
Impact of Social Punishment on
Cooperative Behavior in Complex
Networks
Zhen Wang1,2, Cheng-Yi Xia3, Sandro Meloni4, Chang-Song Zhou1,2 & Yamir Moreno4,5

1Department of Physics, Hong Kong Baptist University, Kowloon Tong, Hong Kong, 2Center for Nonlinear Studies and Beijing-Hong
Kong-Singapore Joint Center for Nonlinear and Complex systems (Hong Kong), Institute of Computational and Theoretical Studies,
Hong Kong Baptist University, Kowloon Tong, Hong Kong, 3Key Laboratory of Computer Vision and System (Ministry of Education)
and Tianjin Key Laboratory of Intelligence Computing and Novel Software Technology, Tianjin University of Technology, Tianjin
300191, China, 4Institute for Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza, Zaragoza 50009,
Spain, 5Department of Theoretical Physics, University of Zaragoza, 50009 Zaragoza, Spain.

Social punishment is a mechanism by which cooperative individuals spend part of their resources to penalize
defectors. In this paper, we study the evolution of cooperation in 2-person evolutionary games on networks
when a mechanism for social punishment is introduced. Specifically, we introduce a new kind of role,
punisher, which is aimed at reducing the earnings of defectors by applying to them a social fee. Results from
numerical simulations show that different equilibria allowing the three strategies to coexist are possible as
well as that social punishment further enhance the robustness of cooperation. Our results are confirmed for
different network topologies and two evolutionary games. In addition, we analyze the microscopic
mechanisms that give rise to the observed macroscopic behaviors in both homogeneous and heterogeneous
networks. Our conclusions might provide additional insights for understanding the roots of cooperation in
social systems.

T
he emergence of cooperation is an ubiquitous phenomenon in biological and social systems. In recent years,
due to the increasing availability of experimental results1–5 and the development of new techniques to
characterize actual networks of contacts, new insights into the problem of how cooperative behavior arises

and survives have been provided. However, there are still many fundamental questions that remain open. To date,
evolutionary game theory is a powerful mathematical tool for the analysis of diverse dilemmas in biological and
social systems6–12. In this context, different games have been developed as metaphors of real biological, human
and economic behaviors. Among them the Prisoner’s Dilemma (PD) and the Snowdrift (SD) have received a lot of
attention in the literature13–25.

In the PD, two players simultaneously decide whether to cooperate (C) or defect (D). They both receive R under
mutual cooperation and P under mutual defection, while a cooperator receives S when confronted to a defector,
which in turn gets T. The payoffs are ordered as T . R . P $ S so that in the well-mixed case defection is the best
strategy regardless of the opponent strategy8. In the SD, players interact in a similar way but the punishment P for
mutual defection is supposed to lead to a higher cost for both players and thus the payoff order is T . R . S . P.
This variation, although very small, induces a significant change in the game dynamics with the creation of a
second Nash equilibrium where both strategies coexist also in the well-mixed case.

Unlike the well-mixed case, when a spatial structure is added to guide players interactions, cooperators can
survive by forming cohesive clusters that prevent the invasion by defectors. This mechanism, known as spatial
reciprocity, can lead to the formation of different equilibria where, even in the PD, cooperators and defectors can
coexist26–34 and, in some cases, cooperation can also become the dominant strategy35–38. Following these works,
many studies exploited the potentialities of complex interaction structures to obtain high levels of cooperation
between the players. Recently, several mechanisms have been shown to favor cooperation. For instance, high
values of the clustering coefficient39,40, different rewiring mechanisms41–43 or the diversity between players44,45, all
allow cooperation to prevail even if the temptation to defect reaches very high values.

In spite of the achievements of the recent years, there is a situation of particular relevance that has received
relatively little attention till now. This is the case of social punishment where cooperators can decide to spend a
small part of their resources to punish defectors for their free-rider behavior. Although this kind of mechanism is
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almost ubiquitous in real world scenarios, only a few works have
addressed the effects of social punishment on evolutionary dyna-
mics46–53. Most of these works are limited to public goods games47–53,
where the evolution of cooperation is further supported by the inter-
action between agents that belong to groups of different sizes.
However, in a recent work54, where cooperators were able to punish
defectors as a second-stage behavior, it was unveiled that severe
punishment was not necessarily more effective in improving the
survival of cooperation (using pairwise interaction). It is therefore
of further interest to inspect the dynamics of PD and SD games when
punishment is considered an independent strategy.

In this paper, we explore the effects of social punishment on 2-
person games in which interactions are driven by complex topolo-
gies. Specifically, we introduce social punishers in an otherwise
standards PD and SD games and study how this new strategy affects
the emergence and the organization of cooperation in several topo-
logical settings.

