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In evolutionary dynamics the understanding of cooperative phenomena in natural and social systems has
been the subject of intense research during decades. We focus attention here on the so-called “lattice reciproc-
ity” mechanisms that enhance evolutionary survival of the cooperative phenotype in the prisoner’s dilemma
game when the population of Darwinian replicators interact through a fixed network of social contacts. Exact
results on a “dipole model” are presented, along with a mean-field analysis as well as results from extensive
numerical Monte Carlo simulations. The theoretical framework used is that of standard statistical mechanics of
macroscopic systems, but with no energy considerations. We illustrate the power of this perspective on social
modeling, by consistently interpreting the onset of lattice reciprocity as a thermodynamical phase transition
that, moreover, cannot be captured by a purely mean-field approach.
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I. INTRODUCTION

Is the term “social temperature” just a rhetorical figure
(suggestive metaphor), or on the contrary, could it be given a
precise meaning? By working out in detail the evolutionary
dynamics of the most studied social dilemma (the prisoner’s
dilemma) on a simple kind of artificial social network we
will show here that the formal framework of equilibrium
statistical mechanics is, to a large extent, applicable to the
rigorous description of the asymptotic behavior of strategic
evolution, thus providing the key for a formal quantitative
meaning of the term social “temperature” in these contexts.

Evolutionary game theory, in contrast with classical game
theory that focusses on the decision making process of (ra-
tional) agents, is concerned with entire populations of agents
programmed to use some strategy in their interactions with
other agents. The agents are replicators, i.e., entities which
have the means of making copies of themselves (by inherit-
ance, learning, infection, imitation, etc.), whose reproductive
success depends on the payoff obtained during interaction.
As the payoff depends on the current composition of strate-
gies among the interacting agents, this yields a feedback loop
that drives the evolution of the strategic state of the popula-
tion [1-4].

This Darwinian feedback (frequency-dependent fitness)
dynamics depends strongly not only on the particular game,
and on the specifics of the way strategies spread, but also on
the (social) structure of connections describing the interac-
tions. Under the assumption of a well-mixed population (so-
cial panmixia assumption), the temporal evolution of the pro-
portion of strategies among the population is governed by a
differential equation called the replicator equation (see be-
low). Well-known celebrated folk’s theorems (see, e.g., Ref.
[3]) establish a connection between the asymptotic behavior
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of this equation and the powerful concepts of classical game
theory based on the notion of best reply (Nash). However, if
the social panmixia assumption is abandoned, and individu-
als only interact with their neighbors in a social network, the
asymptotic of evolutionary dynamics generically differ in a
substantial way from this “well-mixed population” descrip-
tion. The social structure of strategic interactions turns out to
be of importance regarding the evolutionary outcome of the
strategic competition.

We will consider here the prisoner’s dilemma (PD), a two-
players-two-strategies game, where each player chooses one
of the two available strategies, cooperation or defection: A
cooperator receives R when playing with a cooperator and S
when playing with a defector, while a defector earns P when
playing with a defector and T (temptation) against a coop-
erator. When 7>R>P>S, the game is a PD (while if T
>R>S>P it is called a snowdrift game or “chicken” or
“hawks and doves”). Given the payoff’s ordering, whatever
the value of the prior assignment of probability to the co-
player’s strategy is, the expected payoff is higher for defec-
tion, and that is what a rational agent should choose. In the
PD game only the defective strategy is a strict best response
to itself and to cooperation, thus it is an easy example of
game with an unbeatable [4] strategy. Still, though there is no
difficulty in the making of the strategic decision from Nash
analysis, two cooperators are better off than two defectors,
hence the social dilemma.

In graph-structured populations, a large body of research
(Refs. [5-18], and references therein) on evolutionary dy-
namics of the PD game has convincingly shown the so-called
“lattice reciprocity” effects: The cooperative phenotype can
take advantage of the topology of the social net, so that clus-
ters of cooperators are often resilient to invasion by the
(continuum-unbeatable) defective phenotype. This enhance-
ment of asymptotic macroscopic levels of cooperation due to
the structure and topology of strategic interactions includes,
but it is far more general than the so-called space reciprocity
mechanisms, where social nets are discretizations (solid state
lattices) of Euclidian space and diffusion approximations are
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—0.0190ften useful [19]. In this regard, one should stress the
accumulated evidence that (i) many interesting social nets
[20-22] are far away from being regular lattices and (ii) free-
dom of connectivity scales (scale-free complex networks)
enhances [23-27] the lattice reciprocity mechanisms up to
unexpectedly high values of the temptation parameter 7' of
the dilemma, where cooperation is very expensive (but af-
fordable in an evolutionary sense).

In this paper we investigate in detail the lattice reciprocity
mechanisms in an artificial network (dipole model) that mod-
els the competition for influence on a population of social
PD imitators of two antagonist big brothers (nodes connected
to the whole population but with no direct connection be-
tween them). The paper is organized as follows. The setting
of evolutionary scenario [(a) game, (b) updating rule, and (c)
network of social contacts] along with basic concepts and
definitions, are given in Sec. II, where the dipole model is
introduced. This is a closed system with a self-sustained evo-
lutionary activity (nontrivial dynamics) of social coopera-
tion, as we prove in Sec. III, where also the applicability of
standard equilibrium statistical mechanics to the dipole
model is assessed.

