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Intergroup information exchange drives cooperation in the public goods game
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In this paper we explore the onset of cooperative traits in the public goods game. This well-known game involves
N -agent interactions and thus reproduces a large number of social scenarios in which cooperation appears to
be essential. Many studies have recently addressed how the structure of the interaction patterns influences the
emergence of cooperation. Here we study how information about the payoffs collected by each individual in the
different groups it participates in influences the decisions made by its group partners. Our results point out that
cross-information plays a fundamental and positive role in the evolution of cooperation for different versions of
the public goods game and different interaction structures.
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I. INTRODUCTION

While fundamental interactions of matter are of a pairwise
nature, this is not, in general, the case for interactions among
constituents of biological, social, or economical systems,
where N -agent interactions could be as fundamental as two-
agent ones. Computational approaches aimed at modeling the
dynamical aspects of these complex systems have traditionally
paid much more attention to pairwise interactions, but this
could be in many instances an oversimplifying assumption,
to the extent that in general, group interactions are not
reducible to the aggregate of two-body interactions. For a
wide variety of issues and important questions in these kinds of
complex systems, a very successful formulation of the system’s
dynamics is that of evolutionary game dynamics [1–4], where
interaction among agents is modeled as a game, with different
possible strategies, from which agents receive payoffs and
strategies spread over the population in proportion to the payoff
obtained, so implementing the (Darwinian) natural selection
of strategies.

In this paper we are concerned with the evolutionary game
dynamics of a particularly important (due to its applications
to biological [5–8] and socioeconomical [9] systems) repre-
sentative of the class of group interactions: the public goods
game (PGG). In this game, the agents can adopt one of
two strategies: cooperation or defection. Cooperators (also
termed as producers) contribute at their cost to the benefits
of all members of the group, while defectors (free riders) do
not contribute to the group welfare, but they enjoy benefits.
In a general setting of the PGG, both the cost paid by a
cooperator, ζ (ρC), and the benefit received by a group member,
β(ρC), are arbitrary functions of the fraction, 0 � ρC � 1,
of cooperators in the group, so that the net benefit of a
cooperator is PC = β(ρC) − ζ (ρC), while that of a free rider
is PD = β(ρC). In the realm of classical game theory (i.e.,
the analysis of decision making by a rational agent), for a
constant individual cooperation cost, ζ , and arbitrary convex
(or linear) benefit function, β(ρC), free riding is the rational
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choice, though for concave functions β there are intervals of
ρC values for which the corresponding group composition is a
Nash equilibrium [10]. The most used payoff functions in the
literature, which are the ones that will be considered hereafter,
are a constant cost ζ and a linear benefit, β = rρC , where
r > 0 is called the synergy or enhancement factor.

The simplest implementation of evolutionary dynamics
(well-mixed approximation) for the PGG (see, for example,
Refs. [11–13]) assumes that the N − 1 agents that form a group
with the focal player are randomly sampled without assortment
from an infinite population of cooperators and defectors with
an instantaneous fraction x = 〈ρC〉 of cooperators. In this way,
the probability that the focal player interacts with j cooperators
is fj (x) = CN−1

j xj (1 − x)N−1−j and thus the expected payoff
of a defector focal player is

WD(x) = N−1
N−1∑
j=0

fj (x)rjζ, (1)

while for a cooperator focal player it reads:

WC(x) = WD(x) + rζN−1 − ζ, (2)

which leads to the replicator equation for the evolution of the
expected value x of the fraction of cooperators:

ẋ = x(1 − x)[WC(x) − WD(x)]. (3)

From the WC and WD expressions above, one can easily see
that for r/N < 1 cooperation is asymptotically fixed in the
population, while if r/N > 1 defection dominates.

In order to go beyond the likely unrealistic assumption
of random grouping without any assortment, one can place
agents on the nodes of a graph (network) [14–18] and consider
that groups in which the PGG are played are defined as
neighborhoods of the nodes. In this way each agent participates
in the group defined by its neighbors (and itself) and in the
groups defined as the neighborhoods of all its neighbors.
For many different types of lattices and random networks, as
well as different implementations of evolutionary dynamics,
it is found that the kind of assortment introduced by the
network structure promotes cooperation in the sense that full
cooperation can be obtained for values of the enhancement
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C. GRACIA-LÁZARO et al. PHYSICAL REVIEW E 90, 042808 (2014)

factor r < N , i.e., below the predictions of the well-mixed
case. Moreover, the structure of the network itself seems to
have an important influence for the promotion of cooperation
so that scale-free (SF) networks, for which the probability P (k)
that a node has k neighbors follows a power law P (k) ∼ k−γ ,
show the smallest value of the enhancement factor r for which
cooperation is obtained [16].

