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The understanding of emergent collective phenomena in natural and social systems has driven the
interest of scientists from different disciplines during decades. Among these phenomena, the synchroni-
zation of a set of interacting individuals or units has been intensively studied because of its ubiquity in the
natural world. In this Letter, we show how for fixed coupling strengths local patterns of synchronization
emerge differently in homogeneous and heterogeneous complex networks, driving the process towards a
certain global synchronization degree following different paths. The dependence of the dynamics on the
coupling strength and on the topology is unveiled. This study provides a new perspective and tools to
understand this emerging phenomena.

DOI: 10.1103/PhysRevLett.98.034101 PACS numbers: 05.45.Xt, 89.75.Fb

In 1998 Watts and Strogatz in an effort to understand the
synchronization of cricket chirps, which show a high de-
gree of coordination over long distances as though the
insects where ‘‘invisibly’’ connected, end up with a semi-
nal Letter about the small-world effect [1] that was the seed
of the modern theory of complex networks [2–4]. Many
natural and man-made networks have been, since then, suc-
cessfully described within this framework. Nevertheless,
the understanding of the synchronization dynamics in com-
plex networks remains a challenge.

The synchronization of nonidentical interacting units
occupies a privileged position among emergent collective
phenomena because of its various applications in
Neuroscience, Ecology, Earth Science, among others [5–
7]. One of the most successful attempts to understand it is
due to Kuramoto [8,9], who analyzed a model of phase
oscillators coupled through the sine of their phase differ-
ences. The Kuramoto model (KM) consists of a population
of N coupled phase oscillators where the phase of the i-th
unit, denoted by �i�t�, evolves in time according to

 

d�i
dt
� !i �

X
j

�ijAij sin��j � �i�i � 1; . . . ; N; (1)

where !i stands for its natural frequency, �ij is the cou-
pling strength between units and Aij is the connectivity
matrix (Aij � 1 if i is linked to j and 0 otherwise). The
original model studied by Kuramoto assumed mean-field
interactions with Aij � 1, 8 i � j (all-to-all), and �ij �

K=N,8 i, j. The model can be solved in terms of an order
parameter r that measures the extent of synchronization in
a system of N oscillators as

 rei� �
1

N

XN
j�1

ei�j (2)

where � represents an average phase of the system. The

parameter 0 � r � 1 displays a second order phase tran-
sition in the coupling strength, being r � 0 the value of
the incoherent solution, and r � 1 the value for total
synchronization.

The synchronization problem has been solved in some
other cases, mainly those where a mean-field approach is
also valid [10]. Unfortunately, the mean-field approach
requires of several constraints that are not usually fulfilled
in real systems. Natural, social, and technological systems
show intricate patterns of connectivity between their units
that are, nowadays, described as complex networks [3,4].
The problem of synchronization in complex networks in-
herits the technical difficulties of the non mean-field ap-
proaches and incorporates new questions to be considered:
What are the new pertinent parameters to deal with syn-
chronization and, what is the role of the topology in the
synchronization process? Several works have partially ad-
dressed these issues by studying the stability of the syn-
chronized state [11–17] using the master stability function
(MSF) formalism [18]. However, the onset of synchroni-
zation, which posses more theoretical and phenomenologi-
cal challenges is much less explored, and only a few works
have dealt with the study of the whole synchronization
dynamics in specific scenarios [19–23].

The main goal of this Letter is to study the synchroniz-
ability of complex networks as a function of the coupling
strengths. To do this, first, we propose and discuss a new
measure of synchronization for the KM in complex net-
works. Second, we scrutinize and compare the synchroni-
zation patterns in Erdös-Renyi (ER) and scale-free (SF)
networks and show that even in the incoherent solution,
r � 0, the system self-organizes towards synchroniza-
tion following different paths. Our study reveals that the
synchronizability of these networks does depend on the
coupling between units, and hence, that general state-
ments about their synchronizability are eventually mis-
leading. Moreover, we show that even in the incoherent
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solution, r � 0, the system is self-organizing towards
synchronization.