Explicit solutions of the evolutionary equilibrium prob-
ability measure of microstates are obtained in Sec. IV, for
some special topologies of the fluctuating replicators sub-
population F. There, we analyze first the two trivial limits
for the graph structure of the target population F, namely,
complete graph and totally disconnected graph. One easily
obtains an exact macroscopic (infinite size limit or thermo-
dynamic limit) description for both cases by means of ex-
plicit differential equations for the macroscopic cooperation.
A simple thermodynamical interpretation of the macroscopic
behavior, is provided by the theorem of Sec. III, as we briefly
outline. Next, for a simple “random regular graph” topology
of F, an explicit differential equation and simple thermody-
namical predictions are obtained within a mean-field ap-
proximation in Sec. IV B. When compared to Monte Carlo
numerical results, fundamental discrepancies are evident:
while mean-field prediction does not show any critical be-
havior, our numerical results show beyond any doubt the
existence of a thermodynamical phase transition at a critical
value of the temptation 7*. This critical value separates apart
two distinct equilibrium macroscopic phases of the fluctuat-
ing population, and signals the onset of macroscopic effects
of lattice reciprocity. These effects are seen to operate as a
positive feedback upon local fluctuations of the strategic
neighborhoods, and thus they cannot be captured by “purely
mean-field” macroscopic approaches. The concluding Sec. V
tries to call interdisciplinary attention on the wide and utmost
interesting prospectives for statistical physics “concepts and
methods” in current studies on evolutionary dynamics and
social systems modeling in general.

II. NATURAL STRATEGIC SELECTION ON GRAPHS

We specify here the evolutionary game dynamics sce-
nario, meaning the game parametrization, the microscopic
strategic dynamics (replication mechanism or strategic up-
dating rule), and the social structure of contacts that we will

PHYSICAL REVIEW E 79, 026106 (2009)

consider along the paper. We normalize the PD payoffs to the
reward for cooperating R=1 and fix the null payoff at pun-
ishment P=0. Note that provided the (differential or relative)
selective advantage among two individuals depends on their
payoff’s difference (see below), one can arbitrarily fix the
zero payoff level. Then only two parameters T=b>1 and
S=€=<0 are tuned. Note that the range €>0 defines a game
named “hawks and doves” (also “chicken” and “snowdrift”)
where punishment and sucker’s payoff have the reverse or-
der. We will occasionally comment on this range of param-
eters.

Moreover, we do not restrict our computations to 2R>T
+S. This restriction means that the total payoff for the two
players is higher if both cooperate (2R) than if one cooper-
ates and the other defects (7+S5), and is usually incorporated
in iterated games studies of the PD to prevent agents taking
turns at defection and then sharing the payoffs. For the spe-
cifics of the replicator dynamics (memory-less, markovian)
in the next paragraph, one should not expect that this restric-
tion qualitatively matters.

Regarding the replication mechanism, we implement the
finite population (size N> 1) analog of replicator dynamics
[23,28]. At each time step #, which represents one generation
of the discrete evolutionary time, each agent i plays once
with each one of the agents in its neighborhood and accumu-
lates the obtained payoffs P;. Then, the individuals i synchro-
nously update their strategies by picking up at random a
neighbor j and comparing their respective payoffs P; and P;.
If P;> P;, nothing happens and i keeps the same strategy for
the next generation. On the contrary, if P;> P;, with prob-
ability II,_;=7(P;~P,), i adopts the strategy of its neighbor
Jj for the next round robin with its neighbors, before which all
payoffs are reset to zero. Here 7 is a number small enough to
make I1,_,; an acceptable probability; its physical meaning is
related to the characteristic inverse time scale: the larger it is,
the faster evolution takes place.

From a theoretical point of view, this specific choice of
the dynamics has the virtue of leading directly (see, e.g., Ref.
[2]), under the hypothesis of a well-mixed population and
very large population size, to the celebrated replicator equa-
tion for the frequencies p, of strategies a(=C or D) in the
population

p.a=pa(fa_f)’ (1)

where f,,, is the payoff of an « strategist and f is the average
payoff for the whole population. Note that the time unit in
Eq. (1) is scaled to 77"

For the payoffs of the prisoner’s dilemma the asymptotic
frequency of cooperators, from the replicator equation, is
driven to extinction, p.=0, while for the hawks and doves
game, its asymptotic value is €/(b—1+¢€). As stated in the
introductory section, we will be concerned here mainly with
populations that are not well-mixed, where predictions based
on this nonlinear differential equation are often of little use.

Regarding the structure of connections between interact-
ing agents, we will consider here that it is given by a fixed
graph (i.e., connections between players do not change by
rewiring) where agents are represented by nodes, and a link
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between nodes indicates that they interact (play). If k; is the
number of neighbors of agent i (connectivity or degree), and
A is the maximal possible one-shot-payoff difference (A
=max{b,b—€}), we will assume 7=(max{k; k;}A)~! for the
specification of the probability II;_,; of invasion of node i by
the strategy of neighbor j. This simple choice, introduced in
Ref. [23], assures that IT;_, i< 1; in heterogeneous networks it
also has the effect of slowing down the invasion processes
from or to highly connected nodes, with respect to the rate of
invasion processes between poorly connected nodes, a fea-
ture not without consequences [29].

We now introduce some notation, which is familiar to
statistical physicists: The configuration (strategic microstate
[) of a population of N agents at time ¢ is specified by the
sequence [={s;(¢)} (i=1,...,N), where s;(t)=1 (or 0) denotes
that node i is at this time a cooperator (respectively, defec-
tor). The set of all possible 2V configurations is called the
phase space. Stationary probability densities of microstates
P(l) (I=1,...,2") are then representatives of strategic mac-
rostates. The average cooperation c; of microstate / is defined
as

N

¢ = ]%]2 8. (2)

We denote by I, the probability that the strategic mi-
crostate of the population at time £+ 1 is I’, provided that it is

[ at time t. Note that 2,II;,=1. A microstate [ is a frozen
equilibrium configuration if the probability that it changes in

one time step is null, and then I1;;=1 and I1,,;=0if /' # I. We
will assume generic real values (irrational) of the payoff pa-
rameters, so that if a configuration contains a C-D link it
cannot be a frozen configuration. The only possible frozen
equilibrium configurations are all-C and all-D. However, for
a very wide class of graphs, and a wide range of model
parameters they are not the only possible stationary probabil-
ity measures.

