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In the framework of the evolutionary dynamics of the Prisoner’s Dilemma game on com-
plex networks, we investigate the possibility that the average level of cooperation shows
hysteresis under quasi-static variations of a model parameter (the ‘‘temptation to defect’’).
Under the ‘‘discrete replicator’’ strategy updating rule, for both Erdös–Rényi and Barabási–
Albert graphs we observe cooperation hysteresis cycles provided one reaches tipping point
values of the parameter; otherwise, perfect reversibility is obtained. The selective fixation
of cooperation at certain nodes and its organization in cooperator clusters, that are sur-
rounded by fluctuating strategists, allows the rationalization of the ‘‘lagging behind’’
behavior observed.

� 2013 Published by Elsevier Ltd.
1. Introduction

Evolutionary game theory [1] provides with an elegant
mathematical description of how Darwinian natural selec-
tion among strategies (representing phenotypes) takes
place when the reproductive success of individuals (and
thus the future abundance of phenotypes) depends on
the current strategic composition of the population (fre-
quency-dependent fitness) [2–4]. One of the most studied
challenges to the explanatory power of evolutionary game
dynamics is the understanding of the evolutionary survival
of cooperative behavior among unrelated individuals that
is observed even when selfish actions provide higher
short-term benefits.

Perhaps the best suited mathematical model to describe
the puzzle of how cooperation survives is the Prisoner’s Di-
lemma (PD) game. This game, originally introduced by
Flood and Savage [5], is a two-players-two-strategies
game, in which each player chooses one of the two avail-
able strategies: cooperation (C) or defection (D). A cooper-
ator earns R (reward) when playing with a cooperator, and
a payoff S (sucker’s payoff) when playing with a defector,
while a defector earns P (punishment) when playing with
a defector, and T (temptation to defect) against a coopera-
tor. When the ordering of the payoffs is T > R > P > S, the
game is strictly speaking a PD. When T > R > S > P the
situation is called Snowdrift Game (SG), also known as
Hawks-and-Doves or Chicken [6]. In this work we focus
on a variant of the PD game called weak Prisoner’s Dilem-
ma, placed in its boundary with respect to SG, that is
T > R > P = S. In a PD (including weak variant), whatever
the opponent’s strategy is, the payoff is never higher for
cooperation, and a rational agent should choose defection.
Still, two cooperator agents receive higher payoff (2R) than
two defector ones (2P), which leads to social dilemma.

On the other hand, recent discoveries on the interaction
architecture of biological, technological and social systems
have shown that this structure has important conse-
quences for their dynamical behavior and their associated
critical phenomena [7,8]. In particular, the dynamical fea-
tures observed for heterogeneous, scale-free (SF) networks
are often different from those for homogeneous networks
[9,10]. This difference is rooted in the presence of highly
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connected nodes. Motivated by the aforementioned re-
sults, studies of evolutionary game theory models on het-
erogeneous networks have attracted a great attention in
the last few years [11–13]. In particular, issues concerning
the role that social structure plays in the success of coop-
erative behavior have been extensively studied in the con-
text of the PD game [14–22]. The results obtained indicate
that the heterogeneous connectivity patterns characteristic
of SF networks might support cooperation, although it has
been recently reported that when humans play a PD game,
networks do not play a role [23]. The promotion of cooper-
ation when the payoff differences determine the evolution
of strategies is understood by the presence of highly con-
nected nodes (the hubs) whose large number of connec-
tions provides them with high benefits and then a high
imitation power. Thus, when playing as cooperators neigh-
boring agents easily imitate their cooperative strategy. This
imitation reinforces the benefits accumulated by the coop-
erator hubs thus creating a positive feedback mechanism
that enhances the cooperation across the whole system.

The asymptotic levels of average cooperation on ran-
dom networks (as function of game’s parameters) were
determined to be reasonably robust versus variation of
random initial conditions with different initial proportion
of cooperators [19]. Though this might seem to suggest
that, under slow (compared to evolutionary scales) param-
eter variation, the cooperation levels reached on a network
are independent of the particular history of parameters’
change, it is unclear that it should be so, because of the
likelihood of multiplicity of microscopic asymptotic states,
given the disordered nature of the social contacts struc-
ture, that could produce hysteresis-like behaviors. We ad-
dress here the question about the possibility of hysteresis
of the cooperation on complex network under quasi-static
variation of game’s parameters.
2. The model

Provided the relative selective advantage among two
individuals depends on their payoff’s difference (see be-
low), we can normalize without loss of generality the
pay-off matrix taking R = 1 and fix the punishment P = 0.
We will also consider here that the sucker’s payoff is
S = 0, namely, the weak Prisoner’s Dilemma, so that both
strategies perform equally against a defector. Then only
one parameter, the ‘‘temptation to defect’’, T = b > 1 is a
system variable.

