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The Editorial on the Research Topic

At the Crossroads: Lessons and Challenges in Computational Social Science

The interest of physicists in economic and social questions is not new: during the last decades,
we have witnessed the emergence of what is formally called nowadays sociophysics [1] and
econophysics [2] that can be grouped into the common term “Interdisciplinary Physics” along
with biophysics, medical physics, agrophysics, etc. With tools borrowed from statistical physics and
complexity science, among others, these areas of study have already made important contributions
to our understanding of how humans organize and interact in our modern society. Large scale data
analyses, agent-based modeling and numerical simulations, and finally mathematical modeling,
have led to the discovery of new (universal) patterns and their quantitative description in
socio-economic systems.

At the turn of the century, however, it was clear that huge challenges—and new opportunities—
lied ahead: the digital communication technologies, and their associated data deluge, began to
nurture those models with empirical significance. Only a decade later, the advent of the Web 2.0,
the Internet of Things and a general adoption of mobile technologies have convinced researchers
that theories can be mapped to real scenarios and put into empirical test, closing in this way the
experiment-theory cycle in the best tradition of physics.

We are nowadays at a crossroads, at which different approaches converge. We name such
crossroads computational social science (CSS) : a new discipline that can offer abstracted
(simplified, idealized) models and methods (mainly from statistical physics), large storage,
algorithms and computational power (computer and data science), and a set of social hypotheses
together with a conceptual framework for the results to be interpreted (Social Science) [3–5].
Despite its youth, the field is developing rapidly in terms of contents (articles, books, etc.), but also
institutionally—either under the form of labs, institutes, and academic programs; or as consolidated
events and scientific gatherings.

This “work-in-progress” spirit is reflected as well in this volume: the call was launched in late
2014 and 10 articles were eventually accepted and published, including reviews—a look behind—,
one methods paper, and six original contributions—a look ahead—introducing a broad range of
research, from models with a strong analytical flavor to data-driven problems.

As mentioned above, each new research line in CSS starts with analysing a sizable dataset,
containing transactional data or user generated content on social web (also called Big Data), The
availability of data however poses new methodological challenges. Among them are statistical
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analysis and how the methods and conventions that have been
used in social sciences to analyse small datasets collected via
questionnaires and interviews, can be now used to analyse data
generated by millions of people. Vidgen and Yasseri address this
challenge and in particular discuss the confusion and (mis)uses
around the highly-popular p-values. They call for a more careful
use of statistical tests and show few directions for improvement.
Apart from the methodological challenges, as Holme and Liljeros
note in their review on mechanistic models in computational
social science, “Quantitative social science is not only about
regression analysis or, in general, data inference.” Computer
simulations, whose history is reviewed by Holme and Liljeros, are
one the main connecting bridges between empirical observations
and theoretical models.

Adopted from physics, the next step in the “scientific method”
of CSS is experimentation. Experimentsmight not only be used to
validate the generated theories, but also to yield new observations
that might eventually lead to new lines of research themselves.
However, experimentation in social content and with human
subjects is nothing similar to physics experiments. Recruitment,
representativeness, privacy issues, and ethical challenges are very
central to social experimentation. Sagarra et al., focus their
attention on citizen science and offer a methodological guideline
for experimentation outside the laboratory.

Spreading phenomena make one of the key topics in
CSS. With application in innovation [6], political change [7],
epidemiology [8], etc., it is important to understand how
“things” navigate through social networks. To further develop the
extensive literature of social contagion, O’Sullivan et al. extend
the modeling of complex contagion in the context of clustered
networks—of upmost relevance in the social context. Solé-Ribalta
et al., on their side, focus on communities onmultilayer networks
[9] and develop newmathematics for information transfer. These
two articles make an excellent case of how the insights from
complex systems and statistical physics can and do play a role
in CSS, offering solid foundations to the methods and insights
developed within.

One of the main advantages of CSS over classic social sciences,
is the possibility to perform temporal analysis and come up
with dynamical models. Most of the datasets under study in
CSS contain timestamps, allowing for fine-grained analysis of
interactions over time. Sanli and Lambiotte provide an original
approach to online communication based on complex time
series—rather than on network structure– that emerge from user
dynamics on social media. The analysis is performed on a set

of collected messages which correspond to an exceptional event,
which is common practice in the field to study collective behavior
[10]. Also Omodei et al. take this approach, analyzing a broad
range of events (policy, culture, science) which they characterize
as multiplex networks [9, 11]. And finally Aledavood et al.
use mobile phone records to study diurnal patterns of human
communication and provide a cohesive picture of regularities
in communication patterns both at individual and society
levels.

Large scale analysis of socially generated data is not limited
to transactional records: huge amount of digital content is being
produced on daily basis. In a novel work, Tanase et al. apply

linguistic analysis to user reviews that they collected from the
web and study social influence and its interplay with network
topology, and how it affects users’ opinions.

Generalizing on opinion dynamics, there is no doubt that
the Internet in general and social media in particular have
changed the political environment and the way people engage
in political activities [12]. At the same time, the digital footprint
of online political activities provides a great opportunity to
conduct political science studies at scale and in close-to real time,
leading to the emergence of some sort of data-driven political
science within CSS [13]. However, these opportunities come with
challenges and shortcomings. Cihon and Yasseri take a critical
point of view toward such studies and in particular discuss the
“biases” in Twitter-based research on political collective action in
a short “biased review.”

Computational Social Science emerges as a wide set of
scientific opportunities, to tackle the fundamental features
of social complexity—multidirectional connections, layer
interdependences and interferences, accelerated diffusion, and
so on [14]. The complex systems approach that underlies
CSS is a key feature toward creating a truly interdisciplinary,
non-compartmental science.
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P-Values: Misunderstood and
Misused
Bertie Vidgen and Taha Yasseri *

Oxford Internet Institute, University of Oxford, Oxford, UK

P-values are widely used in both the social and natural sciences to quantify the statistical

significance of observed results. The recent surge of big data research has made the

p-value an evenmore popular tool to test the significance of a study. However, substantial

literature has been produced critiquing how p-values are used and understood. In this

paper we review this recent critical literature, much of which is routed in the life sciences,

and consider its implications for social scientific research. We provide a coherent picture

of what the main criticisms are, and draw together and disambiguate common themes.

In particular, we explain how the False Discovery Rate (FDR) is calculated, and how

this differs from a p-value. We also make explicit the Bayesian nature of many recent

criticisms, a dimension that is often underplayed or ignored. We conclude by identifying

practical steps to help remediate some of the concerns identified. We recommend that

(i) far lower significance levels are used, such as 0.01 or 0.001, and (ii) p-values are

interpreted contextually, and situated within both the findings of the individual study and

the broader field of inquiry (through, for example, meta-analyses).

Keywords: p-value, statistics, significance, p-hacking, prevalence, Bayes, big data

1. INTRODUCTION

P-values are widely used in both the social and natural sciences to quantify the statistical
significance of observed results. Obtaining a p-value that indicates “statistical significance” is often
a requirement for publishing in a top journal. The emergence of computational social science,
which relies mostly on analyzing large scale datasets, has increased the popularity of p-values even
further. However, critics contend that p-values are routinely misunderstood and misused by many
practitioners, and that even when understood correctly they are an ineffective metric: the standard
significance level of 0.05 produces an overall FDR that is far higher, more like 30%. Others argue
that p-values can be easily “hacked” to indicate statistical significance when none exists, and that
they encourage the selective reporting of only positive results.

Considerable research exists into how p-values are (mis)used, [e.g., 1, 2]. In this paper we review
the recent critical literature on p-values, much of which is routed in the life sciences, and consider its
implications for social scientific research.We provide a coherent picture of what themain criticisms
are, and draw together and disambiguate common themes. In particular, we explain how the FDR
is calculated, and how this differs from a p-value. We also make explicit the Bayesian nature of
many recent criticisms. In the final section we identify practical steps to help remediate some of the
concerns identified.

P-values are used in Null Hypothesis Significance Testing (NHST) to decide whether to accept
or reject a null hypothesis (which typically states that there is no underlying relationship between
two variables). If the null hypothesis is rejected, this gives grounds for accepting the alternative

7
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hypothesis (that a relationship does exist between two variables).
The p-value quantifies the probability of observing results at least
as extreme as the ones observed given that the null hypothesis is
true. It is then compared against a pre-determined significance
level (α). If the reported p-value is smaller than α the result
is considered statistically significant. Typically, in the social
sciences α is set at 0.05. Other commonly used significance levels
are 0.01 and 0.001.