We now illustrate by means of easy examples the evolu-
tion of PD on graphs. Our first and simplest example is a
star-shaped graph consisting of a central node connected to
N—1 peripheral nodes. It is straightforward to check that any
initial condition with cooperators at the central node and (at
least) at {{b—e(N-1)]/(1-€)}+1 peripheral nodes has a
positive probability of evolving in one time step to a con-
figuration with a higher number of cooperators, and a null
probability of evolving towards less cooperators. Thus, all
those configurations evolve asymptotically to the all-C equi-
librium. The rest of the configurations evolve towards the
all-D equilibrium. Therefore, if N> (b— €+2) both equilibria
are attractors (absorbing states), in the sense that some con-
figurations different from themselves evolve to them; the
phase space is partitioned into two basins of attraction. If
N<b—e+2, only the all-D frozen equilibrium is an attractor.
The stationary probability densities P*(I) of the star are pure
point measures (two- or one-Dirac delta peaks) in the ther-
modynamic limit N — .

Now take a star and add some arbitrary number of links
between its peripheral nodes. We call this network a crown,
whose head is the central node. If the head is occupied at 7,
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FIG. 1. (Color online) Structure of the dipole network. Two
nodes (1 and 2) are connected to all nodes in F, whose elements can
be arbitrarily linked to each other. Moreover, node 2 is also linked
to a set C (with arbitrary internal connections as well). Initial con-
ditions are indicated by colors: red for cooperators (node 2 and set
C), blue for defectors (node 1), and green means arbitrary (set F).
See the text for further details.

by a defector, it will remain so forever, because the payoff of
a peripheral cooperator is strictly lower than head’s payoff.
Sooner or later the head (center) of the crown will be imi-
tated by the whole crown, and the evolution will stop when
everybody is defecting. But, what happens to a cooperator on
the head? The answer is dependent on both, the net topology
of the crown periphery and the cooperators disposition there:
To ensure fixation of cooperation at the head node, it suffices
that a subset C of peripheral nodes occupied by cooperators,
and with no direct links to the rest of the periphery, have a
size ne> bk, —e(N—ne—1), where k., is the maximal de-
gree in the rest of the periphery. Under this proviso all-C is
the unique absorbing microstate of all corresponding initial
conditions.

Finally consider the graph schematized in Fig. 1, com-
posed of the following. (a) A component F of ny nodes with
arbitrary connections among them. (b) A node, say node 1,
that is connected to all the nodes in F and has no other links.
(c) A component C of n. nodes with arbitrary connections
among them. (d) A node, say node 2, that is connected to all
the nodes in F and C, but not to node 1.

This is what we will call a dipole model network. It is a
two-headed (nodes 1 and 2) crown (with periphery ) plus a
tail C hanging on head 2. To strengthen the special status of
the head nodes, let us nickname them “big brothers.” They
certainly enjoy a sort of omnipresence that fits well with the
character of Orwell’s famous social science fiction novel
1984. In the following section we prove that for this simple
network there exists a nontrivial stationary probability den-
sity of microstates P*([) for the strategic evolution of the PD
game.

III. THE DIPOLE MODEL

The analysis of evolutionary dynamics of the PD on the
dipole network shows that there is a nontrivial invariant mea-
sure in phase space. Let us consider the set Z of initial con-
ditions defined by (i) big brother 1 is a defector, (ii) big
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brother 2 is a cooperator, and (iii) all nodes in component C
are cooperators. Note that this set contains 2" different con-
figurations. We now prove that, provided some sufficient
conditions, this is a minimally invariant set of the evolution-
ary dynamics.

First, one realizes that big brother 1 cannot be invaded by
the cooperative strategy: The payoff of a cooperator node i in
Fis Pi=k;+1+e(k;—k;+1), where k; is the number of its
neighbors in F and kj <k; is the number of those that are
cooperators. The payoff of big brother 1 (BB1) is then P,
= (k{+1)b. For the PD game, where <0, the inequality
P> P{ always holds, so that BB1 will always be a defector.
[Note also that for the hawks and doves game, a sufficient
condition for P> P{ is b>1+e(kp+1), where kp (<ny) is
the maximal degree in component F, i.e., the maximal num-
ber of links that a node in F shares within F.] We thus
conclude that defection is fixed at BB1.

Second, thanks to its interaction with set C, big brother 2
resists invasion, provided its size n is above a threshold:
The payoff of a defector node i in F is P¢=(k{+1)b, where
k{ is the number of its cooperator neighbors in F, while the
payoff of big brother 2 (BB2) is P,=nc+npe+np(l-e),
where ny<ny is the number of cooperators in F. Thus, a
sufficient condition for P,> P4 is ne>b(kp+1)—npe. With
this proviso, BB2 will always be a cooperator, which in turn
implies that all the nodes in the component C will remain
always cooperators. Note that for e<0 and b>1, the ab-
sence of the component C could imply invasion of node 2,
that would lead to fixation of the defective strategy on the
whole network.

The previous argument proves that provided the sufficient
conditions ne>b(kp+1)—eny and b>1+e€(kg+1) hold, the
subset Z of phase space defined by (i), (ii), and (iii) is an
invariant set. As this set does not contain equilibria, no sto-
chastic trajectory evolves from it to a frozen equilibrium
configuration.

Finally, one realizes that Z is indeed minimal, because at
any time, a defector in J has a positive probability to be
invaded by the cooperation strategy (at least from BB2), and
a cooperator in F has a positive probability of being invaded
by the defection strategy (at least from BB1). Therefore, any
strategic configuration of the set 7 is reachable in one time
step from any other, i.e., for all pairs (I, I') of microstates in
7, the transition probability IT,,>0. Consequently, Z does
not contain proper invariant subsets: it is minimally invari-
ant. Moreover, following Perron-Frobenius theorem, there
exists a unique stationary macrostate P*(/). This provides a
rigorous framework for the interpretation of results from nu-
merical Monte Carlo simulation studies in evolutionary dy-
namics on dipole models, provided the sufficient conditions
above.

