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Using the global fiber bundle model as a tractable scheme of progressive fracture in heterogeneous
materials, we define the branching ratio in avalanches as a suitable order parameter to clarify the order
of the phase transition occurring at the collapse of the system. The model is analyzed using a proba-
bilistic approach suited to smooth fluctuations. The branching ratio shows a behavior analogous to the
magnetization in known magnetic systems with second-order phase transitions. We obtain a universal
critical exponent 8 = 0.5 independent of the probability distribution used to assign the strengths of

individual fibers.
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Interest in the fracture processes of heterogeneous media
has increased in the last several years [1-4]. In the lab,
a disordered material subjected to an increasing external
load can be studied by measuring the acoustic emissions
before the global rupture. It has been shown [5,6] that
this intense precursory activity in the form of bursts of
different microscopic sizes follows a well-defined power
law. Despite the many efforts and successes that have
been recently achieved, the question of whether rupture
exhibits the properties of a first-order or a second-order
phase transition remains under discussion, as well as what
is the order parameter that indicates the type of transition.

From the theory side, the understanding of fracture in
heterogeneous materials has progressed due to the use of
lattice models and large scale simulations [3]. In this field,
it is important to use models able to describe the com-
plexity of the rupture process; nevertheless, they should be
simple enough to permit analytical insight. To this class of
models belong the well-known fiber bundle models (FBM)
widely used since their introduction more than 40 years
ago [7,8]. In static FBM, a set of fibers (elements) is lo-
cated on a supporting lattice and one assigns to its elements
a random strength threshold sampled from a probability
distribution. The set is loaded and fibers break when their
loads exceed their threshold values. In the equal load shar-
ing (or global) FBM, which is the simplest scheme one can
adopt to make the problem analytically tractable, one as-
sumes that the load carried by failed elements is equally
distributed among the surviving elements of the system.

In the present Letter, we explore the criticality of frac-
ture in the global FBM using a novel probabilistic approach
devised to smooth fluctuations. The scaling relations ob-
tained and the behavior of the order parameter point out
that the fracture of a fiber set with long-range interaction
undergoes a continuous phase transition.

Let us first recall the basic ingredients of the global FBM
and how one proceeds in numerical simulations. The sys-
tem under consideration is a set of Ny elements located
in a supporting lattice each one having at the initial state
a zero load and a fixed strength threshold value sampled
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randomly from a probability distribution P(c). The sys-
tem is then subjected to an external force F' such that each
element increases its load in the same amount, o. This
individual stress (or load), o, acts as the control parame-
ter. The process of driving is done quasistatically; i.e.,
the external force is increased at a sufficiently slow rate
as to produce a single breaking event when the stress on
the weakest element equals its threshold value. Then, the
increase of F' stops and the load of the broken element is
equally transferred. This implies that the load on any ele-
ment is given by o = F/ny(F), where ny is the number
of surviving elements for a given F. The rupture of an
element may induce secondary failures which in turn may
trigger more failures, and so on. This process of induced
failure at constant external load, termed an avalanche, stops
when all surviving elements carry a load lower than their
thresholds. The system is then loaded again and the pro-
cess is repeated until the final catastrophic avalanche pro-
vokes the total rupture of the material, which occurs at a
critical load o that depends on the probability distribution
from where the individual strengths were drawn, as well as
on the system size. The FBM have been recently used in
self-organized criticality (SOC), a theoretical framework
widely used for the study of avalanche phenomena in dis-
ordered systems. It has been shown using these models
that systems with plastic behavior can reach a SOC state
just before the global rupture [9]. A second case of self-
organization with power law distributions in several quan-
tities corresponds to the situation in which the fracture
process coexists with a healing process [10].

In numerical simulations, the cycle of complete break-
down of the model is performed many times in order to
average out the effect of fluctuations and obtain mean val-
ues. As we are interested in studying the behavior of the
system as the critical point, or point of final collapse, is
approached, it is of utmost importance to find a simple
method able to capture the evolution of the system avoiding
as much as possible the fluctuations appearing in numeri-
cal simulations. To introduce our probabilistic strategy,
let there be a large set of Ny elements. Suppose that each
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element carries a given load o, which is zero at the initial
state. The strength of each element is drawn from a proba-
bility distribution P (o). Different probability distributions
can be considered. In materials science the Weibull distri-
bution is widely used,

P(o) =1 — ¢ (/o) )

where p is the so-called Weibull index, which controls the
degree of disorder in the system (the bigger the Weibull
index, the smaller the disorder), and o is a load of refer-
ence. In the following we assume oy = 1, and therefore
the loads are dimensionless. At this point, it is worth
noting that the results and the formulas derived in the fol-
lowing hold for a wide class of probability distributions.
We use here the Weibull distribution for definiteness,
but results have also been obtained for other distributions.
Equation (1) represents the probability that an element
fails under the individual load o. Now, consider the case
in which an element drawn from Eq. (1) supports a load
o but breaks under a new load o,. The probability that
this happens is given by