In his seminal paper, “The Earth is Round (p < .05)” Cohen
argues that NHST is highly flawed: it is relatively easy to achieve
results that can be labeled significant when a “nil” hypothesis
(where the effect size of H0 is set at zero) is used rather than a
true “null” hypothesis (where the direction of the effect, or even
the effect size, is specified) [3]. This problem is particularly acute
in the context of “big data” exploratory studies, where researchers
only seek statistical associations rather than causal relationships.
If a large enough number of variables are examined, effectively
meaning that a large number of null/alternative hypotheses are
specified, then it is highly likely that at least some “statistically
significant” results will be identified, irrespective of whether
the underlying relationships are truly meaningful. As big data
approaches become more common this issue will become both
far more pertinent and problematic, with the robustness
of many “statistically significant” findings being highly
limited.

Lew argues that the central problem with NHST is reflected
in its hybrid name, which is a combination of (i) hypothesis
testing and (ii) significance testing [4]. In significance testing,
first developed by Ronald Fisher in the 1920s, the p-value
provides an index of the evidence against the null hypothesis.
Originally, Fisher only intended for the p-value to establish
whether further research into a phenomenon could be justified.
He saw it as one bit of evidence to either support or challenge
accepting the null hypothesis, rather than as conclusive evidence
of significance [5; see also 6, 7]. In contrast, hypothesis tests,
developed separately by Neyman and Pearson, replace Fisher’s
subjectivist interpretation of the p-value with a hard and fast
“decision rule”: when the p-value is less than α, the null can
be rejected and the alternative hypothesis accepted. Though this
approach is simpler to apply and understand, a crucial stipulation
of it is that a precise alternative hypothesis must be specified [6].
This means indicating what the expected effect size is (thereby
setting a nil rather than a null hypothesis)—something that most
researchers rarely do [3].

Though hypothesis tests and significance tests are distinct
statistical procedures, and there is much disagreement about
whether they can be reconciled into one coherent framework,
NHST is widely used as a pragmatic amalgam for conducting
research [8, 9]. Hulbert and Lombardi argue that one of the
biggest issues with NHST is that it encourages the use of
terminology such as significant/nonsignificant. This dichotomizes
the p-value on an arbitrary basis, and converts a probability into
a certainty. This is unhelpful when the purpose of using statistics,
as is typically the case in academic studies, is to weigh up evidence
incrementally rather than make an immediate decision [9, p.
315]. Hulbert and Lombardi’s analysis suggests that the real
problem lies not with p-values, but with α and how this has led to

p-values being interpreted dichotomously: too much importance
is attached to the arbitrary cutoff α ≤ 0.05.

2. THE FALSE DISCOVERY RATE

A p-value of 0.05 is normally interpreted to mean that there is
a 1 in 20 chance that the observed results are nonsignificant,
having occurred even though no underlying relationship exists.
Most people then think that the overall proportion of results
that are false positives is also 0.05. However, this interpretation
confuses the p-value (which, in the long run, will approximately
correspond to the type I error rate) with the FDR. The FDR is
what people usually mean when they refer to the error rate: it
is the proportion of reported discoveries that are false positives.
Though 0.05 might seem a reasonable level of inaccuracy, a type
I error rate of 0.05 will likely produce an FDR that is far higher,
easily 30% or more. The formula for FDR is:

False Positives

True Positives+ False Positives
. (1)

Calculating the number of true positives and false positives
requires knowing more than just the type I error rate, but also
(i) the statistical power, or “sensitivity,” of tests and (ii) the
prevalence of effects [10]. Statistical power is the probability
that each test will correctly reject the null hypothesis when the
alternative hypothesis is true. As such, tests with higher power
are more likely to correctly record real effects. Prevalence is
the number of effects, out of all the effects that are tested for,
that actually exist in the real world. In the FDR calculation it
determines the weighting given to the power and the type I error
rate. Low prevalence contributes to a higher FDR as it increases
the likelihood that false positives will be recorded. The calculation
for FDR therefore is:

(1− Prevalence)× Type I error rate

Prevalence× Power+ (1− Prevalence)× Type I error rate
.

(2)

The percentage of reported positives that are actually true is
called the Positive Predictive Value (PPV). The PPV and FDR
are inversely related, such that a higher PPV necessarily means
a lower FDR. To calculate the FDR we subtract the PPV from 1.
If there are no false positives then PPV = 1 and FDR = 0.Table 1
shows how low prevalence of effects, low power, and a high type
I error rate all contribute to a high FDR.

Most estimates of the FDR are surprisingly large; e.g., 50 [1, 11,
12] or 36% [10]. Jager and Leekmore optimistically suggest that it
is just 14% [13]. This lower estimate can be explained somewhat
by the fact that they only use p-values reported in abstracts, and
have a different algorithm to the other studies. Importantly, they
highlight that whilst α is normally set to 0.05, many studies—
particularly in the life sciences—achieve p-values far lower than
this, meaning that the average type I error rate is less than α of
0.05 [13, p. 7]. Counterbalancing this, however, is Colquhoun’s
argument that because most studies are not “properly designed”
(in the sense that treatments are not randomly allocated to groups
and in RCTs assessments are not blinded) statistical power will
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TABLE 1 | Greater prevalence, greater power, and a lower Type I error rate

reduce the FDR.

Prevalence Power Type I error rate FDR

0.01 0.8 0.05 0.86

0.1 0.8 0.05 0.36

0.5 0.8 0.05 0.06

0.1 0.2 0.05 0.69

0.1 0.5 0.05 0.47

0.1 0.8 0.01 0.10

0.1 0.8 0.001 0.01

often be far lower than reported—thereby driving the FDR back
up again [10].

Thus, though difficult to calculate precisely, the evidence
suggests that the FDR of findings overall is far higher than α

of 0.05. This suggests that too much trust is placed in current
research, much of which is wrong far more often than we
think. It is also worth noting that this analysis assumes that
researchers do not intentionally misreport or manipulate results
to erroneously achieve statistical significance. These phenomena,
known as “selective reporting” and “p-hacking,” are considered
separately in Section 4.

3. PREVALENCE AND BAYES

As noted above, the prevalence of effects significantly impacts
the FDR, whereby lower prevalence increases the likelihood
that reported effects are false positives. Yet prevalence is
not controlled by the researcher and, furthermore, cannot be
calculated with any reliable accuracy. There is no way of knowing
objectively what the underlying prevalence of real effects is.
Indeed, the tools by which we might hope to find out this
information (such as NHST) are precisely what have been
criticized in the literature surveyed here. Instead, to calculate
the FDR, prevalence has to be estimated1. In this regard, FDR
calculations are inherently Bayesian as they require the researcher
to quantify their subjective belief about a phenomenon (in this
instance, the underlying prevalence of real effects).

Bayesian theory is an alternative paradigm of statistical
inference to frequentism, of which NHST is part of. Whereas,
frequentists quantify the probability of the data given the null
hypothesis (P(D|H0)), Bayesians calculate the probability of the
hypothesis given the data (P(H1|D)). Though frequentism is far
more widely practiced than Bayesianism, Bayesian inference is
more intuitive: it assigns a probability to a hypothesis based on
how likely we think it to be true.

The FDR calculations outlined above in Section 2 follow
a Bayesian logic. First, a probability is assigned to the prior
likelihood of a result being false (1 − prevalence). Then, new
information (the statistical power and type I error rate) is
incorporated to calculate a posterior probability (the FDR). A

1In much of the recent literature it is assumed that prevalence is very low, around

0.1 or 0.2 [1, 10–12].

common criticism against Bayesian methods such as this is that
they are insufficiently objective as the prior probability is only
a guess. Whilst this is correct, the large number of “findings”
produced each year, as well as the low rates of replicability
[14], suggest that the prevalence of effects is, overall, fairly low.
Another criticism against Bayesian inference is that it is overly
conservative: assigning a low value to the prior probability makes
it more likely that the posterior probability will also be low [15].
These criticisms not withstanding, Bayesian theory offers a useful
way of quantifying how likely it is that research findings are true.

Not all of the authors in the literature reviewed here explicitly
state that their arguments are Bayesian. The reason for this is
best articulated by Colquhoun, who writes that “the description
‘Bayesian’ is not wrong but it is not necessary” [10, p. 5]. The
lack of attention paid to Bayes in Ioannidis’ well-regarded early
article on p-values is particularly surprising given his use of
Bayesian terminology: “the probability that a research finding
is true depends on the prior probability of it being true (before
doing the study)” [1, p. 696]. This perhaps reflects the uncertain
position that Bayesianism holds in most universities, and the
acrimonious nature of its relationship with frequentism [16].
Without commenting on the broader applicability of Bayesian
statistical inference, we argue that a Bayesian methodology has
great utility in assessing the overall credibility of academic
research, and that it has received insufficient attention in previous
studies. Here, we have sought to make visible, and to rectify, this
oversight.