In this study we implement the following replication
mechanism: At each time step, each agent i plays once
with each one of its neighbors (i.e., agents connected to i)
and accumulates the obtained payoffs, Pi. After that, the
individuals, i, update synchronously their strategies choos-
ing a neighbor j at random, and comparing their respective
payoffs Pi and Pj. If Pi P Pj, nothing happens and i preserves
its strategy. Otherwise, if Pj > Pi,i adopts the strategy of its
neighbor j with probability Pji = g(Pj � Pi). Next, all payoffs
are reset to zero. Here, g is a positive real number, related
to the characteristic inverse time scale: the larger it is, the
faster evolution takes place. We consider that players and
connections between them are given by a fixed graph
where agents are represented by nodes, and a link between
nodes indicates that they interact. We choose here the
maximum value of g that preserves the probabilistic char-
acter of Pji, that is, g = (max{ki,kj}b)�1, where ki is the
number of neighbors of agent i (connectivity or degree).
This choice, introduced in [15], slows down the invasion
processes from or to highly connected nodes (hubs), with
respect to the rate of invasion processes between poorly
connected nodes.

Our aim is the study of the reversible (or irreversible)
character of cooperation level c under the variation of the
temptation to defect parameter b, where c is defined as
the number of cooperator nodes divided by the total pop-
ulation c = Nc/N. In order to study the system’s behavior,
we choose an initial value of b = b0 such that the asymp-
totic cooperation value c is close to a half: c(b0) ’ 0.5. Once
the system has reached a stationary state, we decrease b in
a quasi-static way, that is, in steps Db < 0 small enough to
ensure that the system remains very close to equilibrium.
Along this process, we compute the stationary value of
cooperation c(b) for each value of b. To avoid getting stuck
in the absorbing states we deal with large enough network
sizes (N > 105), considering that fluctuations decrease
according to the square root of the system size. Once the
system has almost reached the absorbing state c = 0, we re-
verse the sign of the increase in b, i.e., Db > 0, to almost
reach the other absorbing state c = 1, and then again de-
crease b to complete the cycle. To study the influence of
network topology in the reversibility of the process, we
consider three different network models: Random Regular
Graphs (RRG), Erdös–Rényi and Scale-free networks,
though we will only show here the results for the last
two types of graphs. RRG (i.e., random networks with fixed
degree k, which means that every node has the same num-
ber of neighbors) always show complete reversibility. This
seems to imply that, although randomness is present in
RRG, a non-zero variance in the degree distribution is a
necessary condition for the observation of irreversible
behavior.
3. Erdös–Rényi networks

Erdös–Rényi (ER) networks are random graphs charac-
terized by a binomial degree distribution (or a Poisson dis-
tribution for large networks). To study reversibility, we
have performed numerical simulations in 103 independent
networks of size N = 1.2 � 105 generated through Erdös–
Rényi algorithm. For reduced cycles, that is, when the
return points are far from absorbing states (1 � Nc(bmin) -
� 1,Nc(bmax)� 1) the processes are reversible and the le-
vel of cooperation is independent of the sign of the
increase in b. Nevertheless, when return points are close
enough to the absorbing states (c(bmin) � 1,c(bmax) � 0),
ER networks exhibit irreversibility to a large extent. In fact,
once the level of cooperation reaches a tipping point, all
processes are irreversible. In particular, there is a strong
resilience of cooperation (defection) when increasing
(decreasing) the value of b. However, the backward and
forward transition curves are identical for intermediate
values of cooperation. The proximity � of the tipping points
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c(bmin),c(bmax) to the absorbent states in both ends of the
cycle turns out to be similar: 1 � c(bmin) = � � c(bmax) and,
for the networks size used, it takes on the value
� � 2 � 10�3.