Another step further in the implementation of the evolu-
tionary dynamics of the PGG have been recently proposed
in Refs. [19–21]. In these works, the actual structure of
social groups is taken into account, thus getting rid off the
above assumption considering that groups are formed by each
node together with its neighbors. In fact, this assumption is
somewhat unrealistic as it does not reflect the social structure
of groups as revealed, for example, by real collaboration
networks [22–24]. To incorporate the group structure into the
formulation of the PGG in Refs. [19–21] the authors make
use of bipartite graphs. In a bipartite graph there are two
different types of nodes representing respectively, in the case
of the PGG, agents and groups. In this way, the edges are
restricted to connect nodes of a different type, so that an agent
is linked to the groups it participates in, and correspondingly
a group is linked to its forming members. It is important to
stress that, unlike the previous networked settings, the size
of the groups and the agent’s degree (i.e., the number of
groups it belongs to) are here disentangled so that an agent
i interacting with ki neighbors is not forced to interact with
all of them simultaneously in a single group. Therefore, the
bipartite formulation allows one to study, e.g., different types
of probability densities for the number of connections of the
agents and for the number of elements of the groups. In
particular, in Refs. [19,20] it is shown that the use of realistic
patterns of connections for agents and groups leads to an
increase of the cooperation with respect of the aforementioned
case of scale-free networks. In brief, the recent works on the
evolutionary dynamics of the PGG (see Ref. [25] for a recent
comprehensive review) have tried to explain the emergence
of cooperation by incorporating the actual structure of group
interactions relying on real data about social and collaboration
networks.

In this paper, following the avenue of encoding the group
interaction of the PGG in a bipartite network, we aim at
studying the role that information about the payoffs of the
agents has on the dissemination of cooperative traits in the
PGG. A general underlying assumption in the previously
reported studies on the evolutionary dynamics of PGG on
bipartite networks is that the fitness of individuals is the simple
sum of the payoffs received from all the games in which they
participate. Thus when each agent i compares their fitness with
another agent j in the same group, i is aware of the benefits
obtained by j in all the groups it participates, regardless of
whether or not i also participates in these groups. In other
words, it is assumed not only that a perfect information is
available, but also that the whole information from all the
groups j participates in is equally relevant for the decision of
agent i. To analyze the role that perfect or partial information
about the fitness of individuals has on their decision and the
long-term success of cooperation, we introduce a parameter
0 < α < 1 to quantify the relevance that payoffs obtained
by an individual in other groups has in its effective fitness

relative to the group in which the strategy update takes place.
Our results show that perfect information is essential for the
development of cooperative traits in structured populations.

The paper is structured as follows. In the next section we
introduce in detail the bipartite structure of the population,
the specifics of the evolutionary dynamics employed, and the
computational details that we have used in the numerical
simulations. In Sec. III we show and discuss the results
obtained. Finally, we present some conclusions in Sec. IV.

II. THE MODEL

A. The structure of interactions

As introduced before we consider a population of N agents
that interacts within NG groups as dictated by a bipartite graph.
In this way each agent i belongs to ki (kmin � ki � kmax)
groups, whereas a group g contains Gg (Gmin � Gg � Gmax)
agents. We assume that there is no internal structure inside
each group. In order to characterize the interaction patterns
between individuals and groups it is common to consider the
degree distribution of the agents P (k) and the size distribution
P (G) of the groups. By fixing P (k) and P (G) one can construct
random bipartite graphs so that each particular realization of
the graph is specified by a (NG × N ) membership matrix A
defined as Ag,i = 1 whenever i ∈ g, or Ag,i = 0 otherwise.
Given A it is easy to express the number of groups, ki , the
agent i takes part in as

ki =
NG∑
g=1

ag,i (i = 1, . . . ,N), (4)

and the number of participants, Gg , contained in group g, as

Gg =
N∑

i=1

ag,i (g = 1, . . . ,Ng). (5)

Let us note that, in finite populations, not all the combi-
nations of P (k) and P (G) are compatible. In particular, the
total number of links in the bipartite graph is the same no
matter how they are computed considering either the agents or
the groups. This latter closure condition yields the following
identity:

N∑
i=1

ki =
NG∑
g=1

Gg ⇒ N
∑

k

P (k)k = NG

∑
G

P (G)G, (6)

which automatically sets a compatibility condition for the de-
gree and group size distribution densities. This fact introduces
a constraint in (at least) one of the two distributions P (k) and
P (G) as we will see below.

