
Synchronizability determined by coupling strengths and topology on complex networks

Jesús Gómez-Gardeñes,1,2 Yamir Moreno,1 and Alex Arenas3

1Institute for Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza, Zaragoza 50009, Spain
2Departamento de Física de la Materia Condensada, University of Zaragoza, Zaragoza E-50009, Spain

3Departament d’Enginyeria Informàtica i Matemàtiques, Universitat Rovira i Virgili, 43007 Tarragona, Spain
�Received 6 February 2007; published 22 June 2007�

We investigate in depth the synchronization of coupled oscillators on top of complex networks with different
degrees of heterogeneity within the context of the Kuramoto model. In a previous paper �Phys. Rev. Lett. 98,
034101 �2007��, we unveiled how for fixed coupling strengths local patterns of synchronization emerge dif-
ferently in homogeneous and heterogeneous complex networks. Here, we provide more evidence on this
phenomenon, extending the previous work to networks that interpolate between homogeneous and heteroge-
neous topologies. We also introduce details of the path towards synchronization for the evolution of clustering
in the synchronized patterns. Finally, we investigate the synchronization of networks with modular structure
and conclude that, in these cases, local synchronization is first attained at the most internal level of organization
of modules, progressively evolving to the outer levels as the coupling constant is increased. The present work
introduces parameters that are proved to be useful for the characterization of synchronization phenomena in
complex networks.
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I. INTRODUCTION

Studies of the emergence of collective and synchronized
dynamics in large ensembles of coupled units have been car-
ried out since the beginning of the 1990s in different contexts
and in a variety of fields, ranging from biology, ecology, and
semiconductor lasers to electronic circuits �1–3�. Collective
synchronized dynamics has multiple applications in technol-
ogy and is a common framework to investigate the crucial
features in the emergence of critical phenomena in natural
systems. For instance, it is a relevant issue to fully under-
stand some diseases that appear as the result of a sudden and
undesirable synchronization of a large number of neuronal
units �4�. Recently, synchronization phenomena have also
been proved to be helpful outside the traditional fields where
it applies, for instance, in sociology where it can be used to
study the mechanisms leading to the formation of social col-
lective behaviors �5,6�.

Among the many models that have been proposed to ad-
dress synchronization phenomena, one of the most success-
ful attempts to understand them is due to Kuramoto �7,8�,
who capitalized on previous works by Winfree �9� and pro-
posed a model system of nearly identical weakly coupled
limit-cycle oscillators. The Kuramoto-model �KM� mean-
field case corresponding to a uniform, all-to-all, and sinu-
soidal coupling is described by the equations of motion

�̇i = �i +
K

N
�
j=1

N

sin�� j − �i� �i = 1, . . . ,N� . �1�

where the factor 1 /N is incorporated in order to ensure a
good behavior of the model in the thermodynamic limit, N
→�, �i stands for the natural frequencies of the oscillators,
and K is the coupling constant. Moreover, the coherence of
the population of N oscillators is measured by the complex
order parameter,

r�t�exp�i��t�� =
1

N
�
j=1

N

exp�i� j�t�� , �2�

where the modulus 0�r�t��1 measures the phase coher-
ence of the population and ��t� is the average phase. In what
follows, we will focus on the synchronization of coupled
oscillators described by the dynamics, Eq. �1�, because of its
validity as an approximation for a large number of nonlinear
equations and its ubiquity in the nonlinear literature �10�.

The KM approach to synchronization was a great break-
through for the understanding of the emergence of synchro-
nization in large populations of oscillators; in particular, it
presents a second-order phase transition from incoherence to
synchronization, in the order parameter, Eq. �2�, for a critical
value of the coupling constant. However, a large amount of
real systems do not show a homogeneous pattern of intercon-
nections among their parts �11,12� where the original KM
assumptions apply.

Many real natural �13,14�, social �15�, and technological
�16–18� systems conform as networks of nodes with connec-
tivity patterns that diverge considerably from homogeneity
and are usually characterized by a scale-free degree distribu-
tion P�k��k−� �the degree k is the number of connections of
a node�. The study of processes taking place on top of scale-
free networks has led to a reconsideration of classical results
obtained for regular lattices or random graphs due to the
radical changes of the system’s dynamics when the hetero-
geneity of the connectivity patterns cannot be neglected
�19–24�. In this case one has to deal with two sources of
complexity, the nonlinear character of the dynamics and the
complex structures of the substrate, which are usually en-
tangled. A contemporary effort to attack this entangled prob-
lem was due to Watts and Strogatz, that in 1998, trying to
understand the synchronization of cricket chirps, which show
a high degree of coordination over long distances as though
the insects where “invisibly” connected, end up with a semi-
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nal paper �25� about the small-world connectivity property.
This work was the seed of the modern theory of complex
networks �11,12�. Nevertheless, the understanding of the
synchronization dynamics in complex networks still remains
a challenge.