Results
To include social punishment in the standard PD and SD, along with
cooperation (C) and defection (D), we consider a third strategy,
Punish (Pu), as an independent yet particular type of cooperation.
In the interaction with a cooperator or between them punishers act
exactly as cooperators both earning the same payoffs. In contrast,
when a punisher meets a defector, the first one, at cost c, imposes a
fine b to the defector with the effect of reducing the effective payoff
gained by the latter. In the model we impose b . c assuring that only
a small cost is needed for punishment. We expect that severe pun-
ishment could lead to a more beneficial environment for the survival
of cooperation. In the methods section we summarize the interac-
tions between players and their corresponding payoffs.

Once defined our model we analyze its behavior at two different
granularity levels. Firstly, we focus on the macroscopic response of
the system measuring the average fraction of cooperative agents Æcæ,
defined as the fraction of cooperators and punishers present at the
steady state (see Methods). Next, to provide a deeper understanding
of the effects of social punishment, we also study the evolution of
individuals’ strategies at the single node level and the formation of
local patterns of interaction. In 2-person evolutionary games on net-
works the evolution of individuals’ strategies can follow two different
behaviors36,55. If an individual keeps the same strategy in all genera-
tions after the a transient period, she is defined as a pure strategist.
Conversely, individuals that change their strategy at the steady state
are defined as fluctuating. Since we are interested in cooperative
behavior in general, we define three types of pure strategists: pure
cooperators, pure punishers, and cooperators plus punishers, where
the last cluster accounts for agents that alternatively spend some time
as a cooperators and as a punishers.

Macroscopic behavior. We start our analysis at the macroscopic
level studying whether social punishment can favor cooperation or
not. Fig. 1 presents results obtained for the PD on the three classes of
networks considered (see Methods) and for different values of b. We
first focus on the case of PD on a regular square lattice (Fig. 1A) since,
of the three graphs, it is the one that provides smaller levels of
cooperation for the standard settings of the games. In the standard
formulation (i.e., no social punishment) the fraction of cooperators
at the stationary state suddenly decreases as b . 1 and becomes
zero soon afterwards for very small values of the temptation b.
Interestingly, even a small punishment (b 5 0.1 or 0.3) can
radically change the dynamics of the system: cooperators can
survive and become the dominant strategy for higher values of b.
Increasing b, produces an even marked dominance of cooperators
and therefore cooperation is extinguished for larger values of b,
which is consistent with our expectation that severe punishment is
more effective in promoting cooperation. Note that when the cost to
impose the social fine c and the social fine itself are identical b 5 c 5

0.1, cooperation is favored and an increase with respect to the
standard case is still observed. Results for ER and SF (Fig. 1B and
Fig. 1C) networks are along the same lines as for the square lattice,
indicating that the increase in cooperation due to the presence of
punishers is a general feature.

Due to the differences24,56,57 between the SD and the PD, the SD is
an appropriate candidate to test the universality of our results.
Figure 2 depicts the fraction of cooperators Æcæ as function of the
cost-to-benefit ratio r for the three topologies. Also in this case, it can
be observed that, compared with the results obtained for the standard
setting, punishment significantly facilitates the evolution of coopera-
tion. For large values of b, cooperation can survive for a wider range
of r values. This is in agreement with observations made in PD,
suggesting that social punishment on free-riders is generally valid
in promoting the evolution of cooperation, irrespective of the poten-
tial evolutionary games and underlying interaction network.

Microscopic organization. In what follows, we focus on the PD to
inspect what are the mechanisms that allow social punishment to
favor cooperation. To this end, we analyze the system at the
microscopic scale. Important clues come from the analysis of the
local distribution of pure cooperators. As described in the previous
section, we focus on three types of clusters of pure strategists: clusters
formed by pure cooperators, pure punishers and the ones formed by
cooperators and punishers together. In addition, we look at the size of
the largest clusters for the three possible configurations.