While nodes in C and big brother 2 are permanent coop-
erators, and big brother 1 is a permanent defector, nodes in F
are forced to fluctuate. This partition of the network into sets
of nodes where each particular strategy is fixed forever, and
a set of fluctuating nodes, turns out to be a generic feature of
the discrete replicator dynamics (neighbor imitation propor-
tional to payoffs difference) on many network settings
[24,26]. The simplicity of the dipole network model allows
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on it an easy formal proof of existence of this partition, so
providing an illustration of both, its origins and generic char-
acter. It also shows the formal applicability of equilibrium
statistical physics formalism to characterize the asymptotic
behavior of evolutionary dynamics on these graphs. This will
be made in the next section for specific choices of structural
traits for the subgraph F.

Let us note that if a direct link between BB1 and BB2 is
added, then (see Appendix A) asymptotic fixation in the
whole network of either cooperation or defection will occur,
depending on the relative size n/ny of components C and F.
The name “dipole” for this structure of connections is sug-
gested by the strategic polar (C-F-D) aspect of the whole
graph. Note also that the number of C-F and F-D connec-
tions scales linearly with the size nj of the fluctuating inte-
rior, that is to say that the poles (C and D) act as an exter-
nally imposed (AC) field on F, whose strength is
proportional to the internal levels of cooperation. As the co-
operation (and then the fitness) levels are self-sustained (as
proved by the previous theorem), this is a closed macro-
scopic system with a nontrivial self-sustained social activity
of cooperation at evolutionary equilibrium.

The interest of the dipole model is by no means restricted
to a mere academic illustration: First of all, we can make a
technical use of it in macroscopic stability analysis studies of
PD evolution on highly heterogeneous complex networks.
Indeed, the fluctuations inside the subset F are the effect of
the competition for invasion among two non-neighboring
hubs (hugely connected nodes), where opposite pure strate-
gies have reached fixation, in their common neighborhood.
This is a local strategic configuration that mimics those that
are often observed in stochastic simulations of evolutionary
dynamics in highly heterogeneous (scale-free) networks
[24,26]. Simple multipolar network models can easily be
constructed (e.g., by establishing direct links from C to F in
a way that simple sufficient conditions guarantee that the
theorem still holds), that are indeed indistinguishable from
typical strategic patterns found in the numerical simulations
on scale-free networks. This makes the dipole net a very
useful technical device to analyze the stability mechanisms
of the cooperator clusters [24,26] in scale-free structured
populations, as well as the kind of temporal fluctuations of
cooperation that one should expect in the fluctuating set of
nodes.

Regarding potentialities for econo-socio-physics applica-
tions of the dipole model, it could be viewed as a sort of
schematic (then simplistic, cartoonlike) model for the com-
petition for influence of two powerful superstructural institu-
tions (e.g., such as “mass media,” political parties, or lob-
bies) on a target population, in strongly polarized strategic
contexts. The analysis rigorously provides sufficient condi-
tions for the parameter values where fixation of strategic
traits is proved impossible, so that temporal fluctuations
dominate forever the target population of social imitators F.
The influence on each individual of the two competing insti-
tutions is simulated here through the omnipresent (“big
brother” nodes 1 and 2) neighbors, whose own high appeal
for imitation (the strength of big brother’s influence) is in
turn conditioned by the strategic composition of the target
population. Here the interest could well be the study of the
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influence that metric and topological network characteristics
of the social structure have on the strategic macrostate, and
thus on the quantitative values of social indicators. We ad-
dress some aspects of this issue in the next section. At a more
general level, the design of experiments in social sciences as
well as theoretical studies of artificial societies could greatly
benefit from having at hand simple but nontrivial “exactly
soluble statistical-mechanical models” that may provide safe
guides to develop further intuitions on social phenomena that
demand more comprehension.

IV. THE ROLE OF SOCIAL STRUCTURE IN BIG
BROTHERS COMPETITION

In this section we present some analytical and numerical
results on the evolutionary dynamics of games in the dipole
model for different choices of topologies of the fluctuating
set F. The sufficient conditions stated in the previous section
are assumed hereafter. We are interested in the situation
where np> 1, i.e., large size of the fluctuating population.

First we will briefly comment on the straightforward lim-
iting case when the macroscopic set F is a fully connected
set, so that kp=np—1. This is the well-mixed population
limit, for which it is easy to show that the replicator equation
(1) is an exact description. The payoffs of polar nodes BB1
and BB2 are given by P;=bcny and P,=nc+cnp+e(l
—c)np, while the payoffs of a cooperator node and a defector
node in F are P.=cnp+e(np—cnp+1) and P =(cnp+1)b.
One easily realizes that P. <P, provided the sufficient con-
dition (b>1+eny) for fixation of defection at node 1. Thus
the (one time step) probabilities Q¢ (invasion of a coopera-
tor node in F) and Q. (invasion of a defector node in F)
are

1 P-P,
a (nF+ 1) A(nF‘l' 1)

(1-c)np P;—P,
(np‘l' 1) A(}’l}:"‘ l)’

Opc

1 P,—P,
(np+ 1) Alnp+ne)

Ocp= (3)

Assuming that the size of F is macroscopic, np> 1, the
fraction of cooperators ¢ in F evolves according to

¢=(1-¢)Qcp-cOpc- (4)
Now, if np> 1, and n¢/(nyz)>— 0, then both Q¢ and the first
term on the right-hand side of Qp, vanish, and we arrive at
the differential equation
c(l-¢)
A

¢= [e(1=c)—(b-1)c]. (5)

This is, with a simple rescaling of time, the replicator
equation (1): note that in the limit ny> 1 that we have con-
sidered, the probability that a node in F picks up a big
brother when updating its strategy is negligible, and then the
evolution inside the complete graph F is overwhelmingly
determined by the internal connections, and thus by the rep-
licator equation. In other words, in this limit of maximal
possible connectivity, BBl and BB2 are no longer bigger
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than the nodes in JF and their influence on the fluctuating set
is negligibly small in the thermodynamic limit.