B. The public goods game in a bipartite graph

Now we go over the nature of agents’ interactions as players
of a PGG. Each group is the scenario of a PGG, and all the
groups share the same rules for the game, which implies that
there is a common enhancement factor r for all PGGs. In this
paper an agent i at time t adopts the same action (to cooperate
C or to free ride D) on all the different ki groups it belongs
to. At each dynamical step t , we characterize the internal state
of each agent i by the strategic variable si(t), which can take
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two possible values: 1 if i cooperates, or 0 when the agent free
rides. This strategic variable, together with the membership
matrix A that fixes the social structure, completely specifies the
instantaneous microscopic state of the population. According
to this, the fraction of cooperators in group g (g = 1, . . . ,NG)
at time t is given by

xg(t) = 1

Gg

∑
i∈g

si(t), (7)

whereas its average value over the groups,

x̄(t) = 1

NG

∑
g

xg(t), (8)

defines the instantaneous average group cooperation. In gen-
eral, the value x̄(t) is different from the fraction of cooperators
at time t :

c(t) = 1

N

N∑
i=1

si(t). (9)

On the other hand, the value

ca(t) =
∑N

i=1 kisi(t)∑N
i=1 ki

=
∑NG

g=1 Ggxg(t)∑NG

g=1 Gg

(10)

represents the fraction of cooperative actions averaged over
all the agents and PGGs in which they participate. Note that
for general P (k) and P (G) compatible densities, the three
averages x̄(t), c(t), and ca(t) need not be equal, the reason
being that the contribution of each particular agent might be
weighted differently.

Here we will consider two possible formulations for
assigning the value of the investment made in each of the
PGGs in which an agent participates. On one hand, we
study a fixed cost per game (FCG) formulation so that each
cooperator i invests a fixed cost ci = ζ = 1 in each of the
ki games it participates in. On the other hand, we will also
consider the formulation of fixed cost per individual (FCI)
according to which, a cooperator i equally distributes its
total investment ζ among all its groups, so that the agent
invests ci = ζ/ki = 1/ki in each PGG. In both cases, the total
contribution of all cooperators in a group is multiplied by
an enhancement factor r , and the result is equally distributed
between all the Gg members of the group.

According to the FCG formulation, each player i receives
a payoff

πg,i(t) = rxg(t) − si(t) (11)

from its participation in a group g, and, otherwise, according
to the FCI formulation it receives

πg,i(t) = r
∑

j∈g sj (t)/kj

Gg

− si(t)k
−1
i . (12)

Given an agent i and a group g of which it is a member, the
effective fitness of agent i relative to group g is defined as

π eff
g,i (t) = πg,i(t) + α

NG∑
g′=1

(Ag′,i − δg′,g)πg′,i(t), (13)

where δg′,g = 1 when g′ = g and δg′,g = 0 otherwise. The
parameter α ∈ [0,1] in the above expression quantifies the
amount of information shared between groups. In particular,
the higher α, the more information is shared, so that α = 0
corresponds to the extreme case in which each agent’s effective
fitness relative to a given group uses only the information on
payoffs in this group. On the other hand, for α = 1 agents have
full information about payoffs from other groups.

C. The evolutionary dynamics

Once all the PGGs have been played in the groups and the
corresponding payoffs have been collected by the individuals
the evolutionary dynamics takes place. In this work we
consider the Fermi rule as the strategic update framework for
the evolutionary dynamics [26,27]. In this way, at each time
step t , each agent i chooses a random group g among all its
groups and a random partner, say j , of the chosen group g, and
compares their effective fitness relative to group g. Agent i will
imitate the action of j [si(t + 1) = sj (t)], with a probability
given by a Fermi function of the effective fitness difference:

Pi→j = 1

1 + exp
{−β

[
π eff

g,j (t) − π eff
g,i (t)

]} , (14)

where β is a constant often interpreted as the inverse tem-
perature of the system; i.e., the higher temperature, the more
random is imitation and thus, the more smoothly dependent
on the differences of effective fitness (payoffs).