In recent years, scientists have addressed the problem of
synchronization on complex networks capitalizing on the
master stability function �MSF� formalism �26� which allows
one to study the stability of the fully synchronized state
�27–34�. The MSF is the result of a linear stability analysis
for a completely synchronized system. While the MSF ap-
proach is useful for obtaining insight into what is going on in
the system as far as the stability of the synchronized state is
concerned, it is not useful for knowing how partial synchro-
nization is attained. To this end, one must rely on numerical
calculations and explore the entire phase diagram. Surpris-
ingly, there are only a few works that have dealt with a study
of the whole synchronization dynamics in specific scenarios
�35–40� as compared with those where the MSF is used,
given that the onset of synchronization is richer in its behav-
ioral repertoire than the state of complete synchronization.

In a previous work �41�, we have shown how, for fixed
coupling strengths, local patterns of synchronization emerge
differently in homogeneous and heterogeneous complex net-
works, driving the process towards a certain degree of global
synchronization following different paths. In this paper, we
extend the previous work to different topologies, even those
with modular structure, and report more results supporting
the previous claim. First, we extend the analysis carried out
in �41� to networks in which the degree of heterogeneity can
be tuned between the two limits of random scale-free net-
works and random graphs with a Poisson degree distribution.
Second, in order to obtain further insight into the role of the
structural properties on the route towards complete synchro-
nization, we study the same dynamics on top of networks
with a nonrandom structure at the mesoscopic level—i.e.,
networks with communities. The results support the useful-
ness of the tools developed and highlight the relevance of
synchronization phenomena to study in detail the relation-
ship between structure and function in complex networks.

II. KM MODEL ON COMPLEX NETWORKS

Let us now focus on the paradigmatic Kuramoto model.
In order to manage with the KM on top of complex topolo-
gies we reformulate Eq. �1� to the form

d�i

dt
= �i + �

j

�ijAij sin�� j − �i� �i = 1, . . . ,N� , �3�

where �ij is the coupling strength between pairs of con-
nected oscillators and Aij is the connectivity matrix �Aij =1 if
i is linked to j and 0 otherwise�. The original Kuramoto
model introduced above assumed mean-field interactions so
that Aij =1, ∀i� j �all-to-all� and �ij =K /N, ∀i , j.

The first problem when dealing with the KM in complex
networks is the definition of the dynamics. In the seminal
paper by Kuramoto �7�, Eq. �1�, the coupling term on the
right-hand side of Eq. �3� is an intensive magnitude. The

dependence on the number of oscillators, N, is avoided by
choosing �ij =K /N. This prescription turns out to be essen-
tial for the analysis of the system in the thermodynamic limit
N→�. However, choosing �ij =K /N the dynamics of the
KM in a complex network becomes dependent on N. There-
fore, in the thermodynamic limit, the coupling term tends to
zero except for those nodes with a degree that scales with N
�42�.

A second prescription consists of taking �ij =K /ki �where
ki is the degree of node i� so that �ij is a weighted interaction
factor that also makes intensive the right-hand side of Eq.
�3�. This form has been used to solve the so-called paradox
of heterogeneity, which states that the heterogeneity in the
degree distribution, which often reduces the average distance
between nodes, may suppress synchronization in networks of
oscillators coupled symmetrically with uniform coupling
strength �34�.

Finally, the prescription �ij =K �39,43,44�, which may
seem more appropriate, also presents some conceptual prob-
lems because the sum on the right-hand side of Eq. �3� could
eventually diverge in the thermodynamic limit if synchroni-
zation is achieved. To our understanding, the most accurate
interpretation of the KM dynamics in complex networks
should preserve the essential fact of treating the heterogene-
ity of the network independently of the interaction dynamics
and, at the same time, should remain calculable in the ther-
modynamic limit. Taking into account these factors, the in-
teraction �ij in complex networks should be inversely pro-
portional to the largest degree of the system, �ij =K /kmax
=�, keeping in this way the original formulation of the KM
valid in the thermodynamic limit �in SF networks kmax
�N1/��−1��. In addition, the same order parameter, Eq. �2�,
can be used to describe the coherence of the synchronized
state. Since kmax is constant for a given network, the physical
meaning of this prescription is a rescaling of the time units
involved in the dynamics. Note, however, that for a proper
comparison of the synchronizability of different complex
networks, the global and local measures of coherence should
be represented according to their respective time scales.
Therefore, given two complex networks A and B with kmax
=kA and kmax=kB, respectively, the comparison between ob-
servables must be done for the same effective coupling
KA /kA=KB /kB=�. With this formulation in mind Eq. �3� re-
duces to

d�i

dt
= �i + ��

j

Aij sin�� j − �i� �i = 1, . . . ,N� , �4�

independently of the specific topology of the network. This
allow us to study the dynamics of Eq. �4� over different
topologies in order to compare the results and properly in-
spect the interplay between topology and dynamics in what
concerns to synchronization.