P(o2) — P(o1) _
1 - P(O’l)

So, the probability g(o, o) that an element that has sur-
vived to the load o also survives to the load o, will be
given by (a1, 02) = 1 — p(oy,02) = e @770,

To mimic the quasistatic increase in load on the system
we impose the condition that under an external force F,
the next breaking event consists of one single failure. Let
us suppose that after the latest avalanche, there are Ny
surviving elements, each one bearing a load . The new
individual load o, needed to provoke the failure of just
one more element is given by the solution of Ny — 1 =
qu(a'k, 0'1). Thus,

o 1 1/p
ag|] = |:0'k - 1I1<1 - N_k>i| , (3)

where in Eq. (3) Ny = Ny and o = 0 at the initial state.
Elevating the external force up to the N,o; level, statis-
tically speaking, one element breaks. As we are dealing
with an equal load sharing set, the choice of the broken
element is irrelevant because all the elements are equiva-
lent. Once the first element fails, the redistribution of its
stress takes place. This may induce other failures until the
end of the avalanche.

Now, how many elements will survive to the situation
in which n; elements with load o fail in an avalanche
step? The new load on the intact Ny — n; = N, elements
is 0y = Nyo1/N>. So, the number N3 of elements that
survive to the new load can be expressed as

plo,02) = 1 — e (oi-oD), 2)

N
N3 =qu<01,ﬁi01>=N2q(01,02)- 4

As a consequence of applying Eq. (4), N,—N3 elements
break and the new total number of intact fibers will
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support a bigger load o3. The avalanche may continue
and Eq. (4) is applied again for the set of N3 surviving
elements. The iterative process will stop when no new
element fails, which occurs when the right-hand side is
equal to the left-hand side in Eq. (4). The general form
of Eq. (4) is

Nj+1 = Njq(oj-1,0j), &)

with the conservation condition for the total load in the
system during an avalanche

NjO'j =Nj710'j7] (6)

and the condition
N; = Nj+1, @)

which determines the end of the avalanche. The dynam-
ics of the system is determined by Egs. (3), (5), and (6).
The size of an avalanche is given by the number of ele-
ments that break between two successive steps of external
loading. The critical load, defined as the load needed to
provoke the total collapse of the system, is equal to the
load on the intact elements just before the final catastrophic
avalanche. Note that in this probabilistic approach, in con-
trast to Monte Carlo simulations, we need to store only the
information concerning the loads on the intact elements;
that is, the details of the threshold list are omitted.

In the probabilistic strategy, we can proceed in two dif-
ferent ways in order to determine when an avalanche ends,
which we refer to as the continuous and discrete cases.
For the continuous case, the number N;i; of surviving
elements is considered a real number. Strictly speaking,
this means that condition (7) is never fulfilled. So, con-
dition (7) is replaced in numerical calculations by using
a factor v << 1 that determines the end of an avalanche,
ie, if N; — N4+ = v the avalanche stops; otherwise it
continues. In the discrete case, N+ is considered to be
a whole number, so that after each iteration of Eq. (5),
Nj+1 has to be rounded up. This is done comparing the
remainder of N;+, A, with a random number « uniformly
distributed in the interval [0, 1[. Thus, if @ = A, Nj
is equal to its whole part, otherwise, N;+1 is equal to its
whole part plus one. Next, we check whether the condition
(7) is satisfied for the rounded value of N, or if a new
iteration of Eq. (5) has to be performed. The continuous
approach has the advantage that the fluctuations are ruled
out, whereas for the discrete case the results are similar
to those obtained by Monte Carlo simulations where it is
necessary to average over many realizations in order to get
accurate mean values. Remember that in this model the
central limit theorem applies [11].

In Fig. 1 we have depicted the fraction of broken ele-
ments versus o, for the continuous case and for four in-
dividual Monte Carlo simulations with a Weibull index
p = 2 and Ny = 5000. No averaging has been done be-
cause our aim is only to illustrate the scatter of the re-
sults. As can be seen, the continuous probabilistic model
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FIG. 1. Fraction of broken elements for the equal load sharing

model. The line corresponds to the results obtained with the
continuous approach and gray dots correspond to four Monte
Carlo realizations.

gives a smooth curve and provides an accurate value for
the critical load o, which analytically is given by o, =
(pe)~ /7 [8] in the limit of infinite Np.