We now turn attention to situations where kp<<ng, far
from the social panmixia. In Sec. IV A we will explicitly
solve the opposite trivial case of disconnected F set (kg
=0), which turns out to reduce to the standard textbook ideal
two-state model of statistical physics. After that, in Sec.
IV B, the “random regular” network structure for F is seen
to be amenable to a plausible mean-field approach, but insuf-
ficient to explain the phenomenology shown by Monte Carlo
numerical results. These show beyond any doubt a critical
behavior, a transition point separating two qualitatively dif-
ferent types of social macro-states. This transition is sensibly
interpreted as the onset of lattice reciprocity. In other words,
lattice reciprocity is a true critical social phenomenon.

A. F is a disconnected graph (ideal gas)

Let us now obtain some explicit results for one of the
simplest choices for the topology of connections inside the
fluctuating set, namely, kr=0. In this case each node in F is
only connected to big brothers. This is in fact an effective
single node problem, where homogeneity (i.e., mean field
assumption) in F is exact; in other words, the absence of
internal interactions in the set F is a sort of ideal-gas condi-
tion easy to exactly deal with in the large size limit.

Note that the sufficient conditions for fixation of defection
at BBI and of cooperation at BB2 are, respectively, b>1
+€ and n->b—eny. Denoting by ¢(¢) the instantaneous frac-
tion of cooperators in F, one finds for the (one time step)
probability Qp of invasion of a cooperator node in F

chb—(1+e)lng

= _F 6
Opc A (6)
and using the notation A=e€+(nc—b)/np and B=1+n¢/ng
A+c(l-¢
- 7
0or="" )

for the probability of invasion of a defector node in F. Note
that A >0 due to the noninvasion of BB2 (sufficient) condi-
tion.

Provided np>1, the fraction of cooperators ¢ in F
evolves according to the differential equation (4), which after
insertion of expressions (6) and (7), and rescaling of time,
becomes

¢=fle)=Ag+Ac+Ax?, (8)

where the coefficients are
Ag=A, )
A=1-€-A+B(l +élng, (10)
A,=-(1-€+bB). (11)

One can easily check (A,>0 and A, <0) that there is always
one positive root ¢* of f(c), which is the asymptotic value
for any initial condition 0=<c(0)=<1 of Eq. (8).

For €=0, in the so called weak PD game (i.e., at the
border between the PD and the hawks and doves game), if
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one further assumes that the relative size w(F) of the com-
ponent F is large enough, i.e., u(F)—1 and u(C)—0, one
easily obtains that the stationary solution of Eq. (8) behaves
as c¢*=(b+1)"! near the limit u(F)— 1.

From the point of view of the set F, when ny>1, the
model corresponds to a noninteracting (ideal) set of indepen-
dent phenotypic strategists that fluctuate due to a polar field
(big brothers influence) whose strength is self-consistently
determined by the average cooperation c. This problem is
equivalent to the equilibrium of an ideal paramagnetic salt in
a noisy (telegraphic) magnetic ac field of intensity propor-
tional to the average magnetization.

A typical and correct statistical-physicists approach “from
scratch” to this two-state model is the familiar micro-
canonical setting: At (dynamical) macroscopic equilibrium,
the probability of each strategic microstate [={s;} of fixed
value of ¢;=c is uniform

P=Q7", (12)

where Q=ng!/[(cnp)!(np—cng)!] is their number. The lack
of information S=In () of the macrostate as a function of
global cooperation ngc, i.e., the relation S(nyc), can be re-
garded as the analog of the microcanonical fundamental
“thermodynamical” relation, and its first derivative is the in-
tensive parameter 3 (thus the analog of the inverse thermo-
dynamical temperature), that after using Stirling’s approxi-
mation is easily obtained as

B:ln(l_c>. (13)

c

This relation is the analog of a thermodynamical equation
of state, which simply expresses the connection of the equi-
librium value of the macroscopic cooperation level ¢ to the
“entropic” intensive parameter 3. Note that ¢ is determined
by the balance condition (¢=0)

l-c_Opc
c Ocp’

from where the equation of state (13) determines B as a
function of model parameters (i.e., b, €, and nc/ny). For
example, when €=0, B=In b>0, indicating that the disorder
of the activity increases with increasing cooperation. The
maximal value of B— oo corresponds to zero disorder (b
— ), while its minimal zero value corresponds to highest
possible value (at b=1) of cooperation [c=(1/2)]. Note that
values of b<<1 correspond to negative B values, where en-
tropy decreases with increasing values of cooperation, out-
side the PD domain (“stag hunt” game domain, see Ref.
[30)).

An alternative (and equivalent in the thermodynamic
limit) setting is to consider the whole space of 2"F configu-
rations [/={s; F,, of unrestricted ¢;, but under the condition
that the average value c=2;Pyc, is fixed. This is the analog of
the canonical setting. The normalization factor Z
=2, exp(—Bc)) is the analog of the familiar canonical parti-
tion function (Boltzmann’s Zustandsumme), that due to the
agents independence (k=0) is easily factorized as Z=[1

+exp(=B)]".

(14)
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In the canonical setting a most informative macroscopic
quantity is the “heat capacity” analog: The fluctuations of ¢,
along representative (typical) stochastic trajectories at equi-
librium under the evolutionary dynamics of the game are,
following the standard thermodynamical formalism, given by
dc/d(B"), so that this quantitative social indicator detects
very precisely sudden variations of the macroscopic coopera-
tion with payoff’s parameters. In this ideal-gas kind of case
there are no critical points and fluctuations do not diverge.
For example, for e=0 they are given by the (Bernouillian)
binomial variance npc(1—c)=ngb/(b+1)>.