4. PUBLICATION BIAS: SELECTIVE
REPORTING AND P-HACKING

Selective reporting and p-hacking are two types of researcher-
driven publication bias. Selective reporting is where
nonsignificant (but methodologically robust) results are
not reported, often because top journals consider them to be
less interesting or important [17]. This skews the distribution of
reported results toward positive findings, and arguably further
increases the pressure on researchers to achieve statistical
significance. Another form of publication bias, which also
skews results toward positive findings, is called p-hacking.
Head et al. define p-hacking as “when researchers collect or
select data or statistical analyses until nonsignificant results
become significant” [18]. This is direct manipulation of results
so that, whilst they may not be technically false, they are
unrepresentative of the underlying phenomena. See Figure 1 for
a satirical illustration.

Head et al. outline specific mechanisms by which p-values
are intentionally “hacked.” These include: (i) conducting analyse
midway through experiments, (ii) recording many response
variables and only deciding which to report postanalysis, (iii)
excluding, combining, or splitting treatment groups postanalysis,
(iv) including or excluding covariates postanalysis, (v) stopping
data exploration if analysis yields a significant p-value. An
excellent demonstration of how p-values can be hacked by
manipulating the parameters of an experiment is Christie
Aschwanden’s interactive “Hack Your Way to Scientific Glory”
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FIGURE 1 | “Significant”: an illustration of selective reporting and

statistical significance from XKCD. Available online at

http://xkcd.com/882/ (Accessed February 16, 2016).

[19]. This simulator, which analyses whether Republicans or
Democrats being in office affects the US economy, shows how
tests can be manipulated to produce statistically significant
results supporting either parties.

In separate papers, Head et al. [18], and deWinter and Dodou
[20] each examine the distributions of p-values that are reported
in scientific publications in different disciplines. It is reported
that there are considerably more studies reporting alpha just
below the 0.05 significance level than above it (and considerably
more than would be expected given the number of p-values that
occur in other ranges), which suggests that p-hacking is taking
place. This core finding is supported by Jager and Leek’s study on
“significant” publications as well [13].

5. WHAT TO DO

We argued above that a Bayesian approach is useful to estimate
the FDR and assess the overall trustworthiness of academic
findings. However, this does not mean that we also hold that
Bayesian statistics should replace frequentist statistics more
generally in empirical research [see: 21]. In this concluding
section we recommend some pragmatic changes to current
(frequentist) research practices that could lower the FDR and
thus improve the credibility of findings.

Unfortunately, researchers cannot control how prevalent
effects are. They only have direct influence over their study’s α

and its statistical power. Thus, one step to reduce the FDR is to
make the norms for these more rigorous, such as by increasing
the statistical power of studies. We strongly recommend that α of
0.05 is dropped as a convention, and replaced with a far lower α

as standard, such as 0.01 or 0.001; see Table 1. Other suggestions
for improving the quality of statistical significance reporting
include using confidence intervals [7, p. 152]. Some have also
called for researchers to focus more on effect sizes than statistical
significance [22, 23], arguing that statistically significant studies
that have negligible effect sizes should be treated with greater
skepticism. This is of particular importance in the context of big
data studies, where many “statistically significant” studies report
small effect sizes as the association between the dependent and
independent variables is very weak.

Perhaps more important than any specific technical change
in how data is analyzed is the growing consensus that
research processes need to be implemented (and recorded)
more transparently. Nuzzo, for example, argues that “one of the
strongest protections for scientists is to admit everything” [7,
p. 152]. Head et al. also suggest that labeling research as either
exploratory or confirmatory will help readers to interpret the
results more faithfully [18, p. 12]. Weissgerber et al. encourage
researchers to provide “a more complete presentation of data,”
beyond summary statistics [24]. Improving transparency is
particularly important in “big” data-mining studies, given that
the boundary between data exploration (a legitimate exercise)
and p-hacking is often hard to identify, creating significant
potential for intentional or unintentional manipulation of results.
Several commentators have recommended that researchers pre-
register all studies with initiatives such as the Open Science
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Framework [1, 7, 14, 18, 25]. Pre-registering ensures that a record
is kept of the proposed method, effect size measurement, and
what sort of results will be considered noteworthy. Any deviation
from what is initially registered would then need to be justified,
which would give the results greater credibility. Journals could
also proactively assist researchers to improve transparency by
providing platforms on which data and code can be shared, thus
allowing external researchers to reproduce a study’s findings and
trace the method used [18]. This would provide academics with
the practical means to corroborate or challenge previous findings.

Scientific knowledge advances through corroboration and
incremental progress. In keeping with Fisher’s initial view that
p-values should be one part of the evidence used when deciding
whether to reject the null hypothesis, our final suggestion is that
the findings of any single study should always be contextualized
within the broader field of research. Thus, we endorse the view
offered in a recent editorial of Psychological Science that we
should be extra skeptical about studies where (a) the statistical
power is low, (b) the p-value is only slightly below 0.05, and (c)
the result is surprising [14]. Normally, findings are only accepted

once they have been corroborated through multiple studies, and
even in individual studies it is common to “triangulate” a result
with multiple methods and/or data sets. This offers one way
of remediating the problem that even “statistically significant”
results can be false; if multiple studies find an effect then it is more
likely that it truly exists. We therefore, also support the collation
and organization of research findings in meta-analyses as these
enable researchers to quickly evaluate a large range of relevant
evidence.
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Quantitative social science is not only about regression analysis or, in general, data

inference. Computer simulations of social mechanisms have an over 60 years long

history. They have been used for many different purposes—to test scenarios, to test

the consistency of descriptive theories (proof-of-concept models), to explore emergent

phenomena, for forecasting, etc… In this essay, we sketch these historical developments,

the role of mechanistic models in the social sciences and the influences from the natural

and formal sciences. We argue that mechanistic computational models form a natural

common ground for social and natural sciences, and look forward to possible future

information flow across the social-natural divide.

Keywords: computational social science, mechanistic models, simulation, complex systems, interdisciplinary

science

Background

In mainstream empirical social science, a result of a study often consists of two conclusions. First,
that there is a statistically significant correlation between a variable describing a social phenomenon
and a variable thought to explain it. Second, that the correlations with other, more basic, or trivial,
variables (called control, or confounding, variables) are weaker. There has been a trend in recent
years to criticize this approach for putting too little emphasis on the mechanisms behind the
correlations [1–3]. It is often argued that regression analysis (and the linear, additive models they
assume) cannot serve as causal explanations of an open system such as usually studied in social
science. A main reason is that, in an empirical study, there is no way of isolating all conceivable
mechanisms [4]. Sometimes authors point to natural science as a role model in the quest for
mechanistic models. This is somewhat ironical, since many natural sciences, most notably physics,
traditionally put more emphasis on the unification of theories and the reduction of hypotheses
[1]. In other words, striving to show that two theories could be more simply described as different
aspects of a single, unified theory. Rather than being imported from natural or formal sciences,
mechanistic modeling has evolved in parallel in the social sciences. Maybe the most clean-cut forms
of mechanistic models are those used in computer simulations. Their past, present and future, and
the flow of information regarding them across disciplines, are the themes of this paper. Before
proceeding, other authors would probably spend considerable amounts of ink to define and discuss
central concepts—in our case “mechanism” and “causal.” We think their everyday usage in both
natural and social sciences is sufficiently precise for our purpose and recommend [3] to readers
with a special interest of details.

In practice, establishing the mechanisms behind a social phenomenon takes much more
than simulating a model. Mechanistic models can serve several different purposes en route to
establishing a mechanistic explanation. We will make a distinction of proof-of-concept modeling,
discovery of hypotheses and scenario testing (described in detail below). There are of course other
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ways, perhaps also better, to characterize mechanistic models.
These categories are not strict either—they could be overlapping
with regard to a specific model. Nevertheless, we think they
serve a point in our discussion and that they are fairly well
defined.

The idea of proof-of-concept modeling is to test the
consistency of a verbal description, or cartoon diagram, of a
phenomenon [5]. It is in general hard to make an accurate
verbal explanation, especially if it involves connecting different
levels of abstraction, such as going from a microscopic to
a macroscopic description. A common mistake is to neglect
implicit assumptions, some that may even be the convention
of a field. With the support of such proof-of-concept models,
a verbal argument becomes much stronger. Then one has at
least firmly established that the constituents of the theory are
sufficient to explain the phenomenon. The individual-based
simulations of the Anasazi people (inhabiting parts of the
American West millennia ago) by Joshua Epstein, Robert Axtell
and colleagues [6] are blueprints of proof-of-concept modeling.
In these simulations, the authors combined a multitude of
conditions along with anthropological theories to show that they
could generate outcomes similar to the archeological records.

The most common use of mechanistic models is our second
category—to explore the possible outcomes of a certain situation,
and to generate hypotheses. We will see many examples of that in
our essay. As a first example, consider Robert Axelrod’s computer
tournaments to find optimal strategies for the iterated prisoner’s
dilemma [7]. The prisoner’s dilemma captures a situation where
an individual can choose whether or not to cooperate with
another. If one knows that the encounter is the last one, the
rational choice is always not to cooperate. However, if the
situation could be repeated an unknown number of times, then it
might be better to cooperate. To figure out the way to cope with
this situation, Axelrod invited researchers to submit strategies to
a round-robin tournament. The winning strategy (“tit-for-tat”)
was to start cooperating and then do whatever your opponent
did the previous step. From this result, Axelrod could make the
hypothesis that a tit-for-tat-like behavior is common among both
people and animals, either because they often face a prisoner’s
dilemma or at that such situations, once you face them, tend to
be important.