Now, we proceed to explore the behavior of some quan-
tities as the critical point is reached. The results shown
below have been obtained using the continuous approach
(p = 2). In Fig. 2 we show the interesting scaling rela-
tion for the average avalanche size. It turns out that the
avalanche size near to the critical point diverges with an
exponent y = % ass ~ (0. — o)~ 7. A similar behavior,
through a mapping of a fuse network model to the global
fiber bundle model used here, has recently been reported
[2]. We have also obtained the same scaling function for
the derivative of the number of broken fibers with respect
to the load on the system. The rate dN/do diverges as

(0 — o)~/2, thus qualifying a critical mean field behav-
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FIG. 2. Scaling of the mean avalanche size, s, as the critical
point o is approached. The results correspond to the continuous
probabilistic approach for a system of Ny = 50 000 elements and
p = 2. The straight line with a slope —% has been drawn for
comparison.

ior as was already shown in Ref. [4]. In Ref. [9], a similar
scaling behavior is addressed for the derivative of the strain
carried by the fibers with respect to the driving force.

Another way to shed light on the critical behavior of
this type of system is to define a branching ratio { for
each avalanche. This magnitude represents the probability
to trigger future breaking events given an initial individ-
ual failure [12,13] and is related to the number of broken
fibers by

_ @1
(z)

The above relation can be obtained by thinking of the
evolution of fracture as a kind of branching process [14].
In this process, each node gives rise to a number n of new
branches in the next time step. The average number (n)
of new branches is called the branching ratio. Let us
denote by n; the number of branches at a given step ¢ of
the branching process, and by f.,c the total number of
time steps before it dies. Then, & = 1 — (no/ >,™ n,).
As,np=1,{=1— % where n is the total number
of nodes developed in the branching process. For a frac-
ture process, no is equal to the average number of failure
events. So, Eq. (8) defines the branching ratio. We repre-
sent by (z) the average number of elements that fail in one
avalanche, which is a function of o and coincides with s.
This analogy between fracture and branching processes
has been previously used to study the criticality in the
process of fragmentation of Hg drops [15]. The branching
ratio will then act as the order parameter. It takes the value
1 when the system is critical thereby representing a mea-
sure of the distance of the system from the critical state
[13]. We have numerically computed ¢ by means of the
continuous method. The results obtained for a system of
Ny = 50000 elements and several values of p have been
plotted in Fig. 3. It can be seen in this figure that 1 — ¢
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FIG. 3. Evolution of the branching ratio as the critical point
is approached in the continuous probabilistic method (Ny =
50000). Note that at the critical point the branching ratio reaches
unity. The critical exponent is 8 = % which coincides, as it
should, with the value of the exponent 7.
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approaches zero, in all cases, in a continuous fashion as the
critical load is reached. Near the critical point, the relation
1 = ¢~ (6. — o)P, where B = 1 applies. This is the
exponent of the order parameter that we should expect
from a mean-field approach. Note the similarity of the
figure with those obtained for the magnetization in known
magnetic systems with second-order phase transitions.
In the figure, the values of { are collected for all the
avalanches except for the last, that which provokes the
collapse of the system. The result that at o, { — 1
is consistent with the previous result that the avalanche
size diverges at the critical point. On the other hand, the
branching ratio does not depend on the size of the system
for large systems, in contrast with previous results in other
fracturing systems [13].

The suggestion of Ref. [2] is that fracture can be seen
as a first-order phase transition close to a spinodal-like
instability [16]. There, by simulating models of electric
breakdown and fracture, the authors present numerical and
theoretical evidence of several scaling relations and of a
discrete jump in some macroscopic properties. Here, we
have obtained the same scaling relation for the rate of
fiber failures as the critical point is reached, and for the
avalanche sizes, which also diverge at that point. Our
numerical results also fit the mean-field result y = % It
is true that the fraction of unbroken fibers just before the
global rupture has a discontinuity, but from our point of
view, that is not enough to set the conclusion that fracture
can be described as a first-order phase transition, since the
concepts related to spinodal nucleation are not sufficiently
well established in driven disordered systems.

Our alternative point of view has been to consider the
branching ratio as an appropriate order parameter. Ac-
cording to the results obtained, the branching ratio goes
continuously from zero to one. Note, additionally, that
what changes discontinuously at ¢ is the rate of change
of { rather than  itself, which is, in essence, a continuous
phase change. Therefore, the behavior of the branching ra-
tio implies that the system undergoes a second-order phase
transition as claimed in another analysis of fracture mod-
els [17]. Our results suggest that fracture in heterogeneous
systems with long-range interaction can be described as
a phase transition of the second-order type. Besides, it is
important to bear in mind that in fiber models with local in-
teractions, the order parameter ¢ has a discontinuous jump
typical of first-order phase transitions. Finally, it is worth
recalling that fracture of real materials is a process based
on elasticity, and elasticity is a long-range phenomenon.
In this respect, the global load-sharing model we have ex-
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plored here could be a better analogy to real fracture than
the local one.
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