B. F is a random regular graph

Random regular networks are random networks of fixed
degree k. All nodes being thus equivalent, a sensible ap-
proach is to assume (mean-field-like, see, e.g., Ref. [31]) that
the fraction of instantaneous cooperators in the neighborhood
of a node is the fraction c of the whole set F. In other words,
one neglects local fluctuations of c¢. The contribution of the
internal interactions to the variation of c is then of the “rep-
licator equation” type, as discussed above for the complete
graph case. The difference here is that if kp<<np the contri-
bution of the interactions with big brothers can no longer be
neglected.

1. Mean-field approximation

The payoffs of big brothers BB1 and BB2 are given by
P=bcnp and Py=nc+cnp+€(1-c)ny, while the payoffs of a
cooperator node and a defector node at F under the mean-
field assumption are

P.=ck+1+dk(1-c)+1], Py=(ck+1)b. (15)

The differential equation for c is then

. (1-¢c)(P,=Py) _ c(P,=P)
(k + Z)BnFA (k + 2)nFA

(1-c)ck(P.-P,)
(k+2)>A 7
(16)

which under the assumption kb <<np, takes the form

¢=flc) = (Ap+Ajc+Asct+ AL, (17)

1
(k+2)*BA
where the coefficients are

Aj=(k+2)(B-1+e), (18)

A1 =2[2(1 - €) = B]+k[2(1 — €) = B(b — €)] + k*Be,
(19)

Ay=2(e—=1-Bb)+k[e-1-B(1+€]+kB(1-b-2e),
(20)

Ay=k’B(b—-1+e). (21)

Note that the assumption ne>b—nge (i.e., the condition
for big brother 2 to be a permanent cooperator) implies that
A(>0, so that ¢(0)>0 and one positive root, say c*, of f(c)
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FIG. 2. (Color online) Macroscopic cooperation in a random
regular graph structure for the set F, with k=4, n;=4000, and €
=0. A decreasing sequence of nc/np, as indicated in figure, has
been used. Symbols represent numerical Monte Carlo results, and
the different lines represent the mean-field predictions as given by
the solution (¢=0) of Eq. (17).

is then ensured, in agreement with the theorem of Sec. III. In
Fig. 2 we show the asymptotic value of the average coopera-
tion ¢ versus the temptation parameter b, as obtained from
Eq. (17), for several different values of n-/ng, €=0, and k
=4,

Within the mean field approximation, it is possible to ob-
tain explicitly the equilibrium macro-state, i.e., the stationary
probability distribution density 7)1*, which as expected from
Sec. III turns out to be of the Boltzmann type. Let us con-
sider two different (arbitrary) strategic microstates /={s;} (i
=1,...,np), and I'={s;}, of the fluctuating set. For any pair
of microstates (I, ') we define the following numbers:

= 2 Byyst Out 15 (22)
nyg= ; (1- (Ssi,s;)avl.',O? (23)
ngo = E 8,516 0 (24)
ngy = E (1=8,.)8.1, (25)

i.e., ny; is the number of nodes that are cooperators in both
microstates, 7, that of the nodes that are cooperators in / but
defectors in /', etc. Using Eq. (2) it is straightforward to
obtain

c=cp= L(’110—”01)~ (26)

ng
Now, let us assume that the probabilities that a node i
changes strategy are independent of node i (homogeneity
assumption, mean-field), and denote them by Q. (transition
from defector to cooperator) and Q¢ (for the transition from
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cooperator to defector). Then we can easily see that the tran-
sition probabilities between the microstates / and I” are given
by

1, = (1= Ope)"1(1 = Qcp)" QO RLOS, (27)

I = (1= Qpe)" (1 = Qep)" QKON (28)

Henceforth, denoting exp(—8)=Q¢p/ Opc, one easily ob-
tains the expression

IL,;» exp(= Bepng) =11, exp(= Bemp), (29)
from where the unique solution to the fixed point equation
0,,P,=P (30)
is easily found to be
P;k =Z""exp(- Benp), (31)
where Z is the analog of the canonical partition function

P [QCD+ QDCj|nF.
Opc

Note that Eq. (29) expresses the “detailed balance” con-
dition, which is thus proved to be satisfied. As is well known
[32], the canonical probability distribution density (31) is the
unique density that maximizes the lack of information (en-
tropy) S=-2;P,;InP, among those (compatible) densities
that share a common value for the macroscopic average of
cooperation ¢=2,P;c;. This provides a “generalized thermo-
dynamic” meaning to the parameter B: it is no other than the
intensive entropic parameter associated to cooperation, that
is, the Lagrange multiplier [33,34] associated to the restric-
tion ¢=2;P,c; on the compatible measures (canonical re-
stricted maximization of entropy), that is,

(32)

s

npdc

(33)

The parameter 8 simply measures how fast the entropy of
the equilibrium macrostate increases versus global coopera-
tion variations. Its formal role is that of an analog of inverse
thermodynamical temperature. Let us note that, at variance
with many works in evolutionary game dynamics (see Ref.
[13], and references therein) where an analog of temperature
is introduced “ad hoc” as a parameter entering into the defi-
nition of the (stochastic) strategic updating rules, the param-
eter B (33) is a kind of emergent property that characterizes
the equilibrium macrostate, and thus is a function of the
model parameters (not a model parameter itself).

The fluctuations of the microstates cooperation c¢;, namely,
(np) [Z(Pic) = (ZPyc))?] are given by npc(1-c). This is the
analog of the heat capacity. The dependence on the game and
network parameters b, €, nc/np, k of the fluctuations of co-
operation is obtained by solving for the cooperation equilib-
rium value ¢=0 in Eq. (17), and plotted in Fig. 3(b) for k
=4, €=0, and decreasing values of the ratio no/ng.
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FIG. 3. (Color online) Fluctuations of cooperation in a random
regular graph structure for the set F. The upper panel (a) shows, for
k=4, e=0, ny=4000, and a decreasing sequence of n-/np values as
indicated, the fluctuations of cooperation observed in Monte Carlo
simulations. The lower panel (b) shows the mean-field predictions.
The mean-field approach is shown in text to be unable to predict the

observed phase transition. This qualifies network reciprocity as a
true “critical” social phenomenon.