III. HOMOGENEOUS vs HETEROGENEOUS
TOPOLOGIES

Recent results have shed light on the influence of the local
interactions’ topology on the route to synchronization
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�36,40�. However, in these studies at least two parameters
�clustering and average path length� vary along the studied
family of networks. This paired evolution, although yielding
an interesting interplay between the two topological param-
eters, makes it difficult to distinguish what effects were due
to one or other factors. Here, we would like to address first
what is the influence of heterogeneity, keeping the number of
degrees of freedom to a minimum for the comparison to be
meaningful. The family of networks used in the present sec-
tion are comparable in their clustering, average distance, and
correlations so that the only difference relies on the degree
distribution, ranging from a Poissonian type to a scale-free
distribution. Later on in this paper, we will relax these con-
straints and study networks in which the main topological
feature is given at the mesoscopic scale—i.e., networks with
community structure.

Therefore, let us first scrutinize and compare the synchro-
nization patterns in Erdös-Rényi �ER� and scale-free �SF�
networks. For this purpose we make use of the model pro-
posed in �45�, which allows a smooth interpolation between
these two extremal topologies. Besides, we introduce a pa-
rameter to characterize the synchronization paths to unravel
their differences. The results reveal that the synchronizability
of these networks does depend on the coupling between units
and, hence, that general statements about their synchroniz-
ability are eventually misleading. Moreover, we show that
even in the incoherent solution r=0, the system is self-
organizing towards synchronization. We will analyze in de-
tail how this self-organization is attained.

The first numerical study about the onset of synchroniza-
tion of Kuramoto oscillators in SF networks �39� revealed
the great propensity of SF networks to synchronization,
which is revealed by a nonzero but very small critical value
�c �46�. Besides, it was observed that at the synchronized
state r=1, hubs are extremely robust to perturbations since
the recovery time of a node as a function of its degree fol-
lows a power law with exponent −1. However, how do SF
networks compare with homogeneous networks and what are
the roots of the different behaviors observed?

We first concentrate on global synchronization for the
Kuramoto model, Eq. �4�. For this we follow the evolution of
the order parameter r, Eq. �2�, as � increases, to capture the
global coherence of the synchronization in networks. We will
perform this analysis on the family of networks generated
with the model introduced in �45�. This model generates a
one-parameter family of networks labeled by 	� �0,1�. The
parameter 	 measures the degree of heterogeneity of the final
networks so that 	=0 corresponds to the heterogeneous
Barabási-Albert �BA� network and 	=1 to homogeneous ER
graphs. For intermediate values of 	 one obtains networks
that have been grown, combining both preferential attach-
ment and homogeneous random linking so that each mecha-
nism is chosen with probabilities �1−	� and 	, respectively.
It is worth stressing that the growth mechanism preserves the
total number of links, Nl, and nodes, N, for a proper com-
parison between different values of 	. Specifically, assuming
the final size of the network to be N, the network is built up
starting from a fully connected core of m0 nodes and a set
S�0� of N−m0 unconnected nodes. Then, at each time step, a
new node �not selected before� is chosen from S�0� and

linked to m other nodes. Each of the m links is attached with
probability 	 to a randomly chosen node �avoiding self-
connections� from the whole set of N−1 remaining nodes
and with probability �1−	� following a linear preferential
attachment strategy �47�. After repeating this process N−m0
times, networks interpolating between the limiting cases of
ER �	=1� and SF �	=0� topologies are generated �45�. Fur-
thermore, with this procedure, the degree of heterogeneity of
the grown networks varies smoothly between the two limit-
ing cases.

The curves r��� for several network topologies ranging
from ER to SF are shown in Fig. 1. We have performed
extensive numerical simulations of Eq. �4� for each network
substrate starting from �=0 and increasing it up to �=0.4
with 
�=0.02. A large number �at least 500� of different
network realizations and initial conditions were considered
for every value of � in order to obtain an accurate phase
diagram. The natural frequencies �i and the initial values of
�i were randomly drawn from a uniform distribution in the
interval �−1/2 ,1 /2� and �−� ,��, respectively.

Figure 1 reveals the differences in the critical behavior as
a function of the substrate heterogeneity. The global coher-
ence of the synchronized state, represented by r, shows that
the onset of synchronization first occurs for SF networks. As
the network substrate becomes more homogeneous the criti-
cal point �c shifts to larger values and the system seems to be
less synchronizable. On the other hand, it is also clear that
the route to complete synchronization, r=1, is faster for ho-
mogeneous networks. That is, when ���c�	� the growth
rate of r increases with 	. To inspect in depth the critical
parameters of the system dynamics we perform a finite-size
scaling �FSS� analysis. This allows us to determine with pre-
cision the curve �c�	� and study the critical behavior near
the synchronization transition. We assume a scaling relation
of the form

r = N−
f„N��� − �c�… , �5�

where f�x� is as usual a universal scaling function bounded
as x→ ±� and 
 and � are critical exponents to be deter-
mined. The detailed analysis performed for both SF and ER
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FIG. 1. Global synchronization curves r��� for different network
topologies labeled by 	 �	=0 corresponds to the BA limit and 	
=1 to ER graphs�. The inset shows the region where the onset of
synchronization takes place. The network sizes are N=104 and �k�
=6 �Nl=3�104� and were generated using the model introduced in
�45�.
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topologies shows that the critical value of the effective cou-
pling, �c, corresponds in scale-free networks to �c

SF=0.051
and in random networks to �c

ER=0.122, accordingly with Fig.
1. In both cases, the transition strongly recalls the classical
transition of the original KM �7� with a critical exponent
near 1 /2 for the SF network. In �39,40� two different tech-
niques for a finite-size scaling analysis have been discussed,
corroborating the findings here reported. For intermediate
values of 	, the results show that the critical point shifts to
larger values as the degree of heterogeneity increases. They
are shown in Table I together with some topological proper-
ties of the networks.

