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The study of the interplay between the structure and dynamics of complex multilevel systems is a pressing
challenge nowadays. In this paper, we use a semiannealed approximation to study the stability properties of
random Boolean networks in multiplex (multilayered) graphs. Our main finding is that the multilevel structure
provides a mechanism for the stabilization of the dynamics of the whole system even when individual layers
work on the chaotic regime, therefore identifying new ways of feedback between the structure and the dynamics
of these systems. Our results point out the need for a conceptual transition from the physics of single-layered
networks to the physics of multiplex networks. Finally, the fact that the coupling modifies the phase diagram and
the critical conditions of the isolated layers suggests that interdependency can be used as a control mechanism.
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Nearly four decades ago, random Boolean networks
(RBNs) were introduced as a way to describe the dynamics
of biochemical networks [1–7]. RBNs [3,8] consider that each
gene of a genetic regulatory network is a node of a directed
graph, the direction corresponding to the effect of one gene
on the expression of another. The nodes can be in one of two
states: they are either on (1) or off (0); i.e., in the case of
a gene its target protein is expressed or not. The system so
composed evolves at discrete time steps. At each time step
nodes are updated according to a Boolean rule assigned to
each node that is a function of its inputs. Notwithstanding the
high simplicity of RBN models, they can capture the behavior
of some real regulatory networks [9] allowing for the study of
several dynamical features, above all their critical properties.
However, although some coupled Boolean networks have
been investigated [10,11], the vast majority of works have
considered RBNs as simplex networks, in which a single graph
is enough to represent all the interactions a given gene is
involved in.

The previous description implicitly assumes that all bio-
chemical signals are equivalent and then collapses information
from different pathways. Actually, in cellular biochemical
networks, many different signaling channels do work in
parallel [12]; i.e., the same gene or biochemical species can be
involved in a regulatory interaction, in a metabolic reaction,
or in another signaling pathway. Here, we introduce a more
accurate setup for the topology of biochemical networks by
considering that different operational levels (pathways) are
interconnected layers of interaction. In terms of graphs, this
topology is more consistent with a multiplex network [13,14]
(see Fig. 1) in which each level would represent the different
signaling pathways or channels the element participates in.
On the other hand, accounting for the multilevel nature of
the system dynamics also represents a point of interest by
itself, as this allows us to inspect what are the consequences
of new ways of interdependency between the structure and the
dynamics. In this sense, the dynamics we inspect is general
enough so as to serve as a null model for many other complex
dynamical processes.

In this paper, we study the stability of Boolean networks
defined at multiple topological layers. In particular, we inspect

a Boolean multiplex network model, in which each node
participates in one or more layers of interactions, being
its state in a layer constrained by its own state in another
layer. Therefore, we focus on the case of canalizing rules.
Boolean functions are canalizing if whenever the canalizing
variable takes a given value, the canalizing one, the function
always yields the same output. Capitalizing on a semiannealed
approximation, we analytically and numerically study the
conditions defining the stability of the aforementioned system.
By doing so, we show that the interdependency between the
layers can be enough to either stabilize the different levels or
the whole system. Remarkably, this also happens for parameter
values where the subsystems, if isolated, were unstable.

Let us first define in mathematical terms the structure of
the multiplex network of N nodes per layer and M layers in
Fig. 1, which can be fully encoded in two objects [15]. First,
we have the N × M incidence matrix Biα , whose elements are
1 if node i appears in layer α and 0 otherwise. Second, we
introduce an adjacency tensor, Aijα , whose elements are 1 if
there is a link between nodes i and j in layer α and 0 otherwise.
With these two basic objects, one can generalize the different
descriptors used in simplex networks. For instance, the total
degree of node i will be Ki = ∑

jα Aijα = ∑
α Kiα , where Kiα

is the degree of node i in layer α. Moreover, the multilevel
structure gives rise to new topological metrics that are not
defined in single-layered networks. We define the multiplexity
degree of a node as the number of layers in which it appears as
κi = ∑