III. RESULTS

In order to study the influence of the information exchange
between groups in the evolution of cooperation we have
considered two different scenarios. In the first one, all the
groups have the same size Gg = G, while the connectivity of
the agents (i.e., the number of groups to which they belong)
varies from one to another being distributed according to a
power law; i.e., the probability for an agent i to participate in
ki groups is given by P (ki) = Ck

−γ

i , for certain constants C,γ .
In the second scenario, we have fixed the agents’ connectivity
ki = k and distributed the group size according to a power law,
being the probability P (Gg) for a given group g to have Gg

members: P (Gg) = C ′G−γ ′
g .

The two scenarios described above, along with the FCG
and FCI formulations of PGG, provide four combinations that
we have separately studied through numerical simulations. In
the first scenario, the connectivity of the agents is given by

P (ki) = Ck
−γ

i =
(

kmax∑
k=kmin

k−γ

)−1

k
−γ

i , (15)

where kmin and kmax are, respectively, the minimum and max-
imum possible connectivities. In addition, the condition (6),
which here takes the form 〈k〉N = GNG, implies

C = GNG

N
∑kmax

k=kmin
k1−γ

(16)
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and therefore ∑kmax
k=kmin

k−γ∑kmax
k=kmin

k1−γ
= N

GNG

, (17)

which provides the value of exponent γ once the network
parameters N,NG,G,kmin, and kmax are fixed. Let us note that in
this first scenario the instantaneous group cooperation [Eq. (8)]
coincides with the fraction of cooperative actions [Eq. (10)],
x̄(t) = ca(t).

Alternatively, in the second scenario the size of the groups
is given by

P (Gg) = C ′G−γ ′
g =

(
Gmax∑

G=Gmin

G−γ ′
)−1

G−γ ′
g , (18)

where Gmin and Gmax are, respectively, the minimum and
maximum possible sizes. Equation (6) introduces a constraint
for the group size distribution density P (Gg) and analogous to
expression (17) takes the form∑Gmax

G=Gmin
G−γ ′

∑Gmax
G=Gmin

G1−γ ′ = NG

kN
. (19)

Finally, let us note that in the second scenario the fraction of
cooperators [Eq. (9)] coincides with the fraction of cooperative
actions [Eq. (10)], c(t) = ca(t) .

We simulated the evolutionary dynamics of PGG, starting
from an initial condition according to which the fraction of
cooperators approximately equals the number of free riders
and both strategists are randomly distributed. For each value
of the normalized enhancement factor r/〈G〉, we iterate a large
number of rounds (105) and measure the average fraction c of
cooperators averaged over a time window of 104 additional
rounds. In addition, we reported the values once averaged
over 102 different networks, membership matrices, and initial
conditions. The number of groups and agents were both
fixed to NG = N = 103. After the random assignation of
the agents’ connectivities according to the distribution given
by formula (15) for the first scenario [or, respectively, the
group sizes following the distribution given by (18) for the
second scenario] we implemented the network following a
configurational model. The minimum size was fixed to Gmin =
2 in order to avoid one-player games; likewise, the minimum
connectivity was also fixed to kmin = 2 to allow comparisons
between scenarios. Maximum size and connectivity were
fixed to Gmax = kmax = 32, implying C = C ′ 	 0.3399 and
γ = γ ′ 	 1.020 (these values were numerically calculated).

Regarding the first scenario, in which we have fixed the
size of the groups to G = 10 and distributed the connectivity
of the agents according to a power law, Fig. 1 shows the
average fraction 〈c〉 of cooperators [28] as a function of the
normalized enhancement factor r/G for the PGG, according
to the FCG (solid red lines) and to the FCI (dashed blue
lines) formulations, for a value of the parameter β = 0.1.
Each panel in Fig. 1 corresponds to a different value of the
intergroups’ information exchange parameter α, from α = 1
(left top panel), which corresponds to the case in which perfect
global information about partners’ payoffs is available to the
agents, to α = 0 (right bottom panel), where effective fitness of
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FIG. 1. (Color online) Average fraction of cooperators 〈c〉, as
a function of the normalized enhancement factor r/〈G〉, for a SF
distribution of the membership frequency ki (i.e., number of groups
to which an agent belongs) and a fixed group size Gg = 10. Different
panels correspond to different values of the parameter α that models
the intergroups’ information exchange: α = 1 corresponds to the case
in which agents have full information about their partners’ payoffs,
while for α = 0 agents only have knowledge of payments from their
games. Solid red lines correspond to the FCG formulation of the PGG,
while dashed blue lines correspond to the FCI version. Results are
averaged over 102 realizations (and different membership matrices)
for each value of r/〈G〉. Other parameter values are N = NG = 103,
β = 0.1, ζ = 1.