2. Numerical results, and the mean-field failure

In this subsection we compare the mean-field results with
those obtained from Monte Carlo simulations implementing
the updating rules on the dipole model with a random regular
network structure for the fluctuating set F. In order to illus-
trate the Boltzmannian character of the stationary probability
density P*(I), we plot in Fig. 4 the numerical estimates of
ln(ﬁf)l), where P(c) is the probability that a microstate has an
average cooperation ¢ (2), as inferred from the simulation
results, and g(c)=ng!/[(cngp)!(np—cng)!] is the degeneracy
of ¢ (i.e., the number of microstates [ such that ¢;=c). The
data correspond to a random regular network structure for
the component F with degree k=4, and parameter values b
=1.1, np=5000, n,=500, and €=0. As one can see from the
perfect straight line shape of the plot, the data are fully con-
sistent with the Boltzmann’s density (31).

Though the system evolution is governed by dynamical
rules (strategic updating) which “a priori” could be thought
to lead to nonequilibrium behaviors, one finds that the
asymptotic regime of the PD evolutionary dynamics in the
dipole model is a true macroscopic equilibrium regime,
where the formalism of generalized thermodynamics [34] ap-
plies.

The results of the asymptotic value of the average coop-
eration ¢ versus the temptation to defect b are presented in
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FIG. 4. (Color online) Plot of ln(ﬁf%) versus cooperation c [the
inset shows P(c)], showing the Boltzmannian character of the sta-
tionary probability density of microstates, for a random regular net-
work structure for the set F. The parameter values are b=1.1, ny
=5000, k=4, nc=500, and €=0. The results shown here correspond
to 5X 10* Monte Carlo steps (after a long enough transient), for
each one of the 1.5 X 103 different network realizations and/or ini-
tial conditions.

Fig. 2 for (relatively small) values of nc/np ranging from
0.025 down to 4 X 1073, but still satisfying the sufficient con-
dition for the fixation of cooperation at BB2. The comparison
with the mean-field predictions show that the mean-field ap-
proximation overestimates the cooperation value. Most nota-
bly, for very small values of nc/np, the numerical results
show, at about b=1.4, a fast decay of cooperation to values
close to zero (thus suggesting the existence of a phase tran-
sition), while the corresponding decay for the mean-field pre-
diction is smooth in the whole range.

To which extent the mean-field approximation fails for
low values of the parameter n./ny, can be appreciated by
confronting its prediction ngc(1—c) for the fluctuations of
cooperation with the results from Monte Carlo simulations.
In Fig. 3(a) we see how a peak in cooperation fluctuations is
revealed, when nc/np—0, signaling the occurrence of a
phase transition between two qualitatively different equilib-
rium macroscopic behaviors, that correspond to low and high
temptation regimes. The mean-field assumption is thus quali-
tatively wrong if the payoff received from C by big brother 2
becomes negligible versus the size np.

The reasons for this qualitative failure of the mean-field
approximation rely on the lattice reciprocity of internal inter-
actions, which is totally absent in the mean-field approxima-
tion. Let us remind the reader here of our remark above on
the replicator-equation-type of effect of internal interactions
in Eq. (8) because of the mean-field assumption. The transi-
tion signaled by the divergence of fluctuations at b* reveals
the onset of internal lattice reciprocity, a conclusion that we
now substantiate (see also Appendix B below).

For b>b*, say in the low-temperature (high temptation)
phase, the macrostate is dominated by fast defection inva-
sions on the relatively few nodes that are instantaneous co-
operators due to sporadic interactions with big brother 2. In
Appendix B we show that, in the low ¢ and low n¢/np re-
gime, the BB-imitation events in a given node are typically
separated by intervals of time of about ¢! time units large.
In those large intervals when big brother 2’s influence is null,
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the very few and mostly isolated instantaneous cooperators
are quickly invaded by defector internal neighbors. In this
regime lattice reciprocity has no chance to develop, and co-
operation is only weakly sustained by the sporadic influence
of BB2.

On the contrary, for b<<b* (high temperature, or low
temptation phase) the local fluctuations of the neighbors stra-
tegic field favor the building up of clusters of cooperators
that resist invasions during time intervals that are compa-
rable to the characteristic time intervals between BB-
imitation events. Under these circumstances the “extra pay-
oft” that BB2 receives from C does not anymore need to be
high in order to sustain high levels of cooperation. Internal
lattice reciprocity enhances the probability of highly coop-
erative micro-states, so that the macro-states below transition
differs substantially from those of the high-temptation phase.
This was not captured by the mean-field approximation, for
these effects require a sizable likelihood of occurrence for
the local fluctuations of the strategic field, and the neglect of
them is all a mean-field approach is based upon.

To summarize the discussion of the results shown in fig-
ure, a random regular structure of interactions inside F is
enough to support lattice reciprocity mechanisms that cannot
be captured by a simple mean-field approach. The onset of
lattice reciprocity in the dipole model is furthermore inter-
preted as a “thermodynamical” phase transition, in a rigorous
formal sense (divergence of the fluctuations of an equilib-
rium extensive parameter, the cooperation ¢). One is then
lead to a sensible and precise formal framework where such
a term as “social temperature” is not a vague metaphor, but it
denotes a truly quantitative parameter, a legitimate (measur-
able, observable) social indicator.