As a result, once the population has reached a coopera-
tion level above (below) a tipping point, the system shows
a reticence to retrieve the past level of cooperation when
the parameter b increases (decreases). This phenomenon
is independent of the particular ER network, being ob-
served in all network realizations. Fig. 1 shows the level
of cooperation hci versus the temptation to defect b, aver-
aged over 103 realizations in distinct ER networks. Differ-
ent realizations show different b-increasing and
b-decreasing curves, whose envelopes are depicted as dot-
ted lines in Fig. 1. Remarkably, the dispersion of the differ-
ent curves is much larger for the b-decreasing direction.

4. Scale-free networks

Scale-free (SF) networks are graphs whose degree dis-
tribution P(k) follows a power law, that is, P(k) � ck�c.
We ran simulations in 5 � 103 independent networks of
size N = 1.2 � 105 generated through the Barabási-Albert
algorithm. Although most of the SF networks show nearly
reversible behavior, around 5% of networks show a strong
hysteresis. Nevertheless, irreversibility in SF networks
should not be considered as a rare event: Increasing the
network size increases the proportion of networks that
show irreversible behavior. The explanation for this fact
is that the use of larger networks allows to approach closer
the absorbing states c = 0, 1 without getting stuck in them.
Based on this argument, we have separated realizations
showing a reversible behavior from irreversible ones. In
these latter cases, hysteresis shows up only for low values
of b; in other words, when cooperation is very small, back-
ward and forward c(b) curves are almost identical.
Moreover, the behavior of the system in b-increasing
semi-cycles is always similar, the cooperation level c(b)
taking approximately the same value in all realizations,
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Fig. 1. Cooperation level hci versus the temptation to defect b averaged
over 103 ER networks (solid lines) and envelopes (pointed lines). Red lines
represent semicycles with increasing b and blue lines represent semicy-
cles with decreasing b.The network size is N = 1.2 � 105. See the text for
further details. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
regardless of whether they are reversible or irreversible.
On the contrary, c(b) curves are different for different (irre-
versible) realizations in b-decreasing semi-cycles, and
show a substantially larger dispersion than those of ER
networks.

The results of the average cooperation level hci as a
function of the temptation to defect b, for SF networks
showing irreversible behavior, are presented in Fig. 2.
The return points bmin, bmax were chosen such that
c(bmax) = 1 � c(bmin) = �, for a value of � = 10�3. Note that,
despite the small value of �, the network size N is large en-
ough so as to ensure that we are not dealing with patholog-
ical cases, since a value c = 0.001 involves a number of
cooperators Nc = 120. In the same way, c = 0.999 implies
120 defector nodes. As shown in envelopes (dotted lines),
the degree of irreversibility varies greatly from one realiza-
tion to another. Specifically, irreversibility depends on the
particular network, since for a given network repeated cy-
cles share approximately the same c(b) curves for a given
(forward or backward) direction. A most remarkable fea-
ture of the irreversibility in SF networks is that, for irre-
versible network realizations, the value of the temptation
to defect needed to reach a cooperation level of c = 10�3

is bmin < 1, that is to say, outside the PD game range.
In order to validate (or refute) the hypothesis that most

of the studied SF networks do not show irreversibility be-
cause the return points are not close enough to the tipping
points, we have addressed the problem through a modifi-
cation of the model: to avoid getting stuck in absorbing
states (c = 0,1), now we add a constraint which keeps the
minimum number of cooperators and defectors above a gi-
ven threshold l. In particular, we add the condition that a
node can switch its strategy to defection (resp., coopera-
tion) only if Nc > l (resp., N � Nc > l). Fig. 3 shows the coop-
eration level c as a function of the temptation to defect b,
averaged over 100 different SF networks. The values of
return points bmin, bmax have been chosen such that Nc