α Biα . Note that the number of different nodes in the
multiplex will be then Ñ = NM − ∑

i(κi − 1).
Next, let us consider a state vector

x̃(t) = (x̃1(t), . . . ,x̃Ñ (t)), (1)

where x̃i(t) ∈ {0,1} and a set of update functions such that

x̃i(t) = f̃i

(
x̃j∈�in

α (i)(t − 1)
)
, (2)

where �in
α (i) refers to all the incoming neighbors j of node i

at each layer α, with α = 1 . . . M .
Equations (1) and (2) define a Boolean multilevel (or

multiplex) graph. In addition, due to the multiplex nature of
the network, we also define a set of update functions for each
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FIG. 1. (Color online) The multiplex network is built up by
randomly connecting N nodes per layer. With probability σ , each
of the N nodes can be present in both layers. Therefore, the total
number of different nodes in the system is Ñ = (2 − σ )N . In the
example of the figure, the whole system is made up of Ñ = 13 nodes,
of which 3 are present in the two layers and there are 5 additional
nodes per layer; therefore N = 8 and σ = 3/8.

layer as

xl
i (t) = f l

i

(
x̃j∈�in

l (i)(t − 1)
)
, (3)

where now the arguments of the function are restricted to the
specific layer α = l. Equation (3) governs how each node is
updated in each layer. So, Eq. (2) can be rewritten as

x̃i(t) = f̃i

(
f 1

i , . . . f M
i

)
, (4)

where f̃i is a canalizing function of its inputs. These definitions
allow investigating how the stability of the Boolean model is
affected by the multilevel structure of the system and by the
existence of nodes with different multiplexity degrees.

We first inspect the dependency of the average sensitivity
sf , which has been shown to be a useful order parameter in
RBNs [16,17], on the multiplexity degree κi . Following [16],
we write the activity a

f

j of the variable xj in a function f of

K inputs as a
f

j = 1
2K

∑
x∈{0,1}

∂f (x)
∂xj

, where ∂f (x)
∂xj

= f (x(j,0)) ⊕
f (x(j,1)) and x(j,R) represents a random vector x ∈ 0,1 with the
j th input fixed to R and ⊕ is the arithmetic addition modulo
2. Similarly, assuming that the inputs are also uniformly
distributed, the average sensitivity is equal to the sum of the ac-
tivities, i.e., sf = ∑K

i=1 E[χ [f (x ⊕ ei) �= f (x)]] = ∑K
i=1 a

f

j ,
where ei is a zeros vector with 1 in the ith position, and χ [A]
is an indicator function that is equal to 1 if and only if A is
true.

To illustrate how multiplexity affects the sensitivity of a
node, without loss of generality, we study analytically and
numerically a multiplex network of two layers. Let us denote
by p the bias of the Boolean functions, and α and β the two
respective layers. Due to the multilevel nature of the interaction
network, a node i in our model depends on the state of its
neighbors in layer α and also on the state of its neighbors in β

via the auxiliary function f̃ β . Suppose that the canalizing state
in α and β is 1 (the discussion for 0 would be identical). Then,
the updating function of i can be written as f̃i(f α

i ,f
β

i ) = f α ∨
f β , being ∨ the Boolean operator OR. From the definition of

the activities and the previous relation, it follows that E[af̃

j ] =

2−(κi−1)2p(1 − p), which is different from the value one would
obtain in the case of a simple canalizing function. Similarly,
for the sensitivity one gets

E[s̃ f̃ ] = 2−(κi−1)
∑

α

E
[
sf α ]

, (5)

where E[sf α

] = 2p(1 − p)Kα is the expected average sensi-
tivity of a function in layer α if it were isolated.

Next, we study the stability of the Boolean multiplex system
using a semiannealed approximation [18]. This approach
considers the network as a static topological object while the
update functions f l

i (l = α,β) are assigned randomly at each
time step. Thus, we can write the update function for the
components of the difference vector ỹ(t) = 〈| x̃(t) − ˆ̃x(t) |〉,
where ˆ̃x is a perturbed replica of x̃ in which a (small) fraction
of the nodes were flipped, yielding

ỹi(t) = q̃i

[
1 −

∏
j∈�i

(1 − ỹj (t − 1))

]
, (6)

which is equivalent to the expression derived in [18], but
also taking into account Eq. (5), with qi = 2p(1 − p) for a
simplex graph and �i being the set of all neighbors of i in
all layers. Considering a small perturbation, linearization of
Eq. (6) around the fixed point solution ỹ(t) = 0 leads to