Mechanistic models forecasting social systems are less
frequent than our previous two classes. One reason is probably
that forecasting open systems is difficult (sometimes probably
even impossible) [4]; another that non-mechanistic methods
(machine learning, statistical models, etc. . . ) are better for this
purpose. A model without any predictive power whatsoever
is, of course, not a model at all, and under some conditions
all mechanistic models can be used in forecasting, or (perhaps
more accurately) scenario testing. One celebrated example is the
“World3” simulation popularized by the Club of Rome 1972
book The Limits to Growth [8] where an exponentially growing
artificial population faced a world of limited resources. Maybe
a sign of the time, since several papers from the early 1970s
called for “whole Earth simulations” [9, 10]. Echoes of this
movement were heard recently with the proposal of a “Living
Earth Simulator” [11].

In this essay, we will explore mechanistic models as scientific
explanations in the social sciences. We will give an overview of
the development of computer simulations of mechanistic models
(primarily in the social sciences, but also mentioning relevant
developments in the natural sciences), and finally discuss if and
how mechanistic models can be a common ground for cross-
disciplinary research between the natural and social sciences.
We do not address data-driven science in the interface of the
natural or social, nor do we try to give a comprehensive survey
of mechanistic models in the social sciences. We address anyone
interested in using simulation methods familiar to theoretical
natural scientists to advance the social sciences.

Influence from the Natural and Formal

Sciences

As we will see below, the development and use of computer
simulations to understand social mechanisms has happened on
quite equal terms as in the natural and formal sciences. It will,
however, be helpful for the subsequent discussion to sketch the
important developments of computer simulations as mechanistic
models in the natural sciences. This is of course a topic that would
need several book volumes for a comprehensive coverage—
we will just mention what we regard the most important
breakthroughs.

The Military Origins
Just like in social science, simulation in natural science has many
of its roots in the military from the time around the Second
World War. The second major project running on the first
programmable computer, ENIAC, started April 1947. The topic,
the flow of neutrons in an incipient explosion of a thermonuclear
weapon [12], is perhaps of little interest today, but the basic
method has never ran out of fashion—it was the first computer
program using (pseudo) randomnumbers, and hence an ancestor
of most modern computer simulations. Exactly who invented
this method, codenamed Monte Carlo, is somewhat obscure,
but it is clear it came out of the development of the hydrogen
bomb right after the war. The participants came from the
(then recently finished) Manhattan project. Nicholas Metropolis,
Stanislaw Ulam and John von Neumann are perhaps most well-
known, but also Klara von Neumann, John’s wife [12]. It was
not only the first program to use random numbers, it was also
the first modern program in the sense that it had function calls,
and had to be fed into the computer along with the input. As a
curiosity, the random number generator in this program worked
by squaring eight-digit numbers and using the mid eight digits
as output and seed to the next iteration. Far from having the
complexity of modern pseudo random number generator (read
Mersenne Twister [13]), it gives random numbers of (at least in
the authors’ opinion) surprisingly good statistical quality.

The first Monte Carlo simulation was not an outright success
as a contribution to the nuclear weapons program. Nevertheless,
the idea of using random numbers in simulations has not
fallen out of fashion ever since, and the Monte Carlo method
(nowadays referring to any computational model based on
random numbers) has become a mainstay of numerical methods.
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Another very significant step for the natural sciences, especially
chemistry and statistical physics, by the Los Alamos group
was the Metropolis–Hastings algorithm—a method to sample
configurations of particles, atoms or molecules according to
the Boltzmann distribution (connecting the probability of a
configuration and its energy). The radical invention was to
choose configurations with a probability proportional to the
Boltzmann distribution and weighting them equally, rather than
choosing configurations randomly and weighing them by the
probability given by the Boltzmann distribution [14]. Hastings
name was added to credit his extension of the algorithm
to general distributions [15]. Today, this algorithm is an
indispensible simulation technique to generate the probability
distributions of the state of a system both in natural and social
sciences (usually called Markov Chain Monte Carlo, MCMC).

The Monte Carlo project and the MCMC method did not
immediately lead to fundamental advances in science itself.
Deterministic computational methods, on the other hand, did,
and (not surprisingly) post-Manhattan-project researchers were
involved. Enrico Fermi, John Pasta, and Stanislaw Ulam (and,
like the Monte Carlo project, with undercredited help by a
female researcher, Mary Tsingou [16]) studied vibrations of a
one-dimensional string with non-linear corrections to Hooke’s
law (that states that the force needed to extend a spring a certain
distance is proportional to the distance). They expected to see the
non-linearity transferring energy from one vibrational mode (like
the periodic solution of the linear problem) to all other modes
(i.e., thermal fluctuations) according to the equipartition theorem
[17]. Instead of such a “thermalization” process, they observed
the transition to a complex, quasi-periodic state [18] that never
lost its memory of the initial condition. The FPU paradox was the
starting point of a scientific theme called non-linear science that
also, as we will see, has left a lasting imprint on social science.

Complexity Theory
Non-linear science has a strong overlap with chaos theory,
another set of ideas from natural sciences that influenced social
science. Chaos is summarized in the vernacular by the “butterfly
effect”—a small change (the flapping of a butterfly’s wings)
could lead to a big difference (a storm) later. One important
early contribution came from Edward Lorentz’s computational
solutions of equations describing atmospheric convection. He
observed that a small change in the initial condition could send
the equations off into completely different trajectories [19]. Just
like for the FPU paradox, the role of the computational method
in chaos theory has largely been to discover hypotheses that later
have been corroborated by analytical studies. This line of research
has not been directly aimed at discovering newmechanisms; still,
ideas and concepts from chaos theory have also reached social
sciences [20].

Another natural science development largely fueled by
computer simulations, which has influenced social sciences,
is that of fractals. Fractals are mathematical objects that
embody self-similarity—a river can branch into contributaries,
that branch into smaller contributaries, and so on, until the
biggest rivers are reduced to the tiniest creeks [21]. At all
scales, the branching looks the same. Fractals provide an

analysis tool—the fractal dimension—that can characterize self-
similar objects. There are many socioeconomic systems that
are self-similar—financial time series [22], the movement of
people [23], the fluctuations in the size of organizations [24],
etc. . .Quite frequently, however, authors have not accompanied
their measurement of a fractal dimension with a mechanistic
explanation of it, which is perhaps why fractals have fallen out
of fashion lately.

Fractals are closely related to power-law probability
distributions, i.e., the probability of an observable x being
proportional to x−α, α > 0. Power-laws are the only self-similar
(or “scale-free”) real-to-real functions in the sense that, if e.g.,
the wealth distribution of a population is a power law, then a
statement like “there are twice as many people with a wealth
of 10X than 15X” is true, no matter if X is dollars, euros, yen
or kronor [25]. The theories for such power-law phenomena
date back to Pareto’s lectures on economics published 1896 [26].
Fractals and power-laws are also connected to phase transitions
in physics—an idea popularized in Hermann Haken’s book
Synergetics [27].

Next step in our discussion is the studies of artificial life.
The central question in this line of research is to mechanistically
recreate the fundamental properties of a living system, including
self-replication, adaptability, robustness and evolution [28]. The
origins of artificial life can be traced to John von Neumann’s self-
replicating cellular automata. These are configurations of discrete
variables confined to an underlying square grid that, following a
distinct set of rules, can reproduce, live and die [29]. The field of
artificial life later developed in different directions, both toward
themore abstract study of cellular automata and tomore biology-
related questions [28]. It is also strongly linked to the study
of adaptive systems (systems able to respond to changes in the
environment) [30] and has a few recurring ideas that also are
related to social phenomena. The first idea is that simple rules
can create complex behavior. The best-known model illustrating
this is perhaps Conway’s game of life. This is a cellular automaton
with the same objectives as that of von Neuman, but with fewer
and simpler rules [28]. The second idea (maybe not discovered
by the field of artificial life, but at least popularized) is that of
emergence. This refers to the properties of a system, as a whole,
coming from the interaction of a large number of individual
subunits. A textbook example is that of murmurations of birds
(flocks of hundreds of thousands of e.g., starlings). These can
exhibit an undulating motion, fluctuating in density, that in no
way could be anticipated from the movement of an individual.
Another feature of emergence, exemplified by bird flocks, is
that of decentralization—there is no leader bird. These topics
are common to many disciplines of social science (emergence
is similar to the micro-to-macro-transition in sociology and
economics). These theories have spawned its own modeling
paradigm—agent based models [31–34]—that is similar to what
was simply called “simulation” in early computational social
science. One first sets up rules for how units (agents) interact with
each other and their surroundings. Then one simulates many of
them together (typically on a two-dimensional grid) and let them
interact. We note that the concept of emergence has also been
influential to cognitive, and subsequently behavioral, science. The
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idea of cognitive processes being emergent properties of neural
networks—connectionism [35]—is nowadays fundamental to
our understanding of computational processes in nature [36].