The differences between ER and SF topologies observed
when looking at global patterns of synchronization motivate
a more detailed study of the synchronization onset for both
topologies. The original work by Kuramoto pointed out that
at the onset of synchronization small clusters of locked os-
cillators emerge and that the recruitment of more oscillators
into these clusters as the coupling is increased makes it larger
the global coherence r of the system. Obviously the emer-
gence of these clusters would depend on the underlying to-
pology which drives the possible configurations that locked
oscillators would eventually form. To see how this initial
coherence is achieved we propose an order parameter rlink.
This parameter measures the local construction of the syn-
chronization patterns �48� and allows for the exploration of
how global synchronization is attained. We define

rlink =
1

2Nl
�

i
�
j��i

	 lim
�t→�

1

�t



tr

tr+�t

ei��i�t�−�j�t��dt	 , �6�

�i being the set of neighbors of node i. The parameter rlink
measures the fraction of all possible links that are synchro-
nized in the network. The averaging time �t should be taken
large enough in order to obtain good measures of the degree
of coherence between each pair of physically connected
nodes. Besides, rlink is computed after the system relaxes at
some large time tr. Note that in the limit of all-to-all coupling
the information provided by rlink is exactly the same as the
one provided by r because in this case rlink�r2. Therefore, no
additional information would be provided by this parameter
in the all-to-all case. Here, however, it turns out to be the key

parameter to characterize how synchronization emerges at a
local scale.

In Fig. 2 we represent the evolution of both order param-
eters r and rlink as a function of the coupling strength � for
several values of 	. The behavior of rlink shows a change in
synchronizability between ER and SF and provides addi-
tional information to that reported by r. Interestingly, the
nonzero values of rlink for ���c indicate the existence of
some local synchronization patterns even in the regime of
global incoherence �r�0�. Right at the onset of synchroni-
zation for the SF network limit, its rlink value deviates from
that of the ER, recovering the known result about the syn-
chronization of SF networks for lower values of the cou-
pling. In this region, while the synchronization patterns con-
tinue to grow for the ER network at the same rate, the
formation of locally synchronized structures occurs at a
faster rate in the SF network. Finally, when the incoherent
solution in the ER network destabilizes, the growth of its
synchronization pattern increases drastically up to values of
rlink comparable to those obtained in SF networks and even
higher. For intermediate values of 	, the results show that the
effect of varying the heterogeneity of the underlying network
is twofold. On the one hand, the more heterogeneous the
network is, the smaller the values of � needed for the onset
of synchronization. Conversely, the increase in the degree of
heterogeneity results in larger values of � in order to achieve
complete synchronization. In short, as the heterogeneity is
increased, the onset of synchronization is anticipated, but at
the same time, the appearance of the fully synchronized state
is delayed.

These results undoubtedly point out that statements about
synchronizability are dependent on the coupling strength
value. To shed light on this phenomenon, we have studied
the characteristics of the synchronization patterns along the
evolution of rlink. Following the usual picture, synchroniza-

TABLE I. Topological properties of the networks used in this
work and critical points for the onset of synchronization obtained
from a FSS analysis �Eq. �5��. The topological quantities reported
are the result of an average over 1000 network realizations. �k�=4
and N=104 have been set for all networks. Standard deviation of the
mean values for �c is ±2 units in the last significant digit.

	 �k2� kmax �c

0.0 �SF� 115.5 326.3 0.051

0.2 56.7 111.6 0.066

0.4 44.9 47.7 0.088

0.6 41.1 25.6 0.103

0.8 39.6 16.8 0.108

1.0 �ER� 39.0 14.8 0.122
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FIG. 2. Evolution of the control parameters r and rlink as a
function of the coupling strength for networks generated with the
model introduced in �45�, corresponding to 	=0.0 �SF�, 0.25, 0.5,
0.75, and 1.0 �ER�. The size of the networks is N=103 and their
average degree is �k�=6. The exponent of the SF networks increases
from �=3 �	=0�.
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tion patterns are formed by pairs of oscillators, physically
connected, whose phase difference in the stationary state
tends to zero. In order to determine which pairs of nodes are
truly synchronized we should determine the coherence of
their dynamics. Note that Eq. �6� is the average dynamical
coherence between every pair of linked nodes and then the
synchronization degree of every pair of connected oscillators
can be written in terms of a symmetric matrix