agents only depends on local information. As can be observed,
there exists a critical value rc/G at which a phase transition
takes place. The main finding is that the value rc/G increases
with decreasing α, which means that global information plays
a positive role in the evolution of cooperation. In fact, while
the transition to cooperative states take place at rc/G 	 0.9
for the FCG formulation (respectively, rc/G 	 0.7 for FCI)
when α = 1, this critical value increases as we decrease the
parameter α, and, finally, no transition occurs for α = 0.

The absence of a transition to a cooperative regime for
α = 0 (when the effective fitness of an individual relative
to a group is just its payoff from this group) can be easily
understood: the benefit obtained by an agent from a single
group πg,i [see Eqs. (11) and (12)] is always higher for a
free rider than for a cooperator in the same group, irrespective
of the formulation (FCG or FCI) used and of the value of
the normalized enhancement factor r/G. Then, for strategy
updating rules based on fitness differences, the bias in the
imitation probability against cooperators forces always the
evolutionary fixation of free riders in the long term, and
the transition cannot take place. We thus clearly see that
a value of α > 0 is indeed a prerequisite for the eventual
existence of a cooperative regime. Once this condition is
satisfied, the role of those individuals that participate in many
games (hubs) in promoting the cooperative transition is, in the
scenario of figure 1, an important issue, as in other different
previously studied settings for the evolutionary dynamics of
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PGG [16,20] as well as of two-person games [29–32]. Briefly
said, hubs (either cooperators or free riders) collect very
high payoffs and are neighbors of many agents, and so they
are easily imitated by individuals in their (many) groups.
However, while the imitation of free rider hubs decreases
their future benefits (a source of future instability), just the
opposite happens to cooperator hubs when imitated by partners
(stability increases).

On the other hand, comparing the results obtained with both
formulations, one observes that the FCI version presents lower
values of rc than those corresponding to FCG, which means
that the FCI formulation promotes better the convergence to
cooperative states for any value of α that enables the transition.
This is due to the fact that in the FCG formulation cooperators
pay according to their connectivity (the more games, the higher
the cost), while in the FCI version cooperators pay a fixed cost
regardless of the number of PGG in which they participate.
This independence of the cost of cooperation (investment) on
connectivity provides cooperators, and specially cooperator
hubs, higher payoffs in the FCI formulation, and the survival
of cooperation is consequently enhanced [20].

Figure 2 represents the results for the second scenario, in
which all the agents have the same connectivity k = 10 (i.e.,
all the agents participate in exactly 10 games) and the group
size distribution P (Gg) follows a power law P (Gg) = C ′G−γ ′

g .
The four panels show the asymptotic average fraction 〈c〉 of
cooperators versus the normalized enhancement factor r/〈G〉
for different values of the parameter α, from α = 1 (left top
panel, full payoff information available) to α = 0 (right bottom
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FIG. 2. (Color online) Average fraction of cooperators 〈c〉, as a
function of the normalized enhancement factor r/〈G〉, when the sizes
of the groups Gg are distributed according to a power law and all
the agents belong to the same number of groups ki = 10. Different
panels correspond to different values of the inter-groups’ information
exchange ratio, from α = 1 (maximum) to α = 0 (minimum). Solid
lines red are for the FCG formulation, while dashed blue lines are for
the FCI version. Results are averaged over 102 realizations performed
in different networks. Other parameters are equal to those used in
Fig. 1.

panel, payoff information restricted to the focal group). Note
that the argument given above showing that no cooperative
regime exists for α = 0 is also valid in this second scenario.
For α > 0, however, as there are no hubs here, a different
mechanism for the possibility of a cooperative regime must
be invoked. If one thinks of the situation in which all the
groups have the same fraction xg < 1 of cooperators, one
easily realizes that every free rider earns more effective fitness
than any cooperator, which will, in the long-term suppress
cooperation. In other words, fluctuations of xg among the
different groups seems to be needed for the evolutionary
success of cooperation. Let us remember that in the initial
condition the strategies are randomly distributed among the
agents, and that the scale-free distribution of group sizes makes
small groups abundant in this scenario. It is precisely among
small groups where the likelihood of an initial fraction 1 of
cooperators is largest. The high payoffs received by these
cooperators from the small fully cooperative groups makes
plausible, provided α > 0, that they could both resist invasion
from free riders and spread cooperation at updating trials in
the larger groups they participate in.

