective range of interact
between fibers by controllingg and recording the avalanch
size distribution, the cluster size distribution, and the u
mate strength of the material for several system sizes. E
numerical simulation was performed over at least 50 diff
ent realizations of the disorder distribution.

Figure 2 shows the ultimate strength of the material
different values of the parameterg and several system size
from L533 to L5257. Clearly, two distinct regions can b
distinguished. For smallg, sc is independent, within statis
tical errors, of both the effective range of interaction and
system size. At a given pointg5gc, a crossover is observed
where gc falls in the vicinity of g52. The regiong.gc
might eventually be further divided into two parts, the fir
region characterized by the dependence of the ultim
strength of the bundle on both the system size and the e
tive range of interaction; and a second region wheresc only
04614
n

n-
no
e

e
a

bal
-

-
e
h

s-
m

to

f
re

s
n

-
ch
-

r

e

t
te
c-

depends on the system size. This would mean that th
might be two transition points in the model, for which th
system displays qualitatively and quantitatively different b
haviors. Forg<gc the ultimate strength of the bundle be
haves as in the limiting case of global load sharing, wher
for g>gc the local load sharing behavior seems to prev
Nevertheless, the most important feature is that when
creasing the effective range of interaction in the thermo
namic limit, for g.gc , the critical load is zero. This obser
vation is further supported by Fig. 3, where we have plot
the evolution ofsc as a function of 1/lnN for different val-
ues of the exponentg. Here, the two limiting cases are aga
clearly differentiated. For largeg, all the curves decreas
whenN→` as

FIG. 2. Ultimate strength of the material for different syste
sizes as a function of the effective range of interactiong. A cross-
over from mean-field to short-range behavior is clearly observe

FIG. 3. Variation of the material strength withN for several
values ofg. Note that wheng increases the critical load vanishes
the thermodynamic limit, whereas, for smallg it has a nonzero
value independent of the system size.
8-3
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sc~N!;
a

ln N
. ~4!

This qualifies for a genuine short-range behavior as foun
LLS models where the same relation was obtained for
asymptotic strength of the bundle@19,20#. It is worth noting
that in the model we are analyzing, the limiting case of lo
load sharing corresponds to models in which short-range
teractions are considered to affect the nearest and the
nearest neighbors. In the transition region, the maxim
load the system can support also decreases as we app
the thermodynamic limit, but in this case much slower th
for g@gc . It has been pointed out that for some modalit
of stress transfer, which can be considered as intermed
between GLS and LLS,sc decreases for large system siz
following the relationsc;1/ln(lnN) as in the case of hier
archical load transfer models@33#. In our case, we have fitte
our results with this relation but we have not obtained
single collapsed curve because the slopes continuously
until the LLS limit is reached. Finally, the region where th
ultimate stress does not depend on the system size show
behavior expected for the standard GLS model, where
critical load can be exactly computed assc5(re)21/r for
the Weibull distribution. The numerical values obtained
r52 are in good agreement with this latter expression.

The fracture process can also be investigated by look
at the precursory activity before the complete breakdo
The statistical properties of rupture sequences are chara
ized by the avalanche size distribution that from the exp
mental point of view could be related to the acoustic em
sions generated during the fracture of materials@34–37#.
Figure 4 shows the avalanche size distribution for differ
values ofg. Again, we observe that for decreasing the effe
tive range of interaction~increasingg) there is a crossover in
the distribution of avalanche sizes. The upper curves can

FIG. 4. Avalanche size distributions for different values of t
exponent of the stress-transfer functiong. The upper group of
curves can be very well fitted with a straight line with a slopet5

2
5
2 (L5257).
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very well fitted by a power lawP(m);m2t, with t' 5
2 , the

value obtained for long-range interactions@17–20#.
As soon as the localized nature of the interaction becom

dominant (g.gc), the power law dependence of the av
lanche size distribution with the exponentt' 5

2 does not ap-
ply anymore. The lack of a characteristic size is a fingerp
of a highly fluctuating activity that could be related to th
very nature of the long-range interactions. The avalan
size distribution is a measure of causally connected bro
sites and the spatial correlations in this limit are ruled o

FIG. 5. Snapshots of the clusters just before the complete br
down of the material. The change in the structure of the clusters
be seen. The values ofg are ~a! g50, ~b! gc52.2, ~c! g53, and
~d! g59.