In the 1980’s, artificial life, adaptive systems, fractals and chaos
where grouped together under the umbrella term complexity
science [37]. This was in many ways a social movement
gathering researchers of quite marginalized research topics (the
Santa Fe Institute, and some similar centers, acted as hubs
for this development). Many of the themes within complexity
science could probably just as well be categorized as mutually
independent fields. This is perhaps best illustrated in that
there is no commonly accepted definition of “complexity.”
Instead, there are a number of common, occasionally (but
not always) connected, themes (like the above-mentioned,
emergence, decentralized organization, fractals, chaos, etc. . . )
that together defines the field. On the other hand, there is
a common goal among complexity scientists to find general,
organizational principles that are not limited to one scientific
field. In spirit, this dates back to, at least, von Bertalanffy’s general
systems theory [38]. The diversity of ideas and applications
has not necessarily been a problem for complexity science; on
the contrary, it has encouraged many scientists of different
backgrounds (including the authors of this paper) to try
collaborating, despite the transdisciplinary language barriers.

Game Theory
Game theory is a mathematical modeling framework for
situations where the state of an individual is jointly determined
by the individual’s own decisions and the decisions of others
(who all, typically, strive to maximize their own benefit) [39].
Vaccination against infectious diseases is a typical example. If
everyone else were vaccinated, the rational choice would be to
not get vaccinated. The disease could anyway not spread in
the population, whether or not you are vaccinated. Moreover,
vaccines can, after all, have side effects, and injections are
uncomfortable. If nobody were vaccinated, and the chance
of getting the disease times the gravity of the consequences
outweighs the above-mentioned inconveniences, then it would be
rational to get vaccinated. This situation could, mathematically,
be phrased as a minority game [40]. The emergent solution for
a population of rational, well-informed and selfish individuals
is that a fraction of the agents would get vaccinated and
another fraction not. This example is, at the time of writing, the
background to a controversy where people getting vaccinated see
people resisting vaccination as irresponsible to the society [41].

Game theory has been an especially strong undercurrent in
economy and population biology. We note that a special feature
of game theory, compared to similarly interdisciplinary theories,
is that the various fields using it seem rather well informed
about the other fields’ progress and not so many concepts have
been reinvented. Game theory itself is not a framework for
mechanistic models, and especially in population biology (where
an individual usually represents a species or a sub-population)
it is not clear that is its main use. Nevertheless, there are many
mechanistic models in economy and population biology that uses
game theory as a fundamental ingredient [42].

Network Theory
Just like complexity and game theory, network theory is a great
place for information exchange between the natural and social
sciences. Its basic idea is to use networks of vertices, connected
pairwise by edges, as a systematic way of simplifying a system. By
studying the network structure (roughly speaking, how a network
differs from a random network) one can say something about
how the system functions as a whole, or the roles of the individual
vertices and edges in the system [43, 44]. The multidisciplinarity
of network theory is reflected in its overlapping terminology—
vertices and edges are called nodes and links in computer science,
sites and bonds in physics and chemistry, actors and ties in
sociology, etc. . .

Many ideas in network theory originated in social science,
and for that reason it may not fit in a section about influences
from natural science. Nevertheless, as mentioned, it is a field
where ideas frequently flow from the natural and formal sciences
to social sciences. Centrality measures like PageRank and HITS
were, for example, developed in computer science [43], as
were fundamental concepts of temporal network theory (where
information about the time when vertices and edges are active is
included in the network) [45].

Early Computer Simulations to Understand

Social Mechanisms

In this section, we will go through some developments in the
use of mechanistic models in social science. We will focus on
early studies, assuming the readers largely know the current
trends. This is by no means a review (which would need volumes
of books), but a few snapshots highlighting some differences
and similarities to today’s science in the methodologies and the
questions asked.

Operations Research
Just like the computer hardware, the research topics for
simulation and mechanistic models have many roots in military
efforts around the Second World War. Perhaps the main
discipline for this type of research is operations research, which
is usually classified as a branch of applied mathematics. The
objective of operations research is to optimize themanagement of
large-scale organizations—managing supply chains, scheduling
crews of ships, planes and trains, etc. . . The military was not
the only such organization that interested the early computer
simulation researchers. Harling [46] provides an overview of the
state of computer simulations in operation research in the late
1950’s. As a typical example, Jennings and Dickins modeled the
flow of people and buses in the Port Authority Bus Terminal
in New York City during the morning rush hour [47]. They
modeled the buses individually and passengers as numbers
of exiting, not transferring, individuals. The authors tried to
simultaneously optimize the interests of three actors—the bus
operators, the passengers, and the Port Authority (operating
the terminal). These objectives were mostly not conflicting—in
principle it was better for all if the passenger throughput was
as high as possible. A further simplifying factor was that the
station was the terminus for all buses. The challenge was that
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buses stopping to let off passengers could block other buses, thus
creating a traffic jam. To solve this problem, the paper evaluated
different methods to assign a bus stop to an incoming bus.

Political Science
Although rarely cited today, simulation studies of political
decision processes were quite common in the 1950s and 1960s.
Crecine [48] reviews some of these models. One difference from
today is that these models were less abstract, often focusing on a
particular political or juridical organization. The earliest paper
we are aware of is Guetzkow’s 1959 investigation of the use
of computer simulations as a support system for international
politics [49]. However, many studies in this field credit de Sola
Pool et al.’s simulation of the American presidential elections
1960 and 1964 as the starting point [50]. In their work, the
authors gathered a collection of 480 voter profiles that they could
use to test different scenarios (with respect to what topics that
would turn out to be important for the campaign). Eventually
they predicted the outcome of the elections with 82% accuracy.

In their Ph.D. theses, Cherryholmes [51] and Shapiro [52]
modeled voting in the House of Representatives by: First,
dividing members into classes with respect to how susceptible
they were to influence. Second, modeling the influence process
via an interaction network where people were more likely to
communicate (and thus influence each other) if they were
from the same party, state, committee, etc. . .Cherryholmes
and Shapiro also validated their theories against actual voting
behavior (something rarely seen in today’s simulation studies
of opinion spreading [53]). Other authors addressed more
theoretical issues of voting systems, such as Arrow’s paradox
[54, 55] (which states, briefly speaking, that a perfect voting
system is impossible for three or more alternatives).

There was also a considerable early interest in simulating
decision making within an organization. Apparently the Cuban
missile crisis of 1962 was an important source of inspiration.
De Sola Pool was, once again, a pioneer in this direction with
a simulation of decision-making in a developing, general crisis
with incomplete information [56]. Even more explicitly, Smith
[57] based his simulation on the personal accounts of the people
involved in solving the Cuban missile crisis. Clema and Kirkham
proposed yet a model of risks, costs and benefits in political
conflicts [58]. Curiously, as late as 2007 there was a paper
published on simulating the Cuban missile crisis [59]. However,
this paper exploresmechanisticmodeling as amethod of teaching
history, rather than the mechanisms of the decision making
process itself.

Another type of political science research concerns the
evolution of norms. A classic example is Axelrod’s 1986 paper
[60] where he investigated norms emerging as successful
strategies in situations described by game theory. Axelrod let the
norms evolve by genetic algorithms (an algorithmic framework
for optimization inspired by genetics). In addition to norms,
Axelrod also studied metanorms—norms that promote other
norms (by e.g., encouraging punishing of people breaking or
questioning the norms). Axelrod interpreted the results of the
simulation in terms of established social mechanisms supporting

the existence of norms (domination, internalization, deterrence,
etc. . . ).

Linguistics
In linguistics, the first computer simulation studies appeared
in the mid-1960s. A typical early example is Klein [61] who
developed an individual-based simulation platform for the
evolution of language. Just like Cherryholmes and Shapiro
(above), Klein assumed that the communication was not
uniformly random between all pairs of individuals—spouses were
more likely to speak to, and learn from, one another, as were
parents and children. In multilingual societies, speakers were
more likely to communicate to another speaker of the same
language (Klein allowed multilingual individuals). A language
was represented by a set of explicit grammatical rules (with
explicit word classes: nouns, verbs, etc. . . ). Communication
reinforced the grammatical rules between the speakers. Klein
incremented the time by years and simulated several generations
of speakers, but was not entirely happy with the results as
communities tended to lose the diversity of their grammar
quickly or diverge to mutually incomprehensible grammars. In
retrospect, we feel like it was a still a great step forward, where
the negative results helped raising important questions about
what mechanisms that were missing. More modern models of
language evolution have consideredmuch simpler problems [62].
One cannot help thinking that this is to avoid the complexities of
reality, and more models in the vein of Klein’s 1966 paper would
be more important. Later, Klein focused his research on more
specific questions like the evolution of Tikopia and Maori [63].
The goal of these early simulation studies was to create something
similar to a sociolinguistic fieldwork study. Thus, these were
proof-of-concept studies on a more concrete level than today’s
more theoretically motivated research.