Let us start by mapping the KM model in finite complex
networks as

 

d�i
dt
� !i � �

XN
j�1

Aij sin��j � �i� i � 1; . . . ; N; (3)

where � is a constant.
We study the dynamics of Eq. (3) in ER and SF net-

works, preserving the total number of links, Nl and nodes,
N for a proper comparison [24]. We concentrate in two
aspects: global and local synchronization. First, we follow
the evolution of the order parameter r, as � increases, to
capture the global coherence of the synchronization in the
networks. Second, we propose and follow the same evolu-
tion for a new parameter, rlink. This parameter measures the
local construction of the synchronization patterns and al-
lows for the exploration of how global synchronization is
achieved. We define

 rlink �
1

2Nl

X
i

X
j2�i

�������� lim
�t!1

1

�t

Z tr��t

tr
ei��i�t���j�t��dt

��������; (4)

that represents the fraction of all possible links that are
synchronized in the network (averaged over a large enough
time interval �t, after the system relaxes at some large time
tr), being �i the set of neighbors of node i.

We solved Eq. (3) using a 4th-order Runge-Kutta
method for different values of �, with a uniform distribu-
tion of natural frequencies g�!� in the interval [��, �] up
to achieving the stationary state. The networks are built
following a model [25] that generates a one parameter
family of complex networks. This parameter, � 2 �0; 1�,
measures the degree of heterogeneity of the final networks.
A network of size N is generated starting from a fully
connected core of m0 nodes and a set U�0� of N �m0

unconnected nodes. At each time step, a new node (not
selected before) is chosen from U�0� and linked tom other
nodes. Each of them edges is linked with probability � to a
randomly chosen node (avoiding multiple and self-
connections) from the whole set of N � 1 remaining nodes
and with probability (1� �) following a linear preferential
attachment strategy [26]. Repeating these steps (N �m0)
times, networks interpolating between the limiting cases of
ER (� � 1), and SF (� � 0) topologies are generated [27].

In Fig. 1 we represent the evolution of both order pa-
rameters, r and rlink, as a function of the coupling strength
�. The global coherence of the synchronized state, repre-
sented by r, shows that the onset of synchronization first
occurs for SF networks. A detailed finite size scaling
analysis performed for both topologies shows that the
critical value of the effective coupling, �c, corresponds in
SF networks to �SF

c � 0:05�1�, and in ER networks to
�ER
c � 0:122�2�, accordingly, with Fig. 1. If � is further

increased, there is a value at which r for the ER crosses

over the SF curve. From this value up in �, the ER network
remains slightly more synchronized than the SF network.

The behavior of rlink shows a change in synchronizabil-
ity between ER and SF and provides additional informa-
tion. Interestingly, the nonzero values of rlink for � � �c
indicate the existence of some local synchronization pat-
terns even in the regime of global incoherence (r 	 0).
Right at the onset of synchronization for the SF network,
its rlink value deviates from that of the ER. While the
synchronization patterns continue to grow for the ER net-
work at the same rate, the formation of locally synchro-
nized structures occurs at a faster rate in the SF network.
Finally, when the incoherent solution in the ER network
destabilizes, the growing in its synchronization pattern
increases drastically up to values of rlink comparable to
those obtained in SF networks and even higher.

The above results show that statements about synchro-
nizability are dependent on the coupling strength value.
Additionally, the previous discussion suggests that syn-
chronization is attained following two different paths that
depend on the underlying topology. We have studied the
characteristics of the synchronization patterns along the
evolution of rlink. Synchronization patterns are formed by
pairs of oscillators, physically connected, whose phase
difference in the stationary state tends to zero. Note that
the contribution into Eq. (4) of every pair of connected
oscillators can be written in terms of a matrix Dij �

Aijjlim�t!1
1

�t

Rtr��t
tr ei��i�t���j�t��dtj. This matrix is filtered
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FIG. 1 (color online). Evolution of (a), the KM order parame-
ter defined in Eq. (2), and (b) the fraction of synchronized links
rlink, Eq. (4), as a function of �. The curves separate when the
incoherent solution for SF networks destabilizes. The figure
clearly illustrates that the synchronizability of the networks
does depend on the value of the coupling strength. Both plots
are represented for ER and SF networks as indicated. The size of
the networks is N � 1000 and their average degree is hki � 6.
The exponent of the SF network is � � �3.
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using a threshold T such that the fraction of synchronized
pairs equals rlink. In this way, if Dij > T oscillators i and j
are considered synchronized and the synchronized patterns
are extracted.