FIG. 6. Cluster size distributions for different values of th
stress-transfer function exponentg. Clearly, two different groups of
curves can be distinguished as found for other quantities alsoL
5257).
8-4
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FIG. 7. Moments of the cluster
size distribution as a function ofg
~see text for details on the defini
tion of mk). A sharp maximum is
observed atg5gc;2.2 for the
average cluster sizêsc&5m2 /m1.
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All the intact elements have a nonzero chance to fail in
pendently of the~spatial! rupture history, and any given ele
ment could be near to its rupture point regardless of its
sition in the lattice. This is not indeed the case wheng is
large enough and the short-range interaction prevails. N
the spatial correlations are important and concentration
stress takes place in the fibers located at the perimeter o
already formed cluster. Fibers far away from the clusters
broken elements have significantly lower stresses and
the size of the largest avalanche as well as the numbe
failed fibers belonging to the same avalanche is reduc
leading to a lower precursory activity.

A further characterization of what is going on in the fra
ture process can be carried out by focusing on the prope
of clusters of broken fibers. The clusters formed during
evolution of the fracture process are sets of spatially c
nected broken sites on the square lattice@6,12#. We consider
the clusters just before the global failure and they are defi
taking into account solely the nearest neighbor connectio
It is important to note that the case of global load shar
does not assume any spatial structure of fibers since it co
sponds to the mean-field approach. However, in our case
obtained as a limiting case of a local load sharing model
a square lattice, which justifies the cluster analysis for G
also. Figure 5 illustrates how the cluster structure just bef
complete breakdown changes for various values ofg. We
have also recorded the cluster size distribution as a func
of the effective range of interaction. Figure 6 shows the s
distributionn(sc) of the two-dimensional clusters for sever
values of the exponent of the load sharing function. T
distributions have clearly two groups as found for oth
quantities also.
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In the limit where the long-range interaction dominate
the clusters are randomly distributed on the lattice indicat
that there is no correlated crack growth in the system as w
as that the stress is not concentrated in the regions. The
ter structure of the limiting case ofg50 can be mapped to
percolation clusters on a square lattice generated with
probability 0,P(sc),1, wheresc is the fracture strength
of the fiber bundle. However, the value ofP(sc) depends on
the Weibull indexr and is normally different from the criti-
cal percolation probabilitypc50.592 746 of the square lat
tice. EqualityP(sc)5pc is obtained forr51.1132, hence,
for physically relevantr values used in simulations the sy
tem is belowpc at complete breakdown. This argument al
justifies the exponential-like shape of the cluster size dis
butions of GLS in Fig. 6. This picture radically chang
when the short-range interaction prevails. In this case,
stress transfer is limited to a neighborhood of the failed e
ments and there appear regions where a few isolated cr
drive the rupture of the material by growth and coalescen
Thus, the probability of the existence of a weak region som
where in the system is high and a weak region in the bun
may be responsible for the failure of the material. The d
ferences in the structure of clusters also explain the lack
critical strength whenN goes to infinity in models with loca
rearrangement of stress. Since in the GLS model the clus
are randomly dispersed across the entire lattice, the sys
can ‘‘store’’ more damage or stress, whereas for LLS mod
a small increment of the external field may provoke a r
away event ending with the macroscopic breakdown of
material.

Up to now, the change of the behavior of the system w
observed for a certain value ofg analyzing various measure
8-5
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quantities. All these numerical results suggest that the cr
over between the two regimes occurs in the vicinity ofg
52. Further support for the precise value ofgc can be ob-
tained by studying the change in the cluster structure of b
ken fibers. The moments ofn(sc) defined as

mk[E sc
kn~sc!ds, ~5!

wheremk is the kth moment, describe much of the physi
associated with the breakdown process. We will use th
moments to quantitatively characterize the point where
crossover from mean-field to short-range behavior ta
place. The zero momentNc5mo is the total number of clus
ters in the system and is plotted in Fig. 7~a! as a function of
the parameterg. Figure 7~b! represents the variation of th
total number of broken sitesNc ~the first momentNc5m1)
wheng increases. It turns out that up to a certain value of
effective range of interaction,Nc remains constant and the
it decreases fast until a second plateau seems to arise.
that the constant value ofNc for smallg is in agreement with
the value of the fraction of broken fibers just before t
breakdown of the material in mean-field models. This pro
erty clearly indicates a change in the evolution of the failu
process and may serve as a criterion to calculate the cr
over point. However, a more abrupt change is observed
the average cluster size^sc& at varyingg. According to the
moments description, the average cluster size is equal to
second moment of the cluster distribution divided by t
total number of broken sites, i.e.,^sc&5m2 /m1. It can be
seen in Fig. 7~d! that ^sc& has a sharp maximum atg52.2
60.1, and thus the average cluster size drastically chang
this point, which again suggests the crossover point to b
the vicinity of gc52.