Dij = Aij	 lim
�t→�

1

�t



tr

tr+�t

ei��i�t�−�j�t��dt	 . �7�

Then one has to analyze each matrix term Dij in order to
label a link �i , j� as synchronized or not. As introduced
above, from the computation of rlink one determines the frac-
tion of physical links that are synchronized so that one would
expect that 2rlinkNl elements of the matrix D are Dij =1,
while the remaining elements are Dij =0. However, this is not
the real situation since the network dynamics is not well
defined in terms of a fully synchronized cluster and a set of
completely incoherent oscillators. On the other hand, the
worst scenario would be found if there were 2Nl elements of
matrix D so that Dij =rlink, implying that all physically con-
nected pairs are equally synchronized and hence the param-
eter rlink could not be interpreted as the fraction of links that
are dynamically coherent and no information about the topo-
logical patterns of synchronization could be extracted from
matrix D. The situation found is not as simple as the former
possibility and not so dramatic as the latter. The contribu-
tions Dij of the Nl elements of matrix D that correspond to
physical links can be ordered from the highest to the lowest
one. We have checked that for two situations, corresponding
to the onset of synchronization ��=0.05�, and when high
global coherence ��=0.13� is observed for a SF network,
synchronized links can be clearly identified. For the onset of
synchronization, a subset of nearly 20% of links displaying
coherent dynamics with high degree of synchronization,
Dij �0.8, is well separated from the behavior of the remain-
ing links as a dramatic decrease of Dij takes place. In this
sense, it is clear that the dynamics of a 20% of the possible
pairs can be regarded as synchronized which is in agreement
with the obtained value rlink=0.25 for �=0.05 and supports
the observation that although macroscopic coherence is not
observed �r�0 at this point�, the system is seen to walk
towards it. For �=0.13 �rlink�0.82� a plateau of nearly 75%
of links is observed, thus revealing the high degree of global
coherence, r�0.7, at this point. Therefore, the shape of the
ranked Dij curves confirms that rlink gives the fraction of
synchronized links and thus the latter allows one to obtain
information about synchronized patterns from D.

To determine exactly which pairs of nodes are regarded as
synchronized, the matrix D is filtered using a threshold T
such that the fraction of synchronized pairs equals rlink. In
this way T is a moving threshold so that if Dij �T oscillators
i and j are considered synchronized. The value of T depends
on the particular realization and is determined by means of
an iterative scheme starting from T=1. Decreasing it with

T=0.01 one computes the amount of links that fulfill the
condition. In this way, the value of T progressively decreases

and more pairs of oscillators are chosen. The process lasts
until T is such that the fraction of chosen links is equal to the
desired value rlink previously computed from D. Finally,
when the synchronized links are identified the clusters of
synchronized nodes are reconstructed.

Figure 3 represents the number of synchronized clusters
and the size of the giant component �GC� as a function of
rlink for the same values of 	 used in Fig. 2. The local infor-
mation extracted from it points to a novel feature of the
synchronization process that is not possible to derive from
Figs. 1 and 2 and that is unexpected. The emergence of clus-
ters of synchronized pairs of oscillators �links� in the net-
works shows that for values of � for which the incoherent
solution r=0 is stable, the networks have developed the larg-
est cluster of synchronized pairs of oscillators involving 50%
of the nodes and an equal number of smaller synchronization
clusters. From this point on, the behavior of both GC and Nc
depends on the specific value of 	. When heterogeneity
dominates, the GC grows and the number of smaller clusters
goes down, whereas for less heterogeneous networks the
growth of the GC is more abrupt and nodes are incorporated
to it more faster. Moreover, the results highlight the fact that
although heterogeneous networks exhibit more coherence in
terms of r and rlink, the microscopic evolution of the synchro-
nization patterns is faster in homogeneous networks, these
networks being far more locally synchronizable than the het-
erogeneous ones once ���c.

The observed differences in the behavior at a local scale
are rooted in the growth of the GC. For homogeneous to-
pologies, many small clusters of synchronized pairs of oscil-
lators �note in Fig. 3 the large number of clusters formed
when 15% of the links are synchronized� merge together to
form a GC when the effective coupling is increased. This
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FIG. 3. Evolution of the number of synchronized clusters, Nc,
and the synchronized giant component �GC� size as a function of
rlink for the the different topologies considered. Small values of rlink

correspond to values of � for which r�0. Despite r being vanishing
and hence no global synchronization is yet attained, a significant
number of clusters show up. This indicates that for any ��0 the
system self-organizes towards macroscopic synchronization. The
network parameters are as in Fig. 2.
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coalescence of many small clusters results in a giant compo-
nent made up of almost the size of the system once the in-
coherent state destabilizes. On the other hand, for heteroge-
neous graphs, the growth of the giant component is more
smooth and the oscillators form new pairs starting from a
core made up of half the nodes of the network. That is, in
one case �ER-like networks�, almost all the nodes of the
network take part in the giant component from the beginning
and later on, when � is increased, what is added to the GC
are the links among these nodes that were missing in the
original cluster of synchronized nodes. For SF-like networks,
the mechanism is the opposite. Nodes are added to the GC
together with most of their links, resulting in a growth of rlink
much slower than for the homogeneous topologies.