Geography
Demography and geography were also early fields to adopt
computer simulations. One notable pioneer was the authors’
compatriot Torsten Hägerstrand whose Ph.D. thesis used
computer simulations to investigate the diffusion of innovations
[64]. His model was similar to two-dimensional disease-
spreading models (but probably developed independently of
computational epidemiology, where the first paper was published
the year before [65]). Hägerstrand used an underlying square
grid. People were spread out over the grid according to an
empirically measured population distribution. At each iteration
of the simulation, there was a contact between two random
individuals (where the chance of contact decayed with their
separation). If the one of the individuals had adopted the
innovation, and the other had not, then the latter would (with
100% probability) adopt it. A goal of Hägerstrand’s modeling
was to recreate a “nebula shaped” distribution of the innovation
(this is further developed in Hägerstrand [66]). To this end,
Hägerstrand introduced a concept (still in use) called mean
information field representing the probability of getting the
information (innovation) from the source.

A technically similar topic to information diffusion is that
of migration (as in moving one’s home). This research dates
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back to Ravenstein’s 1885 paper “The laws of migration” which
is very mechanistically oriented [67]. He listed seven principles
for human migration such as: short-distance migration is more
common than long-distance; people who migrate far have a
tendency to go to a “great centre of commerce or industry.”
Computer simulation lends itself naturally to exploring the
outcomes such mechanisms in terms of demographics. One such
example is Porter’s migration model where agents were driven
by the availability of work and the availability of work was partly
driven by where people were. If there was an excess of workers,
workers would move to the closest available job opportunity; if
there was an excess of vacancies, the closest applicant would be
offered the job [68].

The study of human mobility (how people move around both
in their everyday lives and extreme situations, such as disasters)
is an active field of research. It has even been revitalized lately
by the availability of new data sources (see e.g., [23]). One
common type of simulation study, involving human mobility
data, aims at predicting outbreaks of epidemic diseases. Tomodel
potentially contagious contacts between people, one can usemore
or less realism. However, even for the most realistic and detailed
simulations, there is a choice of using the real data to calibrate
a model of human mobility [69] or run the simulation on actual
mobility data (perhaps with simulations to fill in missing data)
[70].

Economics and Management Science
There were many early computational studies in economics that
used simulation techniques for scenario testing [71, 72]. A typical
question was to investigate the operations of a company at
many levels (overlapping with the operations-research section
above). Evidently, the researchers saw a future where every
aspect of running a business would be modeled—marketing,
human resource development, social interaction within the
company, the competition with other firms, adoption of new
technologies, etc. . . To make progress, the authors needed to
restrict themselves. Birchmore [72], for example, focused on
forest firms. Much of his work revolved around a forestry firm’s
interaction with its resource and the many game theoretical
considerations that arouse from the conflicting time perspectives
of short- and long-time revenues and the competition with other
companies. Birchmore only used one or a few combinations
of parameter values, rather than investigating the parameter
dependence like modern game theory would do. Finally, we
note that economics and management science were also early
to address questions about validation and other epistemological
aspects of computer simulations [73].

Anthropology and Demographics
Anthropology was also early to embrace simulation techniques,
especially to problems relating to social structure, kinship and
marriage [74]. These are perhaps the traditional problems of
anthropology that has the most complex structure of causal
explanations, and for that reason are most in need for proof-of-
concept-type computer simulations. Gilbert and Hammel [75],
for example, addressed the question: “How much, and in what
ways, is the rate of patrilateral parallel cousinmarriage influenced

by the number of populations involved in the exchange of
women, by their size, by their rules of postmarital residence, and
by degree of territorially endogamic preference?” To answer these
questions, the authors constructed a complex model including
villages of explicit sizes, individuals of explicit gender, age and
kinship, and rules for how to select a spouse. The model was
described primarily in words, in much detail and length. A
modern reader would think that pseudocode would make the
paper more readable (and certainly much shorter). Probably the
anthropology journals of the time were too conservative, or the
programming literacy to low, for including pseudocode in the
articles.

In a study similar to Gilbert and Hempel, one step closer to
demographics, May and Heer [76] used computer simulations to
argue that the large family sizes in rural India (of that time) were
rational choices for the individuals, rather than a consequence
of ignorance and indecision. Around the same time, there were
studies of more general questions of human demographics [77],
highlighting a transition from mechanistic models for scenario
testing to proof-of-concept models and hypothesis discovery.

Cognitive and Behavioral Science
In cognitive science (sometimes bordering to behavioral science),
researchers in the 1960s were excited about the prospects of
understanding human cognition as a computer program.

Abelson and Carroll [78], for example, proposed that
mechanistic simulations could address questions like how a
person can reach an understanding (“develop a belief system”)
of a complex situation in terms of a set of consistent descriptive
clauses (encoding, for example causal relationships). Several
researchers proposed reverse engineering of human thinking
into computer programs as a method to understand cognitive
processes [79]. Some even went so far as to interpret dreams
as an operating system process [80]. These ideas were not
without criticism. Frijda [81] argued that there would always
be technical aspects of computer code without a corresponding
cognitive function. History seems to given the author right since
few studies nowadays pursues replicating human thinking by
procedural computer programs. There were of course many
other types of studies in this area. For example, early studies
in computational neuroscience influenced the behavioral-science
side of cognitive science [82].

Sociology
Simulation, in sociology, has always been linked to finding social
mechanisms. Even before computer simulations, there were
mathematical models for that purpose [83, 84]. As an example
of mathematical model building, we briefly mention Nicholas
Rashevsky and his program in “mathematical biophysics” at
University of Chicago [85, 86]. Trained as a physicist, Rashevsky
and his group pioneered the modeling of many social (and
biological) phenomena such as social influence [87], how social
group structure affect information flow [88], and fundamental
properties of social networks [89]. However, Rashevsky and
colleagues operated rather disconnected from the rest of
academia—mostly publishing in their Bulletin of Mathematical
Biophysics and often not building on empirical results available.
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Perhaps for this reason (even though his contemporaries were
aware of his work [90]) is Rashevsky et al.’s direct impact on
today’s sociology rather limited.

Even though there were stochastic models in sociology in
the early 1960’s (e.g., [91]), these were analyzed analytically and
early sociological computer simulations were off to a rather late
start. Coleman [92], Gullahorn and Gullahorn [93, 94] gave the
earliest discussions of the prospects of computer modeling in
sociology that we are aware of. Coleman discussed both abstract
questions about relating social action and social organization, and
more concrete ones like using simulation to test social-contagion
scenarios of smoking among adolescents. The Gullahorns were
more interested in organization and conflict resolution, typically
in the interface of sociology and behavioral science. McGinnis
[95] presented a stochastic model of social mobility that he
analyzed both analytically and by simulations. “Mobility,” in
McGinnis work, should be read in an extremely general sense,
indicating change of an individual’s position in any sociometric
observable (including physical space).

Markley’s 1967 paper on the SIVA model is another early
simulation study of a classic sociological problem [96], namely
what kind of pairwise relationships that could build up a stable
organization. The letters SIVA stands for four aspects of such
relationships in an organization facing some situation that could
require some action to be taken—Strength (the ratio of how
important the two individuals are to the organization), Influence
(describing how strongly they influence each other), Volitional
(the relative will to act with respect to the situation) and Action
(quantifying the joint result of the two actors). These different
aspects are coupled and Markley used computer simulations to
find fixed points of the dynamics. For many parameter values, it
turned out that the SIVA values diverged or fluctuated—which
Markley took as an indication that one would not observe such
combinations of parameter values in real organizations.

A model touching classical sociological ground that recently
has received exceptional amounts of attention is Schelling’s
segregation model [97]. With this model, Schelling argued that
a strong racial segregation (with the United States in mind) does
not necessarily mean that people have very strong opinions about
the race of their neighbors. Briefly, Schelling spread individuals
of two races on a square grid. Some sites were left vacant. Then
he picked an individual at random. If this individual had a lower
ratio of neighbors of the same race than a threshold value, then he
or she moved to a vacant site. It turned out that the segregation
(measured as the fraction of links between people of the same
race) would always move away from threshold as the iterations
converged. Segregation, Schelling concluded, could thus occur
without people actively avoiding different races (they just needed
to seek similar neighbors), and spatial effects would make a
naïve interpretation of the observed mixing overestimating the
actual sentiments of the people. The core question—what are the
weakest requirements (of tolerance to your neighbors ethnicity)
for something (racial segregation) to happen—was a hallmark
of Schelling’s research and probably an approach that could
be fruitful for future studies. We highly recommend Schelling’s
popular science book Micromotives and Macrobehavior [98] as a
bridge between the methodologies of natural and social science.