We now discuss the finite size scaling~FSS! of the ava-
lanche distributions. For local load sharing one expects
the cutoff in the avalanche distribution does not scale witL
while for global load sharing the cutoff should scale with t
size of the system. We have plotted in Fig. 8 the avalan
size distribution for several system sizes. As it can be
served, the FSS hypothesis is verified for the values of
exponentg corresponding to the global@Fig. 8~b!# and the
local @Fig. 8~a!# load sharing cases. Figure 8~c! shows the
moment analysis for five different system sizes in the ra
2.0<g<2.5. It can be seen that the position of the maxim
of the m2 /m1 curves is always atg52.260.1, it does not
scale with the system size. To determine the position of
crossover point more accurately we also analyzed the be
ior of a characterizing the strength of logarithmic size effe
in Eq. ~4!, as a function ofg. From these studies it turned ou
that consistent interpretation of the numerical results can
given assuming that the crossover occurs in the vicinity
gc52.0 but stronger statement cannot be drawn due to
limited precision of calculations.

IV. DISCUSSION AND CONCLUSIONS

In the limiting case of global load sharing, the breaking
fibers is a completely random nucleation process, there i
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correlated crack growth in the system, and the fiber fail
that results in the catastrophic avalanche occurs at a ran
position in the system. As long as this microscopic dama
mechanism holds when changing the exponentg, the system
will behave globally in a global load sharing manner. On t
other hand, when the load sharing is very localized, at
beginning of the failure process we get random nucleation
microcracks but later, correlated growth of clusters of brok
fibers occurs. It then follows that along the perimeter of t
clusters there is a high stress concentration and the final
lanche is driven by a fiber located at the perimeter of one
the clusters~the dominant one!. At the fibers far away from
the perimeter, the stress concentration is significantly low
and the stress distribution is very inhomogeneous. In the c

FIG. 8. Finite size scaling analysis.~a! Scaling of the cutoff with
the system size for the local load sharing case,~b! scaling of the
cutoff with the system size for the global load sharing case, and~c!
average cluster sizêsc&5m2 /m1 for different system sizes. Note
that in ~c! the position ofgc does not change.
8-6
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FRACTURE MODEL WITH VARIABLE RANGE OF INTERACTION PHYSICAL REVIEW E65 046148
of localized load sharing this mechanism gives rise also
the logarithmic size effect as obtained also for the rand
fuse model@38#.

An interesting aspect to be explored in future work
whether there is a second transition point in the model w
the g dependence ofsc seems to disappear or it is just
crossover. In the case of localized load sharing the glo
failure is caused, as noted before, by the instability of a c
ter of broken fibers, defining a critical cluster size. Furth
more, the exact value ofgc might depend on the amount o
disorder in the system, which will also be a subject of futu
studies. Preliminary studies of this issue indicate that
transition valuegc gets slightly smaller as the system b
comes more homogeneous~increasingr).

Before setting our conclusions, we would like to rema
that a similar transition to the one obtained here has b
observed in other models. It is well known that long-ran
interactions between spins can affect the critical behavio
magnets. If we consider the addition of a term( r ,r 8V(r
2r 8)s(r )s(r 8) to an Ising Hamiltonian, whereV(r )
;r 2(d1s) corresponds to a long-range interaction decay
as a power law, a crossover to long-range behavior is
tained provided thats,22hsr , wherehsr is the value of
the critical exponenth for short-range force@39–41#. A
similar behavior has also been reported in percolation p
nomena with long-range correlations@42#.

In summary, we have studied a fracture model of the fi
ed
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bundle type where the interaction among fibers is conside
to decay as a power law of the distance from an intact e
ment to the rupture point. Two very different regimes a
found as the exponent of the stress-transfer function va
and a crossover point is identified atg5gc . The strength of
the material forg,gc does not depend on both the syste
size andg qualifying for mean-field behavior, whereas fo
the short-range regime, the critical load vanishes in the th
modynamic limit. The behavior of the model at both sides
the crossover point was numerically studied by recording
avalanche and the cluster size distributions. The numer
results suggest that the crossover point falls in the vicinity
gc52.0. Finally, we have outlined some general ideas t
will be the subject of a forthcoming publication.
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