The above picture is confirmed in Fig. 4, where we have
represented the evolution of the local synchronization pat-
terns of the giant components in ER and SF networks for
several values of � �49�. It is clear that when r�0 the two
networks follow different paths toward synchronization. In
particular, the giant component for the SF network seems to
retain the topological features of the substrate network, while
this is not the case for the ER network �for instance, the
small-world property is clearly lacking�.

This study of the patterns of self-organization towards
synchronization reveals that the quantitative difference be-
tween the macroscopic behaviors, shown by the computation
of the evolution of the global coherence r for ER and SF
networks, has its roots in a qualitatively different route at the
microscopic level of description. The use of the parameter
rlink which involves the computation of the degree of coher-
ence between each pair of linked nodes is a useful tool for
describing such differences. Moreover, the results suggest
that the degree of heterogeneity of the network is the key
ingredient to explain the two different routes observed. The
technique developed to extract the synchronization patterns
allows the analysis of the topological features of such clus-
ters of nodes. We can compute the average measures of rel-
evant quantities such as the clustering coefficient �which
measures the density of small loops of length 3 in a network�
and the degree distribution, and see how these magnitudes
evolve from the uncoupled limit, where no synchronization
occurs, to the coherent regime where the synchronized net-
work coincides with the underlying substrate. It is then rel-
evant to explore the regions where the onset of synchroniza-
tion takes place and characterize topologically these
emergent synchronized clusters.

In Fig. 5 the evolution of the average clustering coeffi-
cient �csync� of the giant synchronized cluster, referred to
�cnetwork� in the underlying network, is plotted as a function
of � for both the BA and ER networks. It is worth mention-
ing that the results depicted in the figure have been computed
taking into account that nodes with degree 1 do not contrib-
ute to the clustering coefficient of the GC, as c is not prop-
erly defined for these nodes. The results are illustrative of the
local organization of synchronized nodes. The figure shows
that for both topologies the clustering decreases as the cou-
pling is increased beyond their respective �c or, in other
words, as the giant component grows by the addition of new
synchronized pairs of nodes. However, the effects of the two
different routes to complete synchronization observed for ER
and SF networks are well appreciated from the results. For
the heterogeneous network there is a smooth decrease of the
clustering coefficient for ���c

SF and the effects of the emer-
gence of global coherence are not dramatic in what refers to
the behavior of �csync�. This is because in this case the giant
component mainly grows by recruiting new synchronized
nodes and their links. On the other hand, for the ER graph
the behavior observed for ���c

ER—i.e., when no macro-
scopic coherence is observed—is interrupted by a sudden
jump near its critical value. In fact, for ���c

ER the clustering
of the synchronized cluster quickly approaches the value of
�c� of the substrate network. This effect becomes clear if one
has in mind the coalescence of small clusters, which happens
around the critical point for ER graphs. In fact, taking into
account the giant synchronized component on ER for �
��c

ER implies that one considers one of the several disjoint

FIG. 4. �Color online� Giant synchronized components for several values of � in the two limiting cases of the different topologies studied
�ER and SF�. The size of the underlying networks is small �N=100 nodes�, in order to have a sizable picture of the system. Note that for the
SF case links and nodes are incorporated together to the GC, while for the ER network, what is added are links between nodes already
belonging to the GC.
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synchronized clusters of similar sizes that are in this region.
Moreover, the coalescence process leads to the formation of
a giant cluster that contains almost all nodes of the network
�see Fig. 3�, but a number of links significantly smaller.
Hence, when the clusters collapse into a much larger one, the
topological features change dramatically as observed from
the evolution of the clustering coefficient.

All the results reported above point out that the ultimate
reason behind the two different routes to complete synchro-
nization is the heterogeneous character of the SF network
and the role played by the hubs. The natural cohesion that
hubs provide to SF networks prevents the existence of inde-
pendent macroscopic clusters of synchrony as occurs for ER
networks. It is then interesting to study how these hubs par-
ticipate in the formation of the final synchronized state. For
this, we first study the evolution with � of the composition of
the synchronized cluster in terms of the degree of its com-
ponents. In �41�, we reported the probability that a node with
degree k belongs to the giant synchronized cluster as a func-
tion of its degree k and the coupling � for the SF network.
This probability turns out to be an increasing function of k
for every value of �, and therefore the more connected a
node is, the more likely it takes part in the cluster of syn-
chronized links. In particular, the results confirm the hypoth-
esis made above that the hubs participate from the very be-
ginning on the formation of the synchronized cluster. A
similar result was obtained in �51�, where Zhou and Kurths
studied the hierarchical organization in complex networks,
using the MSF and a mean-field approach in the weak-
coupling limit.

The above characterization of the synchronized cluster in
terms of the degree of its component can be completed
studying their effective degree kint. The effective degree of a
synchronized node is the number of links it shares with other
nodes belonging to the same synchronized cluster. Obvi-
ously, at the complete synchronized regime a node with de-
gree k will have kint=k. We plot in Fig. 6 the quantity kint /k
�the fraction of links that a node has with synchronized
neighbors� as a function of � and the degree k of the nodes
�	=0�. The results reveal that although hubs are the first to
take part of the synchronized cluster, their neighbors are pro-
gressively incorporated into the cluster as � grows. Besides,
if a node with small k is synchronized, the probability that its

neighbors are also synchronized grows very fast with �,
which is an effect of the network topology. These results
further support the statement about the essential role played
by the hubs in the recruitment of oscillators into the synchro-
nized group and in the emergence of complete synchroniza-
tion in SF networks.