ỹi(t + 1) ≈ 2−(κi−1)qi

M∑
α=1

N∑
j=1

Aijαỹj (t) (7)

that can be written in matrix form as ỹ(t + 1) = ∑
α Qα ỹ(t),

with Qijα = 2−(κi−1)qiAijα . The largest eigenvalue, λQ, of the
matrix Q = ∑

α Qα governs the stability of the system [18]. It
is worth noticing that the latter refers to the stability condition
for the whole system and, given a fixed topology for each
layer, it depends on the multiplexity degree [19]. For the
case of nonuniform κi we obtain an analogous mean-field
approximation to λQ in [18],

λQ ≈
〈
2−(κi−1)qiK

in
i Kout

i

〉
〈K〉 , (8)

where 〈K〉 is the average degree of the multiplex. Note that the
stability of the multiplex depends on κi and K in

i Kout
i , which,

in general, are not independent variables; thus, q̃i and Ki are
anticorrelated. To find the critical condition let P̃ (κ = n) be
the probability that a node in the whole system has multiplexity
degree n. This magnitude depends on the same quantity but
at the single-layer level as P̃ (κ = n) = N

Ñ

M
n
P (κ = n), where

P (κ = n) is the probability that a randomly chosen node of a
layer has multiplexity degree n. For the average degree of the
multiplex we have

〈K〉 =
∑

n

(
M − 1
n − 1

)
(

M

n

) P̃ (κ = n)
∑

l

〈Kl〉 = N

Ñ

∑
l

〈Kl〉, (9)

where 〈Kl〉 is the average degree of layer l.
Inserting the previous expression into Eq. (8) and consid-

ering the case in which there are no correlations between K in
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and Kout, one gets

〈q̃〉
∑

l

〈Kl〉 − 2(M〈q̃〉 − 〈κq̃〉)
M − 1

∑
l1<l2

〈Kl1〉〈Kl2〉∑
l〈Kl〉 = 1, (10)

with l1 = 1 . . . ,M , l2 = 1 . . . ,M and 〈q̃〉 = ∑M
n=1 q̃(κ =

n)P (κ = n) is the average sensitivity on a layer. It is worth
noticing that the first term on the left-hand side of Eq. (10) is the
expression one would obtain using an annealed approximation.
The second term is always positive. Therefore, it captures the
stabilizing effects of multiplexity, rightly predicting ordered
behavior in regions in which the annealed approximation
would not.

Once we have derived the critical condition for a system
made up of an arbitrary number of layers, let us compare the
analytical results with numerical simulations for a two-layer
system with qi = q. Let σ be the probability for a node in
a layer to be present also in the other layer; then we have
P (κ = 2) = σ and P (κ = 1) = 1 − σ . Besides, for the sake
of simplicity, consider that the average connectivity of one
layer is observed, 〈Ko〉, and fixed (for instance, because one
measures it), and that the average connectivity of the other
layer is unknown or hidden 〈Kh〉. Recalling that the size of the
multiplex system is Ñ = (2 − σ )N , where N is the number of
nodes per layer, the mean connectivity 〈K〉 can be written as
〈K〉 = 〈Kh〉+〈Ko〉

(2−σ ) , which leads to the following expression for
the critical condition of the two-layer system:

2 − σ

4
(〈Kh〉 + 〈Ko〉) − (1 − σ )

〈Kh〉〈Ko〉
〈Kh〉 + 〈Ko〉 = 1

2q
(11)

that as a function of σ and 〈Kh〉 gives a hyperbolic critical
curve.