In Fig. 2 we represent the number of synchronized
clusters and the size of the largest one (GC) as a function
of �. The local information extracted from it is unveiling
an astonishing and novel feature of the synchronization
process that cannot be derived from Fig. 1, and that in some
sense is counterintuitive. The emergence of clusters of
synchronized pairs of oscillators (links) in the networks
shows that for values of � � �SF

c , i.e., still in the incoherent
solution r � 0, both kind of networks have developed a
largest cluster of synchronized pairs of oscillators involv-
ing 50% of the nodes of the network, and an equal number
of smaller synchronization clusters. From this point on, in

the SF network the GC grows and the number of smaller
clusters goes down, whereas for the ER network the growth
exploits. These results indicate that although SF networks
present more coherence in terms of r and rlink, the micro-
scopic evolution of the synchronization patterns is faster in
ER networks, being these networks far more locally syn-
chronizable than the heterogeneous ones.

The observed differences in the behavior at a local scale
are rooted in the growth of the GC. It turns out that for the
ER networks, many different clusters of synchronized pairs
of oscillators merge together to form a GC when the
effective coupling is increased. The coalescence of many
small clusters leads to a giant component of synchronized
pairs that is almost the size of the system once the inco-
herent state destabilizes. This is not anymore the case for
SF networks, where oscillators are incorporated to the GC
practically one-by-one (forming new pairs) in terms of �
(or rlink), but starting from a core made up of half the nodes
of the network. This picture is confirmed in Fig. 3, where
we have represented the evolution of local synchronization
patterns in ER and SF networks for several values of �. The
ultimate reason behind these two different routes to com-
plete synchronization is the heterogeneous character of the
SF network and the role played by the hubs. In Fig. 4, we
have plotted the probability that a node with degree k
belongs to the GC as a function of its degree k and the
coupling � for the SF network. This probability is an
increasing function of k for every �, hence the more
connected a node is, the more likely it takes part in the
cluster of synchronized links. Recently [23], Zhou and
Kurths have reported the study of hierarchical organization
in complex networks, using the MSF and a mean-field
approach in the weak coupling limit. Our results thus
substantiate and generalize those about the role of hubs
in the synchronization process presented in [23].

In summary, we have shown that synchronizability of
complex networks is dependent on the effective coupling �
among oscillators. For small values of �, SF networks
outperform ER topologies, but the tendency is reverted
for intermediate to large values of the coupling. On the
other hand, the detailed analysis of evolution of patterns of
synchronization showed that there are two radically differ-
ent mechanisms to attain synchronization. In the presence
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FIG. 2 (color online). Size of largest synchronized connected
component (GC) and number of synchronized connected com-
ponents (NC), as a function of � for the different topologies
considered. Despite r being vanishing and hence no global
synchronization is yet attained, a significant number of clusters
show up. This indicates that for any � > 0 the system self-
organizes towards macroscopic synchronization. The network
parameters are as in Fig. 1.

 

FIG. 3 (color online). Synchronized
clusters for several values of � for the
two different topologies studied (ER and
SF). These networks are made up of 100
nodes, in order to have a sizeable picture
of the system. The evolution of local syn-
chronization patterns is always agglomer-
ative, however, it follows two different
routes. In the ER case, the growth of the
GC proceeds by aggregation of small clus-
ters of synchronized nodes, while for the
SF network the central core groups the
smaller clusters around it.
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of hubs, a giant component of synchronized pairs of oscil-
lators forms and grows by recruiting nodes linked to them.
On the contrary, in homogeneous structures, many small
clusters first appear and then group together through a
sharp merging process. These results are as far reaching
as the ones obtained for percolation and epidemic spread-
ing on top of homogeneous or heterogeneous graphs,
where the radical differences of the system’s dynamics
are rooted in the topology of the underlying networks,
demonstrating that the same behavior may hold for non-
linear dynamical systems coupled to complex structures.
However, at variance with percolation processes, here the
synchronization patterns could be directly related to the
growth and evolution of the network. Therefore, we have
naturally incorporated a dynamics relevant for the emer-
gence of cooperative behavior, showing that the same
organizing principle may drive network evolution, i.e., if
synchronization is a relevant issue, natural networks
(whether they are homogeneous or heterogeneous in de-
gree) can indeed be efficient by adaptively selecting their
coupling strengths. Our study then opens new paths to
clarify how synchronization is attained in complex to-
pologies and provides new tools to analyze this ubiquitous
phenomenon.
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FIG. 4 (color online). The plot shows the correlation between
the likelihood that a node belongs to the GC of pairs of
synchronized oscillators and its degree k as a function of the
coupling strength �. This probability, PGC�k�, is color coded as
indicated in the right panel. The figure convincingly demon-
strates that highly connected nodes are those that recruit poorly
connected nodes as the GC grows. Network parameters are those
used in Fig. 1.
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