(bmax) = N � Nc(bmin) = l, for a value of l = 20. In this case,
all studied networks show a strong hysteresis indicating
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Fig. 2. Cooperation level hci versus the temptation to defect b averaged
over 100 SF networks (solid lines) and envelopes (dotted lines). Red lines
represent semi-cycles with increasing b and blue lines represent semi-
cycles with decreasing b. Only irreversible realizations are shown. The
network size is N = 1.2 � 105. See the text for further details. (For
interpretation of the references to colour in this figure legend, the reader
is referred to the web version of this article.)
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Fig. 3. Cooperation level hci versus the temptation to defect b averaged
over 100 SF networks (solid lines) and envelopes (dotted lines). Red lines
represent semicycles with increasing b and blue lines represent semicy-
cles with decreasing b. In this case, a constraint has been considered:
Nc > l and N � Nc > l. All the realizations have been taken into account.
The network size is N = 1.2 � 105 and l = 10. See the text for further
details. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)
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Fig. 4. Number ncc of cooperator clusters (blue, thick lines) and relative
size of main cooperator cluster Gc/N (red, thin lines) in ER networks. Solid
lines represent b-decreasing half-cycles and dashed lines represent b-
increasing half-cycles. The system size is N = 1.2 � 105. We have averaged
over 50 simulations. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)
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that, once the return points have been chosen close enough
to the absorbing states, the process is always irreversible.
5. Microscopic roots

Previous studies [18–20,22] have shown that, in the
asymptotic states of the evolutionary dynamics of the PD
game, under the updating rule explained above (discrete
replicator rule), the network is generically partitioned into
three sets of nodes: Pure cooperators (nodes where coop-
eration has reached fixation), pure defectors, and fluctuat-
ing strategists (nodes where fixation is impossible so that
defection and cooperation alternate forever). Pure cooper-
ators resist invasion by grouping together in cooperator
clusters, each of these connected subgraphs keeping
around it a cloud of fluctuating strategists. The basis for
an understanding of the irreversible behavior in ER net-
works is found by looking along both (b-increasing and
b-decreasing) branches at the details of this microscopic
organization of cooperation. In particular, in what follows
we pay attention to the number and size of pure coopera-
tor clusters as a function of b. Fig. 4 shows the averaged
relative size hGc/Niof the largest cooperator cluster, and
the average hncci of the number of cooperator clusters ver-
sus the temptation to defect b, in both semi-cycles for ER
networks.

Let us first analyze the b-increasing semi-cycle. In typ-
ical configurations near the absorbing state c = 1, pure
cooperators percolate the network forming a giant cooper-
ator cluster whose averaged relative size hGc/Ni ’ 1. As the
temptation to defect b increases, starting from such config-
urations, the existence of a single very large cluster of pure
cooperators allows initially for a very efficient resilience to
invasion by defectors until a value of b ’ 1.16 is reached.
From there on, invasion processes are greatly enhanced,
thus inducing the fragmentation of the largest cluster:
hGc/Ni decreases quickly, the largest cluster give rise to
an increasing number ncc of small clusters of pure cooper-
ators. At b ’ 1.23, this quantity reaches its maximum value
ncc ’ 160 and the largest cluster size has been reduced to
hGc/Ni ’ 0.15. Further increase of b reduces both the num-
ber of pure cooperator clusters and the size of the largest
one: At b ’ 1.8 basically only the largest cluster remains
with a very small size which keeps decreasing further be-
yond the tipping point (typically found at b P 2).

Now we analyze the b-decreasing semicycle. Back from
the typical configuration reached past the tipping point
near the absorbing state c = 0, when decreasing the temp-
tation value b the very small size of the remaining pure
cooperator cluster cannot benefit (i.e., enlarge its size) en-
ough from the cooperative fluctuations nearby; corre-
spondingly the level of cooperation hci remains well
below the values observed for the b-increasing branch. It
is not until a value of b ’ 1.6 is reached, that hGc/Ni starts
a significant increase. Simultaneously, some cooperative
fluctuations in the cloud of fluctuating agents form inde-
pendent (separated) small cooperator clusters, so that ncc

also starts to significantly deviate from zero. At around
b ’ 1.5 both hGc/Ni and ncc (as well as the average level
of cooperation hci) show already values that are very close
to those exhibited by the b-increasing branch. However,
once reached the value b ’ 1.23, where ncc has its maxi-
mum value (and, as explained previously, the fragmenta-
tion of the largest cluster of pure cooperators reached an
end in the b-increasing branch), a further decrease in b
leads to an increase of hGc/Ni, and a concomitant decrease
of ncc due to the connection of small cooperator clusters to
the largest one. These processes take place at a slower pace
than the corresponding fragmentation occurring for the b-
increasing branch. The consequence is that the values of
the cooperation level in this range of b for the b-decreasing
branch, are significantly lower than those for the b-increas-
ing semi-cycle. Note that though the values of hGc/Ni, ncc,
and hci in the range of intermediate 1.23 6 b 6 1.5 values
are very similar in both branches, the system keeps mem-
ory of the path followed, demonstrating the importance of
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the particular topological details of the organization of
cooperator clusters.