In Fig. 2 almost no difference is observed in the results
obtained for both (FCG and FCI) formulations, a feature
that (at a first sight) could be explained because now all the
players are involved in the same number of games, and so the
relative benefits of strategists do not vary from one to the other
formulation. However, see below (at the end of this section)
for a more precise argument that takes into account the role
of β and reveals the weakness of this first explanation. On the
other hand, by comparing Figs. 1 and 2, it can be seen that
for high and intermediate values of α the critical value of the
enhancement factor rc in the second scenario with nonuniform
group sizes is higher than on the first one with heterogeneous
connectivity, which shows the effectiveness of the role of hubs
in promoting cooperation provided that players are aware of
their partners’ payments from outside the focal group.

The influence of the intergroups information exchange on
the evolution of cooperation is more clearly shown in Fig. 3
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1

10

r c /<
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> FCG
FCI

0 0.2 0.4 0.6 0.8 1
α

1

10
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G

> FCI
FCG
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 membership

 heterogeneous
   group sizes

FIG. 3. (Color online) Critical value rc/〈G〉 of the normalized
enhancement factor as a function of the inter-groups information
exchange ratio α for the FCG and FCI formulations of the PGG. Left
panel corresponds to a SF distribution of the number of groups to
which an agent belongs, ki , and a fixed group size Gg = 10. Right
panels corresponds to the case in which the group size distribution
(P (Gg)) follows a power law while all the agents belong to the same
number of groups ki = 10. Other parameters are equal to those used
in Fig. 1.
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where we show the critical value rc/〈G〉 of the normalized
enhancement factor versus the value of the intergroups’ infor-
mation exchange parameter α, for FCG and FCI formulations
and both scenarios considered: a fixed group size G = 10 in the
left panel and a fixed connectivity k = 10 in the right panel.
On the one hand, it can be noticed the abrupt nature of the
dependence: while for high values of α the curve is smooth
and rc/〈G〉 does not present a strong dependence on α, for
α 	 0 a small decrease of α implies a very large increase of rc.
This fact indicates that only a small information exchange is
enough to trigger the emergence of cooperation. On the other
hand, as has been previously mentioned, when the distribution
of the number of groups, ki , to which an agent i belongs is
heterogeneous (left panel), the FCI formulation presents lower
values of the critical value rc for any value of α > 0 than the
FCG version and therefore a higher tendency to cooperative
states; on the contrary, when the group size distribution P (Gg)
follows a power law and all the agents participate in the same
number of games, ki = 10, the FCG and FCI curves match,
which indicates that the critical value rc is robust against the
choice of formulation.

All the previously shown results have been calculated
for a particular value of the parameter β = 0.1, where 1/β

mimics somehow the temperature of the system: the higher
the temperature, the more random is imitation and thus less
dependent on the difference of effective fitness. At variance
with other updating rules, as, e.g., a discrete replicator
or imitating the best, whose dynamics very often reaches
stationary states of strategic coexistence, the “trembling hand”
mechanism that the Fermi rule incorporates through β has the
effect that wherever it has been used, evolution seems to end
up in absorbing monostrategic states. This is in fact the case
in the first scenario, so that those situations in Fig. 1 where
0 < 〈c〉 < 1 mean that the fraction of realizations ending up
in a fully cooperative absorbing state is 〈c〉. However, this
is no longer the case when P (Gg) follows a power law and
all the agents participate in k = 10 games. In other words, a
value 0 < 〈c〉 < 1 of the average fraction of cooperators in
Fig. 2 corresponds to states of true strategic coexistence in the
realizations.

We show in Fig. 4 the asymptotic average fraction of
cooperators 〈c〉 as a function of r/〈G〉 for different values
of the parameter β, for the second scenario, full information
(α = 1), and for both formulations: the left panel corresponds
to the FCG formulation while the right panel corresponds
to the FCI version. As can be seen, while for high values
of the temperature (i.e., low values of β) the transition is
abrupt, with a sharp shift from the uncooperative state c = 0
to the fully cooperative state c = 1, for low values of the
temperature the transition is smooth. This is due to the fact
that, according to Eq. (14), at low temperatures the imitation
probability as a function of the difference of effective fitness
is very close to a step function (no imitation unless the
other’s fitness is higher), and therefore the probability to get
stuck in metastable nonabsorbing states with 0 < c < 1 is
higher than for high temperature, where the likelihood for
players to imitate partners with lower benefits is greater,
so allowing the dynamics to explore wider regions of the
space of configurations and to find a way out to an absorbing
state.