IV. SYNCHRONIZATION IN STRUCTURED NETWORKS

In light of the results of the above section we have ex-
tended the study beyond unstructured networks to structured
or modular networks. This is a limiting situation in which the
local structure may greatly affect the dynamics, irrespective
of whether or not we deal with homogeneous or heteroge-
neous networks, and then they constitute a perfect frame-
work for testing the order parameter rlink introduced in the
last section.

Many complex networks in nature are modular—i.e.,
composed of certain subgraphs with differentiated internal
and external connectivity that form communities �12,50�.
The use of modular networks where a proper comparison in
synchronizability can be performed �same number of nodes
and links� restricts us to the consideration of synthetic struc-
tured networks. To this end, we make use of a common
benchmark of random network with community structure,
first proposed by Newman �52� considering one hierarchical
level and later extended to several hierarchical levels �37,38�.

The modular network structure we build is as follows: in
a set of N nodes, we prescribe n compartments that will
represent our first community organizational level and m
compartments, each one embedding four different compart-
ments of the first level, which define the second organiza-
tional level of the network. The internal degree of nodes at
the first level zin1

and the internal degree of nodes at the
second level zin2

keep an average degree zin1
+zin2

+zout= �k�
so that these networks are strictly homogeneous in the sense
of the degree distribution, P�k�=
�k− �k��. Networks with
two hierarchical levels are labeled as zin1

−zin2
; e.g. a network

with i− j means i links with the nodes of its first hierarchical
community level �more internal�, j links with the rest of
communities that form the second hierarchical level �more
external�, and ��k�− i− j� links with any community of the
rest of the network.

Synchronization processes on top of modular networks of
this type have been recently studied as a mechanism for
community detection �37,53�. In �37�, the authors studied the
situation in which starting from a set of homogeneous �in
terms of the natural frequencies� Kuramoto oscillators with
different initial conditions the system evolves after a tran-
sient of time to the synchronized state. It was shown that the
community structure is progressively unveiled at the same
time the system’s dynamics evolves toward the coherent
state and the synchronization is attained. In particular, the
nodes belonging to the first community level are the first to
get synchronized, subsequently the second level nodes
achieve the frequency entrainment, and finally the whole sys-
tem shows global synchronization.

Here we adopt a different perspective since we will con-
sider as previously a set of nonidentical Kuramoto oscillators

FIG. 6. �Color online� The plot shows the fraction of links that
a node with degree k belonging to the synchronized cluster shares
with other nodes of the same synchronized cluster. This fraction
kint /k is plotted as a function of log10�k� and �. The figure shows
how the hubs progressively incorporate their neighbors to the syn-
chronized component as � grows. The network is SF with param-
eters as those used in Fig. 2 and 	=0.
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with random assignment of natural frequencies and hence the
final degree of system’s synchronization will depend on the
strength of the coupling. It is then interesting to study how
the degree of synchronization evolves as a function of � and
whether the coherence between nodes is progressively dis-
tributed following the hierarchy imposed by the underlying
topology. For this, we make use of the order parameters r,
Eq. �2�, and rlink, Eq. �6�, to characterize the synchronization
transition of two slightly different modular networks with
two well-defined hierarchical levels 13-4 and 15-2, this dif-
ference being the cohesion of the internal community core,
13 links out of 15 possible neighbors or 15 links �i.e., all-to-
all� at the most internal level. Both networks have N=256
and �k�=18. Figure 7 shows the results for both kinds of
networks, revealing that the path towards synchronization as
a function of the interaction is again affected by the struc-
ture. They also show that the information provided by rlink is
essential to unveil the synchronization process. While the
global synchronization parameter r is reflecting that the 13-4
structure globally synchronizes always better, rlink tells us
again about the local synchronization. It shows that local
synchronization is indeed favored in the 15-2 structure since
rlink is larger for this topology for small values of � where the
system is locally forming synchronized clusters. This result,
not captured by the macroscopic indicator r, is expected
since the internal cohesion of communities at the first hier-
archical level is larger for the 15-2 than for the 13-4. The

evolution of rlink shows that when the coupling � is increased
the number of links synchronized in the 13-4 network be-
comes larger than in the 15-2 structure, revealing that com-
plete synchronization is then favored by the presence of
more external links connecting the first level communities.