A significant difference, regarding the microscopic orga-
nization of cooperation, between ER and SF networks, is
the observation first reported in [18] that for SF networks
pure cooperators group together in a single cluster, while
in ER networks they are disaggregated into several cooper-
ator clusters for generic values of b. In our simulations here
we are using network sizes that are larger than those used
in [18] by a factor of 30, and for SF networks we have ob-
served nodes that, though being isolated from the main
cooperator cluster, remain cooperators during observa-
tional time scales. Strictly speaking they are not pure coop-
erators, for the probability of invasion by the defective
strategy is not strictly zero (in all the cases analyzed),
though it turns out to be exceedingly small, due to the
large connectivity (degree) of these nodes. These quasi-
pure cooperators appear in both branches; also, they are
present in reversible paths, i.e., those where return points
are chosen before reaching tipping points. For a network
size of N = 1.2 � 105 its number is never larger than 8 for
b-increasing branches, and not larger than 14 for b-
decreasing branches. Their contribution both direct and
indirect (through the cloud of fluctuating strategists each
one keeps nearby) to the level c of cooperation can be con-
sidered as negligible. Still one cannot discard a priori an
eventual role they might play in the reshaping of the main
cooperator cluster during the hysteresis cycle of particular
irreversible realizations.

In Fig. 5 we plot the relative size of the cooperator clus-
ter hGc/Ni averaged over 100 irreversible realizations for
both forward and backward branches of the cycle. Contrary
to what happens for ER networks at high values of the
temptation to defect, when starting to decrease it from
bmin, the size of the cooperator cluster in SF networks ini-
tially follows very closely the values of the forward branch
until b ’ 2.5. However, significant differences in the aver-
age cooperation value hci (see figure 2) are already notice-
able from b ’ 3, indicating that the contribution from the
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Fig. 5. Relative size of the main cooperator cluster Gc/N for reversible
processes (dashed line, red) and irreversible ones (solid line, black) in the
b-decreasing semicycle (Db < 0) on SF networks. Averaged over the 100
different networks studied that show irreversible behavior. The system
size is N = 1.2 � 105. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)
cloud of fluctuating strategies is lower for the backward
branch. When further decreasing b down from b ’ 2.5,
the averaged size of the cooperator cluster takes on values
progressively lower than in the b-increasing branch. This
agrees nicely with the observation just made in previously
regarding the cloud of fluctuating strategies, for the growth
of the cooperator cluster originates from the cooperative
fluctuations in its frontier, and thus the strength of these
fluctuations determines the pace of the cluster size growth.
The difference between forward and backward branches
persists down to the tipping point, which somewhat sur-
prisingly occurs for values of b outside the PD game range.
6. Conclusions

In this paper, we have studied the evolutionary dynam-
ics of a classical PD game on top of complex homogeneous
and heterogeneous networks. Although there are many re-
sults available in the literature, here we have addressed a
problem that can be of interest in real settings. Admittedly,
to the best of our knowledge, all known results have dealt
with situations in which the average levels of cooperation
reported are obtained by averaging over different initial
conditions for fixed values of the model parameters. How-
ever, real system are continuously evolving from a given
micro-state – characterized by a distribution of strategists
– to another one driven by both the internal dynamics (the
evolutionary rules) and the external conditions. The latter
can be ultimately modeled as if the entries of the payoff
matrix were changed. For instance, in some conditions,
the pressure towards cooperation could be greater than
in other situations or the other way around. This means
that parameters such as the temptation to defect could
change continuously and that such a change takes place
without reseting the system, i.e., the initial condition is
the previous steady state of the system.

Our results show that the generic existence of different
stationary strategic configurations for the evolutionary
dynamics of the PD game on networks (under the discrete
replicator strategy updating rule) allows for a hysteresis-
like behavior of the average cooperation level when the
model parameter is quasi-statically varied. However, our
results on random complex networks indicate that the
observation of hysteresis is greatly conditioned by the
range of variation of the parameter. Unless the temptation
to defect b is brought to a large (resp. small) enough value,
so as the cooperation level reaches an almost zero (resp.
unity) value, the behavior is perfectly reversible.
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