Discussion and Conclusions

The motivation for the use of mechanistic models in social

science is often to use them as proof-of concept models. “[I]t
forces one to be specific about the variables in interpersonal

behavior and the exact relation between them” [93, 99, 100].
The way computer programming forces the researchers to
break down the social phenomena into algorithmic blocks helps

identifying mechanisms [93, 101]. Other authors point out

that with computational methods, the researchers can avoid
oversimplifying the problem [50]. Another point of view is that
simulation in social sciences is primarily for exploring poorly
understood situations and phenomena as a replacement for an
actual (in practice impossible to carry out) experiment [48, 102–
104]. Such models are obviously closest to hypothesis generators
in our above classification. Crane [105] and Ostrom [106] think
of computer simulations that, alongside natural languages and
mathematics, could describe social sciences. Going a bit off topic,
other authors went so far as to using, or recommending to
use, computer programs as representations of human cognitive
processes [79, 80, 107].

The history of computational studies in social science—as
illustrated by our examples—has seen a gradual shift of focus.
In the early days, it was, as mentioned, often regarded as a
replacement for empirical studies. Such mechanistic models
for scenario testing still exists in both natural and social
science. However, nowadays it is much more common to use
computational methods in theory building—either one uses it
to test the completeness of a theoretical framework (proof-
of-concept modeling), or to explore the space of possible
mechanisms or outcomes (hypothesis discovery).

It is quite remarkable how similar this development has been
in the natural and social sciences. At least since mid-1950s, it
is hard to say that one side leads the way. This is reflected
in how the information flows between disciplines. Looking at
the interdisciplinary citation patterns [108] found that out of
203,900 citations from social science journals, 33,891 were to
natural science journals, and out of 10,080,078 citations from
natural science journals 35,199 were to social science journals. If
citations were random, without any within-field bias there would
be around 201,000 interdisciplinary citations in both directions,
which is 5.9 times the number of social science citations to natural
science and 5.7 times the number of natural science citations to
social science. In this view, there is almost no inherent asymmetry
in the information flow between the areas, only an asymmetry
induced by the size difference.

Even though social scientists do not need to collaborate
with natural scientists to develop mechanistic modeling, we
do encourage collaboration. The usefulness of interdisciplinary
collaborations comes from the details of the scientific work.
It can help people to see their object system with new eyes.
One discipline may, for example, care about the extreme and
need input from another to see interesting aspects of the
average (cf. phase transitions in the complexity of algorithms
[109]). Interdisciplinary information flow could help a discipline
overcome technical difficulties. The use of MCMC techniques
in the social sciences may be a good example of this. It is,
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however, important that such developments come from a need to
understand the world around us and not just because they have
not been done before.

A major trend at the time of writing is “big data” and “data
science.” This essay has intentionally focused on the other side of
computational social science—mechanistic models. In practice,
these two sides can (and do) influence each other. If it cannot
predict real systems at all, a mechanistic model is quite worthless
in providing a causal explanation [110, 111]. Modern, large-scale
data sets provide plenty opportunities to validate models [112–
114]. Another use of big data is in hybrid approaches where
one combines a simulation and an empirical dataset, for example
simulations of disease spreading on temporal networks of human
contacts [45].

As a concluding remark, we want to express our support
for social scientists interested in exploring the methods of
natural science and natural scientists seeking applications for
their methods in the social sciences. To be successful and make
most out of such a step, we recommend the social scientist
to spend a month to learn a general programming language
(Python, Matlab, C, etc. . . ). There is not shortcut (like an
integrated modeling environment) to learning the computational
subtleties and trade-offs of building a simulation model, and
simulation papers often do not mention them. Furthermore,
if a social scientist leaves this aspect to a natural scientist,

then she also leaves parts of the social modeling to the natural
scientist—collaboration simply works better if the computational
fundamentals need not be discussed. To the theoretical natural
scientists that are used to simulations, we recommend spending a
month reading popular social science books (e.g., [98, 102, 115]).
There are too many examples of natural scientists going into
social science with the ambition to use the same methods as
they are used to—only replacing the natural components by
social—and ending up with results that are unverifiable, too
general to be interesting, infeasible or already known. While
reading, we encourage meditating the following question—why
do social scientists ask different questions about society than
natural scientists do about nature?
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Under the name of Citizen Science, many innovative practices in which volunteers

partner up with scientists to pose and answer real-world questions are growing rapidly

worldwide. Citizen Science can furnish ready-made solutions with citizens playing an

active role. However, this framework is still far from being well established as a standard

tool for computational social science research. Here, we present our experience in

bridging gap between computational social science and the philosophy underlying

Citizen Science, which in our case has taken the form of what we call “pop-up

experiments.” These are non-permanent, highly participatory collective experiments

which blend features developed by big data methodologies and behavioral experimental

protocols with the ideals of Citizen Science. The main issues to take into account

whenever planning experiments of this type are classified, discussed and grouped

into three categories: infrastructure, public engagement, and the knowledge return for

citizens. We explain the solutions we have implemented, providing practical examples

grounded in our own experience in an urban context (Barcelona, Spain). Our aim here is

that this work will serve as a guideline for groups willing to adopt and expand such in vivo

practices and we hope it opens up the debate regarding the possibilities (and also the

limitations) that the Citizen Science framework can offer the study of social phenomena.

Keywords: Citizen Science, participation, engagement, computational social science, data, experiments,

collective, methods

1. INTRODUCTION

The relationship between knowledge and society has always been an important aspect to consider
when one tries to understand how science advances and how research is performed [1, 2]. The
general public has, however, mostly been left out of this methodology and creation processes [3, 4].
Citizens are generally considered as passive subjects to whom only finished results are presented
in the form of simplified statements; yet paradoxically, we implicitly ask them to support and
encourage research. The acknowledgment of this ivory tower problem has recently opened up
new and exciting opportunities to open-minded scientists. The advent of digital communication
technologies, mobile devices and Web 2.0 is fostering a new kind of relation between professional
scientists and dedicated volunteers or participants.

22

http://www.frontiersin.org/Physics
http://www.frontiersin.org/Physics/editorialboard
http://www.frontiersin.org/Physics/editorialboard
http://www.frontiersin.org/Physics/editorialboard
http://www.frontiersin.org/Physics/editorialboard
http://dx.doi.org/10.3389/fphy.2015.00093
http://crossmark.crossref.org/dialog/?doi=10.3389/fphy.2015.00093&domain=pdf&date_stamp=2016-01-05
http://www.frontiersin.org/Physics
http://www.frontiersin.org
http://www.frontiersin.org/Physics/archive
https://creativecommons.org/licenses/by/4.0/
mailto:josep.perello@ub.edu
http://dx.doi.org/10.3389/fphy.2015.00093
http://journal.frontiersin.org/article/10.3389/fphy.2015.00093/abstract
http://loop.frontiersin.org/people/291265/overview
http://loop.frontiersin.org/people/278793/overview
http://loop.frontiersin.org/people/203077/overview


Sagarra et al. Citizen Science Practices

Under the name of Citizen Science (CS), many innovative
practices in which “volunteers partner with scientists to answer
and pose real-world questions” (as stated in the Cornell
Ornithology Lab web page; one of the precursors of CS
practices in the 1980s) are growing rapidly worldwide [5–8].
Recently, CS has been formally defined by the Socientize White
Paper as: “general public engagement in scientific research
activities when citizens actively contribute to science either
with their intellectual effort or surrounding knowledge or with
their own tools and resources” [9]. This open, networked and
transdisciplinary scenario, favors more democratic research,
thanks to contributions from amateur or non-professional
scientists [10]. Over the last few years, important results have
been published in high-impact journals by using participatory
practices [6, 7]. All too often the hidden power of thousands of
hands working together is making itself apparent in many fields,
and showing its performance to be comparable to (or even better
than) expensive supercomputers when used to analyse/classify
astronomical images [11], to reconstruct 3D brain maps based
on 2D images [12], or to find stable biomolecular structures [13],
to name very few of the cases with a large impact. Citizen
contributions can also have a direct impact on society by, for
instance, helping to create exhaustive and shared geolocalized
datasets [14] at a density level unattainable by the vast majority
of private sensor networks (and at a much reduced cost) or
by collectively gathering empirical evidence to force public
administration action (for example, the shutdown of a noisy
factory located in London 15). Most active volunteers can
contribute by providing experimental data to widen the reach
of researchers, raise new questions and co-create a new scientific
culture [3, 16].