Figure 8 shows the size of the giant component of syn-
chronized clusters and the number of them as a function of �.
An interesting effect of the community structure of the net-
works and of the dynamics of the synchronization process is
revealed in the figure. Right at the value of � where the onset
of global coherence takes place, the size of the GC suddenly
falls, to increase again at larger values of the coupling
strength. Additionally, note that this point coincides with that
corresponding to a change in the concavity of the rlink���
curves. This change at the microscopic level is due to the
readjustment of links that connect synchronized nodes. In
fact, as Fig. 9 illustrates for both networks, in this region of
� values, the number of links connecting synchronized nodes
of the third level decreases while the number of those as-
cribed to the second level raises. That is, the synchronization
process takes place in such a way that the first to synchronize
are the nodes of the inner community level, then the second,
and so on until the whole network gets synchronized. The
relevant fact is that in order for rlink and r to grow, the nodes
and links of the second level adjust their phases at the ex-
pense of those of the outer layer, the third level. This is also
reflected in the number of clusters of synchronized links
�Nc�; i.e., the network appears as if the nodes of the third
level were “temporarily” disconnected. Moreover, as the
13-4 network has more links connecting the first and second
hierarchical levels, Nlinks2 rises faster in this network than in
the 15-2.

We have further inspected the synchronization path in
modular networks. This can be easily done and visualized by
the representation of the filtered matrix D. It implies that one
reassign the values of the matrix D so that Dij =1 if Dij �T
and Dij =0 otherwise. Plotting this filtered matrix for differ-
ent values of the coupling � one can easily determine which
links are the first to synchronize since the form of the adja-
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a function of � for structured modular networks. The networks are
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lent. The curves show that although 13-4 has always a better global
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cency matrix �which includes all physical links between
nodes� is also easy to interpret because of its nested struc-
ture. Figure 10 shows how the community structure deter-
mines the internal organization of the system in the route
towards full synchronization for the 13-4 network. For this
study we have computed the value of the filtered matrix D
for a number of initial conditions and then took its average
value so that �Dij�� �0,1� accounts for the synchronization
strength of the network link �i , j�. The results point out that
link synchronization depends on the organizational level they
belong to. Those connecting nodes belonging to the same
first level community are the fastest �in terms of the coupling
strength �� to reach full synchronization. For larger values of
� full synchronization is attained progressively for the sub-
sequent organizational levels. Then, one can conclude that
the inner the link is the faster it gets synchronized in agree-
ment with previous studies reported above �37�.

V. CONCLUSIONS

In this paper we have explored several issues about syn-
chronization in complex networks of Kuramoto phase oscil-
lators. Our main concern has been the study of the synchro-
nization patterns that emerge as the coupling between
nonidentical oscillators increases. We have described the de-
gree of synchronization between each pair of connected os-
cillators. The use of a parameter rlink allows us to reconstruct
the synchronization clusters from the dynamical data. We
have studied how the underlying topology �ranging from ho-
mogeneous to heterogeneous structures� affects the evolution
of synchronization patterns. The results reveal that the route
towards full synchronization depends strongly on whether

one deals with homogeneous or heterogenous topologies. In
particular, it has been shown that a giant cluster of synchro-
nization in heterogeneous networks comes from a unique
core formed by highly connected nodes �hubs� whereas for
homogeneous networks several synchronization clusters of
similar size can coexist. In the latter case, a coalescence of
these clusters is observed in the synchronization path which
is macroscopically manifested by the sudden growth of glo-
bal coherence. Another important effect of the underlying
topology is manifested in an anticipated onset of global co-
herence for heterogeneous networks with respect to more
homogeneous topologies. However, the latter reaches the
state of full synchronization at lower values of the coupling
strength, therefore showing that statements about the syn-
chronizability of complex networks are relative to the region
of the phase diagram where they operate. Additionally, we
have shown that these systems are seen to organize towards
synchronization even when no macroscopic signs of global
coherence is observed.

Finally, the framework of structured networks has pro-
vided a useful benchmark for testing the validity of the pa-
rameter rlink and the information obtained from the computa-
tion of the matrix D. The results obtained by means of these
quantities allow us to conclude that for modular networks
synchronization is first locally attained at the most internal
level of organization and, as the coupling is increased, it
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progressively evolves toward the outer shells of the network.
The latter process is, however, achieved at the expense of
partially readjusting some pairs of synchronized nodes be-
tween the inner and outer community levels. Besides, we
have obtained evidence that a high cohesion at the first level
communities produce a high degree of local synchronization
although it delays the appearance of the global coherent
state.

This study has extended the previous findings about the
paths towards synchronization in complex networks �41� and
provides a deeper understanding of phase synchronization
phenomena on top of complex topologies. In general, the
work supports the idea that in the absence of analytical tools
to confront the resolution of nonlinear dynamical models in
complex networks, the introduction of new parameters to
describe the statistical properties of the emergence of local
patterns is needed as they give novel and useful information
that might guide our comprehension of these phenomena. On
more general grounds, this work adds to other recent findings
�54,55� about the topology emerging from dynamical pro-
cesses. The evidences that are being accumulated point to a
dynamical organization, at both the local and global scales,

which is driven by the underlying topology. Whether or not
this intriguing regularity has something to do with the ubiq-
uity of complex heterogeneous networks in nature is not
clear yet. More works in this direction are needed, but we
think that they may ultimately lead to uncover important
universal relations between the structure and function of
complex natural systems that form networks. Another issue
to explore in future works concerns the behavior of nonlinear
dynamical systems on top of directed networks �56�, which
will allow deeper insights into the behavior of natural sys-
tems.
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