To verify that our analytical calculations are valid, we have
performed extensive numerical simulations of the Boolean
dynamics on a random multiplex network made up of two
layers in which N nodes are randomly connected among them
and only a fraction σ of them are present on both layers.
As is customarily done, we test the stability of the system
by measuring the long-time Hamming distance for different
trajectories generated from two close initial states. Figure 2
shows the results obtained when the mean connectivity 〈Ko〉
of a layer is fixed and both σ and the mean connectivity
of the other layer 〈Kh〉 change (the Hamming distance is
color coded as indicated). First, we note that the transition
from stability to an unstable regime nicely agrees with the
theoretical prediction. Second, it is worth highlighting a new
effect linked to the multilevel nature of the system: The region
of low 〈Kh〉 and low σ is unstable despite the fact that those
values of 〈Kh〉 would make the hidden layer, in a simplex
graph description, stable. However, due to the low coupling
(σ ), the instability of the multiplex is determined by that of the
observed layer, the leading one. Admittedly, when increasing
the coupling σ the stable (hidden) layer is able to stabilize the
whole system.

We have further explored the dependency between the
stability of the multiplex and the average degrees of both
layers. Figure 3 shows the analytical solution of Eq. (11)
for different values of 〈Kh〉 and 〈Ko〉. The results show a
very rich phase diagram. Depending on the values of both
connectivities, a double transition from a chaotic regime to an
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FIG. 2. (Color online) Color-coded average Hamming distance
for the whole system with fixed observed connectivity 〈Ko〉 = 2.9 for
different values of the hidden connectivity 〈Kh〉, and the probability
for a node in a layer to be present also in the other layer σ . The network
is composed of N = 103 nodes per layer as explained in Fig. 1. The
continuous line is the solution (zeros) of Eq. (11). Simulations were
performed for an initial Hamming distance of 0.01 and the results are
averages over 50 realizations of the network and 300 random initial
conditions.

ordered one and again to another chaotic regime is predicted.
More interestingly, the transition from the ordered to the
disordered regime does not depend on σ only when both
layers operate at their respective critical points, namely, when
〈Kh〉 = 〈Ko〉 = 1/q = 2.

Up to now, we have analyzed the stability of the multiplex
system. In practice, it is more common to have access to
only one layer, so that one can measure the stability of that
layer given that it is connected to a hidden (inaccessible) one.
Therefore, it is also important to inspect the stability condition
of a single layer within the multiplex. To this end, we should
solve Eq. (8) taking into account only the nodes that belong to
the layer whose stability is scrutinized. In this case, the critical
condition reads

σ

4
(〈Kh〉2 − 〈Ko〉2 + 2〈Kh〉〈Ko〉) + 〈Ko〉2

2
= 〈Ko〉 + σ 〈Kh〉

2q
.

(12)
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FIG. 3. (Color online) The lines are the solution (zeros) of
Eq. (11) for different values of the hidden connectivity 〈Kh〉, the
observed connectivity 〈Ko〉, and the probability that a node belongs
to both layers σ . We have set qi = q = 1

2 .
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FIG. 4. (Color online) Critical curves for a network made up of
104 nodes per layer as a function of the probability of a node to be
part of both layers σ , and the hidden connectivity 〈Kh〉. The blue
line corresponds to the critical curve when a single layer is observed
while the red one refers to the whole system. The rest of simulation
parameters are the same as for the other figures.

Figure 4 compares results of simulations for a larger network of
N = 104 nodes per layer with the theoretical solution [Eq. (12),
blue line] showing again a good agreement between analytical
and simulation results. Remarkably, the results show that a
single ingredient—the multilevel nature of the system—can
explain why there are biologically stable systems that are

however theoretically expected to operate in the unstable
regime (i.e., their average degree is larger than 1/q). In other
words, the sole reason could be that these systems are not
isolated, but are coupled to other hidden layers that, if ordered,
can stabilize the system. Finally, for the sake of comparisons,
we have also represented in Fig. 4 (red line) the case shown in
Fig. 2 but for the same larger system size.

Summing up, we have studied the effect of multiplexity
on the stability of Boolean multilevel networks. In particular,
we have addressed two important (and complementary) cases:
the stability of the system as a whole and that of an observed
layer which is coupled to other hidden layers. Our main result
shows that there is a region of parameters for which either
a single layer or the whole system can be stabilized by the
presence of another stable subsystem (layer). On more general
grounds, the latter mechanism supports the need to study
complex interdependent systems explicitly incorporating their
multilevel nature. As we have shown, unexpected results can
emerge as a consequence of new ways of feedback between
the structure and the dynamics of such systems, including the
possibility of using interdependency to control the stability of
a system.
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