β

FIG. 4. (Color online) Average fraction of cooperators 〈c〉 versus
the normalized enhancement factor r/〈G〉 for different values of the
parameter β corresponding to the inverse temperature of the system
(i.e., the lower β, the more random is imitation), when the group size
distribution P (Gg) follows a power law and all the agents belong
to the same number of groups ki = 10. Left panel corresponds to
the FCG formulation of the PGG, while right panel corresponds to
the FCI one. Results are averaged over 102 realizations performed in
different networks. Other parameters are equal to those used in Fig. 1.

The comparison of panels in Fig. 4 reveals a remarkable
similarity of both set of curves, despite the fact that for high
β individual curves clearly differ from panel to panel. This
observation has a crystal clear explanation from the analysis
of Eqs. (11)–(14). In the second scenario, where all agents have
the same connectivity, for every given strategic configuration,
and irrespective of the value of α, the effective fitness of all
the agents is simply multiplied by a constant factor k when
changing from the FCI formulation to the FCG one. Thus, from
Eq. (14), all the transition probabilities between configurations
for the FCI formulation at a value β are exactly those for the
FCG one at a value β/k. Therefore, the same holds for all the
results (as the curves 〈c〉 vs. r/〈G〉) coming from dynamics
based on these transition probabilities. Note that this argument
further modifies the explanation given above for the almost
coincidence observed in the behavior of the curves 〈c〉 versus
r/〈G〉 for FCI and FCG formulations in Fig. 2, in the sense
that this coincidence is due to the small value of β = 0.1
used there; larger values of β would have revealed stronger
differences near the transition, which nonetheless do not affect
the location of the critical values rc/〈G〉.

IV. CONCLUSIONS

It is well known that for the study of the evolution of
cooperation in most real systems it is of utmost importance to
deal with N -agent interactions as well as to take into account
the details of the group structure in which interactions take
place. Recently several mechanisms have been suggested for
explaining the onset of cooperative behavior in the PGG by
considering bipartite graphs. In this kind of graph it is possible
to reproduce the assortment of individuals in groups with
distribution of sizes according to that observed in real systems.
In this paper, by exploiting the bipartite framework, we have
considered the role that information exchange between groups
has on the emergence of cooperation in the PGG. In particular,
we have studied how the knowledge of the payoff collected by
an individual in all the groups it belongs affects the decision
of those individuals interacting with it in a single group.
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Our results point out that cross-information plays a fun-
damental and positive role in the evolution of cooperation.
Moreover, by tuning a parameter quantifying the interchange
of information between groups we have observed that the
influence of this latter ingredient is highly nonlinear: a
small amount of information exchange is enough to promote
cooperation to the levels previously observed in bipartite
graphs. Let us note that the limit in which no information
interchange is allowed is similar to the well-mixed scenario,
in which cooperation is not observed unless the enhancement
factor r is larger than the typical size of the groups.

Furthermore, by comparing setups with either a heteroge-
nous distribution for the connectivity of the agents (combined
with a homogeneous distribution for the size of the groups) or
a heterogeneous distribution for the sizes of groups (combined
with a homogeneous distribution for the agents connectivities),
we have shown that systems with heterogeneous connectivities
for the agents converge to cooperative states for lower values
of the enhancement factor r , thus displaying the role of hubs
in promoting cooperation in PGGs. In addition, within this
latter setup, the FCI framework (in which cooperators pay a
fixed cost regardless the number of groups they belong to)
presents lower values of the critical enhancement factor rc

than those corresponding to the FCG setting (in which the
cost of a cooperator is proportional to the number of groups
it belongs to) due to the higher benefits of cooperator hubs in
the FCI setup. Nevertheless, when the group size distribution
is heterogeneous and all the agents belong to the same number
of groups, both the FCG and the FCI version of the PGG show
roughly the same behavior.

Summarizing, our results show that the exchange of infor-
mation between groups enhances the cooperation in intercon-
nected populations, highlighting the idea that a collaborative
attitude in systems composed of many local groups can be
fostered by facilitating the ways of communication beyond
single work teams.
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