Figure 3 shows the evolution of the number of cooperative clusters
and the size of the biggest ones as the temptation b increases for the
square lattice. For low values of b, the number of C clusters is much
larger than in the standard version (i.e., no punishment, see inset of

Figure 1 | Fraction of cooperators and punishers Æcæ in the Prisoner’s Dilemma as a function of the temptation to defect b for different values of the
social fine b and the three network classes considered. From left (A) to right (C) the networks are a square lattice, an ER graph and a SF network,

respectively. All the results have been obtained for N 5 104 nodes, Ækæ 5 4 and c 5 0.1.
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Fig. 3). On the other hand, for the Pu clusters the microscopic organ-
ization is totally different: only one giant cluster exists reaching
almost the size of the entire system. This indicates that for low values
of b, the system is composed by small islands of cooperators sur-
rounded by punishers that prevent defectors to invade cooperators.
As b increases an interesting phenomenon takes place. For inter-
mediate b the number of C clusters rapidly decreases while the giant
cluster of punishers grows. This is the protection mechanism that
allows cooperation to survive against higher temptation values with
respect to the traditional PD. Cooperators who get in touch with
defectors become punishers and, in this way, they can stop the
spreading of defectors in the system. Once all cooperators become
punishers, these strategists have no other way to resist the invasion of
defectors — essentially, because interaction between punishers
reports less benefits than between a cooperator and a punisher.
From that point on, a small increase in b produces the break down
of the Pu cluster into smaller clusters, up to the point at which all
punishers die out.

To support the previous qualitative picture, we inspect the char-
acteristic spatial configuration of the agents for different values of b.
Figure 4 displays the results obtained for b 5 0.3 and c 5 0.1. For low

b (Fig. 4A), a number of pure cooperators islands survive in the
interior of the giant Pu cluster that protect them from the exploita-
tion of defectors. On the other hand, for high values of b (Fig. 4B),
defectors start invading the Pu cluster until it splits in smaller parts.

Next, we analyze the microscopic organization of cooperation on
ER graphs. Figure 5 shows the evolution of the three types of clusters
and the size of the largest one as a function of the temptation b for the
same settings of Fig. 3 when the underlying topology is an ER graph.
In general, the behavior of the system is the same as in the square
lattice, but small differences arise. As before, for low values of b, a
giant cluster formed by both cooperators and punishers is present. At
variance with the lattice case, this cluster is mostly made up by pure
cooperators and not punishers — the difference being due to the fact
that in ER networks, the ‘‘surface’’ of the cluster made exclusively by
pure cooperators is smaller than that in the square lattice. On the
other hand, when the temptation increases, the number of pure C
clusters decreases until the transition point is reached. From that
point on, as observed for the square lattice, the giant C 1 Pu cluster
starts to collapse in several smaller isolated clusters until defectors
invade the system. This behavior is in line with previous results for
the standard PD on ER graphs29,36. Additionally, note that the

Figure 2 | Fraction of cooperators and punishers Æcæ in the Snowdrift Game as a function of the cost-to-benefit ratio r for different values of the social
fine b and for the three network classes considered. From left (A) to right (C) the networks are square lattice, ER and SF networks, respectively. Other

parameters are the same as in Fig. 1.

Figure 3 | Number of clusters of pure cooperative agents Ncc (upper panels) and number of cooperative agents in the corresponding largest cluster Nc

(lower panels) in the square lattice as a function of b. Insets represent the results of standard two-strategy game. Form left to right, values of b are 0.1, 0.3

and 0.5. All the results are obtained for c 5 0.1, N 5 104 and Ækæ 5 4.
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previous picture depends on the value of b in such a way that the
larger b is, the larger is the temptation to defect needed for defectors
to invade. Moreover, when the social fine b increases, punishers, and
not pure cooperators, populate the largest cluster.

Another important result of29,36 is that, in general, in scale free
networks the raising (or breakdown) of cooperation follows a differ-
ent path with respect to ER graphs. So, it is also of interest to study the
behavior of NCC and NC for SF topologies. In the standard PD on SF
graphs, hubs are usually occupied by cooperators and a giant cluster
of pure cooperators starts to grow around them until the entire
network forms a complete cluster. Increasing b produces a reduction
in the size of the C cluster that doesn’t break up until very high values
of temptations are reached. Figure 6 presents the same analysis of
Figs. 3 and 5 for the case of SF networks. In sharp contrast with the
behavior observed for square lattices and ER graphs, the results of
Fig. 6 show that NCC and NC behave differently as b grows. The
number of pure C and pure Pu clusters monotonically decrease while
only one C 1 Pu cluster is present in the system until it disappears for
very high values of b. This is in agreement with what we know for the
standard formulation of the PD on SF networks. Moreover, the
results point out that also in the presence of social punishment, the

heterogeneity of the network strongly affects the structure and evolu-
tion of cooperation.

Finally, we have also monitored how cooperators and punishers
distribute by degree classes. Figure 7 presents the distribution of
strategies at the steady state for different degree classes on SF net-
works for the traditional PD (panel A) and different values of b
(panels from B to D). As it can be seen, for intermediate and high
values of b, cooperators and punishers have a higher probability of
occupying large and medium degree nodes, while defectors are loca-
lized in lowly connected nodes. As it happened for the clusters organ-
ization, when b is relatively small (Fig. 7B), pure cooperators are
more abundant and tend to dominate in intermediate and high
degree nodes. However, increasing b produces a growth in the frac-
tion of punishers until for high fees (b 5 0.7 Fig. 7D) a crossover has
taken place and cooperators and punishers are practically indistin-
guishable as far as the degree of the nodes they sit at is concerned.