V. PROSPECTIVE REMARKS

The plausibility of a thermodynamical perspective on
evolutionary game dynamics studies is not a new issue, for it
is somehow implicit (or at least connatural) to a body of
research literature on statistical mechanics of strategic inter-
actions [13,35]. What our simple analysis here shows is that
it can sometimes be strengthened up to a formal interpreta-
tion of quantitative macroscopic social indicators as thermo-
dynamic quantities. In the extent that it helps to understand
and to quantitatively characterize the phenomenology of so-
cial and economical models, it should be recognized as a
powerful theoretical perspective. Even more importantly, this
perspective emphasizes the central role of quantitative (ex-
perimental, observational) studies in social sciences, and
could provide, in those contexts, alternate valuable meanings
to quantitative social indicators and even suggestions for
new and better ones.

Any “general-physics” trained scientist recognizes that
entropy reasoning is an extraordinary powerful tool for the
analysis of macroscopic behavior in (material) traditional-
physics systems. It turns out that some of the models (at least
a bunch of interesting ones) of social phenomena are to a
large extent amenable to a macroscopic description where
thermodynamical concepts have proved to be essential. Of
course, some notions such as, e.g., the first law of thermody-
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namics, could often be absent in these new contexts. How-
ever, we emphasize that the absence of energy as a variable
in social models is not a shortcoming for the applicability
mutatis mutandi of many aspects of the thermodynamical
formalism to these models. A word of caution is nevertheless
worth here regarding typical system sizes in controlled social
experiments, where finite size effects could be hugely deter-
minant. Also, one should not expect always social processes
to be amenable to equilibrium descriptions, what makes them
even more interesting from the physicists point of view.

Nowadays, it is somewhat generally accepted that phys-
ics, in general, and statistical physics, in particular, offers a
powerful tool-box for problem solving in social sciences and
many other areas. Recent trends in cognitive science [36]
have correctly emphasized the power of the “diversity of
perspectives” in problem solving, so it does not come as a
surprise that adding physical perspectives to social models
may sometimes pave the way to the needed breakthrough.
Perhaps one should also wonder about the possibility of re-
verse flow in these interdisciplinary approaches to social sci-
ences. After all, the proper use of a tool helps to its reshap-
ing, and one could perhaps expect some kind of feedback. In
other words, is there any new physics that we can learn from
the study of social and economic complex systems? Only the
recourse to empirical and quantitative methods in the study
of social phenomena may likely give clues for sensible an-
swers to this question.
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APPENDIX A: WHAT IF BB1 AND BB2 ARE
DIRECTLY CONNECTED?

If a direct connection between big brothers is added (for
the set of initial conditions specified in Sec. III, and the con-
ditions on parameters given ibidem), one must compare their
respective payoffs to see who can invade the other. One eas-
ily finds that the payoff of the defector BB1 is higher than
that of the cooperator BB2 provided the following condition
holds:

b—¢€
E<c(b+cs—1)—e+ ,
nr nr

(A1)

where c¢ is the (instantaneous) average cooperation in F. In
this case, BB2 will be invaded with a nonzero probability.
Once this eventuality occurs, no cooperator (in F or in C)
can later invade BB2 because all of them have lower payoffs,
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and fixation of defection in the whole network will occur.
Note that as the average cooperation in F fluctuates, the
condition above must be satisfied at the precise time when
BB2 has chosen (by chance) to compare its payoff with BB1,
and that due to the high connectivity of BB2 (which is now
ne+np+ 1) the later event occurs with a very low probability
for macroscopic values of ng. In other words, the eventual
invasion of BB2 from BB1 and the subsequent fixation of
defection in the whole network can take on a very long time.
If the opposite condition holds, say, if

n b-e€
<>clb+e-1)-e+—,
ng np

(A2)

when BB1 has chosen to compare its payoff with BB2, then
invasion of BB1 will occur with a nonzero probability. After
this has occurred, BB1 becomes a fluctuating node (for it
could be eventually invaded by an instantaneous defector in
F), but in the long term fixation of cooperation in the whole
network will occur. The introduction of a direct connection
between big brothers in the dipole model makes fixation of
opposite strategies on them impossible, and then asymptotic
fixation on the whole network of either defection or coopera-
tion will occur, depending on the relative size n/ny of com-
ponents C and F.

APPENDIX B: LOW ¢ APPROXIMATION

In order to simplify expressions we assume hereafter e
=0 and k=4, and denote d=n¢/ng. For the case of a random
regular graph structure of the fluctuating set F, the probabil-
ity T12% ) that an instantaneous defector node chooses to
imitate big brother 2 (invasion event from BB2) is, to first
order in n}l,
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BB 1 c+6

Meop= (k+2) (1+ )b (B1)

while the probability Hgic of an invasion event from BB1
to an instantaneous cooperator node in F is, to first order in

-1
nrg,

BB ¢

DeC= m (B2)

Thus, for d=<c, typical intervals between invasion events
from big brothers in a node are (of the order of) ¢~! time
units large. For large values of the temptation, where the
value of ¢ is expected to be very small, the dynamics is
consequently dominated, for typically very large intervals of
time, by internal strategic interactions. Let us analyze them.

The internal neighbors of a cooperator i are overwhelm-
ingly likely instantaneous defectors in this “low ¢” regime,
so that i will be quickly invaded by them. The only chance
for it to resist invasion would be that its instantaneous neigh-
borhood microstate had at least two cooperator neighbors
and that b<(3/2) (note that in this strategic configuration,
the payoff of i is P;=3 and that of its typical defector neigh-
bors is 2b). These neighborhood microstates (cooperative
clusters) are so rare fluctuations that low values of the temp-
tation b are necessary for their non-negligible occurrence.
Provided b is below the transition value, the resilience to
invasion (lattice reciprocity) of cooperative clusters enhances
the likelihood of these fluctuations, which in turn reinforces
the clusters resilience, and so on. This positive feedback
mechanism of cooperative fluctuations enhancement is thus
what triggers the transition to highly cooperative mac-
rostates, and qualifies lattice reciprocity as a critical social
phenomenon.
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