Discussion
Inspired by many real world human, economical and biological scen-
arios, the inclusion of social punishment in evolutionary models
seems a natural choice. In this work we have studied the impact of

Figure 4 | Spatial distribution of the different clusters for different values of b in square lattices. For low temptation b 5 1.05 (A), numerous C clusters

(blue) are surrounded by a giant Pu cluster (green), whereas for a large temptation b 5 1.25 (B), that giant Pu cluster is separated by many defectors (red).

All the results are obtained for b 5 0.3 and c 5 0.1.

Figure 5 | Number of clusters of pure cooperative agents Ncc (upper panel) and number of cooperative agents in the respective largest cluster Nc as a
function of b for ER networks. Note that the insets plot the results obtained for standard setup. From left [(A) and (D)] to right [(C) and (F)], the values

of b are 0.1, 0.3 and 0.5, respectively. All the results are obtained for c 5 0.1.
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such mechanism in spatial evolutionary games when the underlying
interaction networks are regular or complex. Numerical simulations
have shown that when punishers are taken into account, which at a
small cost reduce the benefits of defectors, cooperation is further
enhanced in both the Prisoner’s Dilemma and the Snowdrift games.

The analysis of the system at the microscopic level for the PD game
allowed to identify the mechanisms that drives the survival of coop-
erative behavior. In homogenous graphs, small patches of coopera-
tors arise surrounded by punishers that help to protect the cluster
against the invasion of defectors until a giant cluster of pure punish-
ers percolates the system. When the temptation to defect further

increases cooperators first turn into punishers and then the giant
cluster breaks down into several ones until defection becomes the
dominant strategy. On the other hand, in heterogenous networks, the
raise of cooperation is driven by hubs that can be both cooperators or
punishers. When the temptation to defect increases making coopera-
tion a costly strategy, defectors’ invasion takes place slowly by the
erosion of the single cluster of pure cooperators and punishers pre-
sent in the system. In summary, our work shows that a sort of social
punishment mechanism like the one here discussed can be beneficial
for sustaining cooperative behavior. Given that only small differ-
ences at the microscopic level arises with respect to the standard

Figure 6 | Number of clusters of pure cooperative strategists Ncc (upper panel) and number of cooperative players in the corresponding largest cluster
Nc as a function of b for SF networks. The insets depict the results for the standard setup. Form left [(A) and (D)] to right [(C) and (F)], the values of b are

0.1, 0.3 and 0.5, respectively. All results are obtained for c 5 0.1.

Figure 7 | Distribution of strategies in SF networks. The points represent the ratios of cooperators, defectors and punishers as a function of the nodes’

degrees at the steady state in SF networks. Panel (A) depicts the standard version of the PD, whereas panels from (B) to (D) shows results obtained for our

model with social punishment (b 5 0.1, 0.3 and 0.7, respectively). All the results are obtained for b 5 2.4 and c 5 0.1.
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formulation, we anticipate that similar mechanisms will produce the
same qualitative behavior.

Methods
2-person evolutionary games with social punishment. We introduce social
punishment in the PD and SD as a novel kind of agents, defined Punishers (Pu) able,
when playing against defectors, to apply them a fine b at a small cost c; while in the
interaction with a cooperator or between themselves, Punishers act as cooperators —
punishers are therefore special cooperators, but note however that they can exist
independently, which is at variance with the second-stage behavior based on
cooperators in54. In table I we review the interactions between the agents and the
relative payoffs. Following a common parametrization in the recent literature26,58,59,
we choose the PD’s payoffs as R 5 1, P 5 S 5 0, and T 5 b . 1 satisfying the restricted
condition T . R . P 5 S. For the snowdrift we choose a similar scheme with R 5 1, S
5 1 2 r, P 5 0 and T 5 1 1 r, where 0 # r # 1 represents the so-called cost-to-benefit
ratio (satisfying the ranking T . R . S . P). Evolution has been simulated employing
the finite population analogue of replicator dynamics35,36. We implement the
evolutionary dynamics in the following way. As initial conditions, we assign to each
individual, with equal probability, one of the three available strategies: cooperation
(C), defection (D) or punish (Pu). Then, at each time step, each node i in the network
plays with all her neighbors, and gets a payoff Pi. Next, all the players synchronously
update their strategy by picking up at random one of their neighbors, say j, and
comparing the respective payoffs Pi and Pj. If Pi . Pj, player i will keep her strategy for
the next step. On the contrary, if Pj . Pi, agent i will copy j’s strategy with a probability
proportional to the payoff difference:

Pi?j~
Pj{Pi

max ki,kj
� �

D
, ð1Þ

where ki and kj stand for the degree of agents i and j respectively, and D represents the
maximum possible payoff difference between two players. Note that from Eq. (1), it is
possible that the strategy of one individual changes into another strategy. For
example, a punisher can become a defector, but this results for the evolutionary
dynamics and therefore it is not a consequence of a sort of second-stage behavior as
in54.

To assure that the system has reached a stationary state we wait a transient time of
t0 5 105 time-steps and then we calculate Æcæ as the average over additional 104 time-
steps. As a further check, once t0 has been reached we analyze the size of the fluc-
tuations in c(t) if this size is smaller than 1022 we assume that the stationary state has
been reached, otherwise we wait for other 104 time-steps and redo the check. In all the
simulations the system reached the stationary state before t0 and no additional time-
steps were needed. Moreover, since the heterogeneity of some of the networks could
introduce additional noise, all the results have been averaged over 400 independent
realizations of the network topology and initial conditions. Finally, we test the
robustness of the results considering three different classes of networks: regular
square lattices with periodic boundary conditions, Erdös-Rényi (ER) random
graphs60 and Barabási-Albert scale-free (SF) networks61. For all the considered net-
works we set the same size (N 5 104 nodes) and the same average degree, i.e., Ækæ 5 4.
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11. Szabó, G. & Fáth, G. Evolutionary games on graphs. Phys. Rep. 446, 97–216
(2007).

12. Perc, M. & Szolnoki, A. Coevolutionary games – a mini review. BioSystems 99,
109–125 (2010).

13. Vainstein, M. H., Silva, A. T. C. & Arenzon, J. J. Does mobility decrease
cooperation? J. Theor. Biol. 244, 722–728 (2007).

14. Meloni, S. et al. Effects of mobility in a population of prisoner’s dilemma players.
Phys. Rev. E 79, 067101 (2009).

15. Ohtsuki, H., Nowak, M. A. & Pacheco, J. M. Breaking the symmetry between
interaction and replacement in evolutionary dynamics on graphs. Phys. Rev. Lett.
98, 108106 (2007).

16. Wang, Z., Wang, L., Wang, Z.-Y. & Xia, C.-Y. Inferring reputation promotes the
evolution of cooperation in spatial social dilemma games. PLoS ONE 7, e40218
(2012).

17. Jiang, L.-L., Wang, W.-X., Lai, Y.-C. & Wang, B.-H. Role of adaptive migration in
promoting cooperation in spatial games. Phys. Rev. E 81, 036108 (2010).

18. Traulsen, A. & Claussen, J. C. Similarity based cooperation and spatial
segregation. Phys. Rev. E 70, 046128 (2004).

19. Roca, C. P., Cuesta, J. A. & Sánchez, A. Time scales in evolutionary dynamics.
Phys. Rev. Lett. 97, 158701 (2006).

20. Fu, F., Hauert, C., Nowak, M. A. & Wang, L. Reputation-based partner choice
promotes cooperation in social networks. Phys. Rev. E 78, 026117 (2008).

21. Wu, Z.-X., Rong, Z. H. & Holme, P. Diversity of reproduction time scale promotes
cooperation in spatial prisoner’s dilemma games. Phys. Rev. E 80, 036103 (2009).

22. Szolnoki, A., Perc, M. & Szabó, G. Phase diagrams for three-strategy evolutionary
prisoner’s dilemma games on regular graphs. Phys. Rev. E 80, 056104 (2009).

23. Szolnoki, A., Wang, Z. & Perc, M. Wisdom of groups promotes cooperation in
evolutionary social dilemmas. Sci. Rep 2, 576 (2012).

24. Du, W.-B., Cao, X.-B., Hu, M.-B. & Wang, W.-X. Asymmetric cost in snowdrift
game on scale-free networks. EPL 87, 60004 (2009).

25. Doebeli, M. & Hauert, C. Models of cooperation based on prisoner’s dilemma and
snowdrift game. Ecol. Lett. 8, 748–766 (2005).

26. Nowak, M. A. & May, R. M. Evolutionary games and spatial chaos. Nature 359,
826–829 (1992).
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59. Gómez-Gardeñes, J., Reinares, I., Arenas, A. & Florı́a, L. M. Evoluton of
cooperation in multiplex networks. Sci. Rep. 2, 620 (2012).
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