Computational social science (CSS) is a multidisciplinary
field at the intersection of social, computational and complexity
sciences, whose subject of study is human interactions and society
itself [17, 18]. However, CS practices remain vastly unexplored in
this context when compared to other fields such as environmental
sciences, in which they already have a long history [19–21].
Attempts to incorporate the participation of ordinary citizens
as playing an important role can be found in fields such as
experimental economics [22], the design of financial trading
floors [23], and human mobility [24]. Work on the emergence
of cooperation [25] and the dynamics of social interactions [26]
is also noteworthy. All these experiments yielded important
scientific outcomes, with protocols that are well-established and
robust within the behavioral sciences (see for instance [27] and
[28]), but unfortunately they remain on the very first level of
the CS scale [15]. At that level, citizens are involved only as
sensors or volunteer subjects for certain experiments in strictly
controlled environments; their participation and potential are
only partially unleashed. One possible way out of this first level
was already provided by Latour [3, 29], when he proposed
collective experiments in which the public becomes a driving
force of the research. Researchers in the wild are then directly
concerned with the knowledge they produce, because they are
both objects and subjects of their research [4]. Some interesting
research initiatives have emerged along these lines and involve
massive experiments in collaboration with a CS foundation, such

as Ibercivis [30] or through online platforms such as Volunteer
Science (a Lazer Lab platform). More radical initiatives consider
collaboration with artists as well, and some have been realized
in museums or exhibitions and as large-scale performance art
[31, 32].

CSS research has also recently been applied in the so-called
“big data" paradigm [33, 34]. Much has been said about it and
the possibilities it offers to society, industry and researchers.
“Smart cities” pack urban areas with all kinds of sensors and
integrate the information into a broad collection of datasets.
Mobile devices also represent a powerful tool to monitor real-
time user-related statistics, such as health, and major businesses
opportunities are already being foreseen by companies. However,
these approaches again treat citizens as passive subjects from
whom one records private data in an non-consensual way, and
throws up the aggravated problem that the unaware producers of
these data (i.e., citizens) lose control of their use, exploitation and
analysis. The validity of the conclusions drawn from the analysis
of such datasets are still today a subject of discussion, mainly due
to poor control of the process of gathering the data (by the public
in general and by scientists in particular), inherent population
and sampling biases [35] and the lack of reproducibility, among
other systemic problems [36]. Last but not least, the big data
paradigm has so far failed to provide society with the necessary
public debate and transparent practices, adopting the bottom-up
approach it preconizes. It currently relies on huge infrastructures
only available to private corporations, whose objectives may not
coincide with those of researchers and the citizenry, and provides
conditioned access to the data contents which, in addition,
generally cannot be freely (re)used without filtering.

Our purpose here, however, is not to discuss problems
inherent to big data. Rather, the approach we present aims to
explore the potential of blending interesting features recently
developed by big data methodologies with the ambitious and
democratic ideals of CS. Public participation and scientific
empowerment induce a level of (conscious) proximity with the
subjects of the experiments that can be a highly valuable source
of high-quality data [37, 38], or at least, of non-conflictive
information with regards to data anonymity [39], that may
correct biases and systematic experimental errors. This approach
is potentially a way to overcome privacy and ethical issues
that arise when collecting data from digital social platforms,
while keeping high standards of participation [33, 40, 41].
Moreover, CS projects can use a vast variety of social platforms
to optimize dissemination, encourage and increase participation
and develop gamification strategies [42] to reinforce engagement.
The so-called Science of Citizen Science studies the emergent
participatory dynamics in this class of projects [43, 44], so that
this also opens the door to new contexts within which study social
phenomena.

The open philosophy at the heart of CS methods, such as
open data licensing and coding, can also clearly improve science–
society–policy interactions in a democratic and transparent
way [45] through so-called deliberative democracy [46]. The
CS approach simultaneously represents a powerful example of
responsible research and innovation (RRI) practices included
in the EU Horizon 2020 research programme [47] and
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the Quadruple Helix model in which government, industry,
academia and civil participants work together to co-create the
future and drive structural changes far beyond the scope of what
any one organization or person could do alone [48]. Along these
lines, we consider that the potential of CSS when adopting CS
methods is vast, since its subject of study is citizens themselves.
Therefore, their engagement with projects that study their own
behavior is highly likely, since it has an immediate impact on their
daily lives. As a result, largemotivated communities and scientists
can work hand in hand to tackle the challenges arising from
CSS, but also collectively circumvent potential side effects. The
possibility of reaching wider and more diverse communities will
help in the refinement of more universal statements avoiding the
population biases [49] and problems of reproducibility present
in empirical social science studies [50, 51]. Another important
advantage of working jointly with different communities is that it
allows scientists to set up lab-in-the-field or in vivo experiments,
which instead of isolating subjects from their natural urban
environment—where socialization takes place—are transparent,
fully consensual and enriched, thanks to the active participation
of citizens [4, 31]. Such practices and methodologies, however,
are still far from being well established as a standard tool for CSS
research.

The main goal of this paper is precisely to motivate the
somewhat unexplored incorporation of CS practices into CSS
research activities. Given the arduous natural of such a task,
here, we limit ourselves to a reformatting of existing standard
experimental strategies and methods in science through what
we call “pop-up experiments" (PUEs). Such a concept has been
shaped by the lessons we have learned while running experiments
in public spaces in the city of Barcelona (Spain). Section 2
introduces this very flexible solution which makes collective
experimentation possible, and discusses its three essential
ingredients: adaptable infrastructure, public engagement and the
knowledge return for citizens. Finally, Section 3 concludes the
manuscript with a discussion of what we have presented to that
point, together with some considerations concerning the future
of CS practices within CSS research.

2. A FLEXIBLE SOLUTION FOR CITIZEN
SCIENCE PRACTICES WITHIN CSS: THE
POP-UP EXPERIMENT

2.1. Context and Motivation
Over the last 4 years, the local authorities in Barcelona (i.e.,
City Council) and its Creativity and Innovation Direction in
collaboration with several organizations have set as an objective
the exploration of the possibilities of transforming the city into
a public living lab [48], where new creative technologies can be
tested and new knowledge can be constructed collectively. This
has been done through the Barcelona Lab platform and one of
its most pre-eminent actions has been establishing CS practices
in and with the city. The first task was to create the Barcelona
Citizen Science Office and to build a community of practitioners
where most of the CS projects from different research institutions
in Barcelona could converge. The Office serves as ameeting point

for CS projects, where researchers can pool forces, experiences
and knowledge, and also where citizens can connect with these
initiatives easily and effectively. The second task is directly linked
with the subject of this paper and was conceived to test how far
the different public administrations can go in opening up their
resources to collectively run scientific experiments [31]. The CS
toolbox clearly provides the perfect framework for the design of
public experiments, and exploration of the emergent tensions and
problematic issues when running public living labs. Furthermore,
the involvement of the City Council provided us with the
opportunity to embed these experiments into important massive
cultural events, which constitute the perfect environment for
reinforcing the openness and transparency of our research
process with respect to society, or at least to the citizens of
Barcelona.

We have conducted several experiments to put CS ideals into
practice and test their potential in urban contexts. In contrast
with existing environmental CS projects in other cities such as
London or New York (with civic initiatives such as Mapping for
Change or Public Lab, respectively), we focussed our attention
on CSS related problems. Our aim was to explore relations
between city, citizens and scientists, which we considered had
been neglected or inadequately addressed. More specifically,
this rather wild testing consisted of seven different experiments
performed between 2012 and 2015 on three different topics that
address different questions: humanmobility (How do wemove?),
social dilemmas (How cooperative are we?) and decision-
making process (How do we take decisions in a very uncertain
environment such as financial markets?). These are summarized
in Table 1 and fully described in Section 4. Other points common
to these experiments are the large number of volunteers that
participate (up to 541 in a single experiment; 1255 in total) and
the consequent large number of records (up to 18,525 decisions
for a single experiment, 55,390 entries in total), despite the rather
limited budget allocated to the experiments (from 1000 EUR to
4000 EUR per experiment, and around 2200 EUR on average).
Despite dealing with different research questions, common
problems (related to CS practices, but also to CSS research
studying human behavior in general [34]) were identified and
potential solutions were developed to overcome them in all cases.
Some of the potential solutions that were implemented were
successful, others were not; but all the experiences have shaped
the concept and the process of experimentation in CSS research
consistent with CS ideals.

2.2. Definition of a Pop-Up Experiment and
the Underlying Process
The generic definition of a pop-up, according to the Cambridge
dictionary, is: “Pop-up (adj.): used to described a shop,
restaurant, etc. that operated temporarily and only for a short
period when it is likely to get a lot of customers." From the initial
stages, we thought that this description fitted well into our non-
permanent but highly participatory experimental set-up when
applying CS principles to CSS research in urban contexts. The
parallel is very illustrative to understand better a much more
formal definition that we use to describe our approach from a
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theoretical perspective. It is based on the expertise gained from
the seven experiments carried out over the last 4 years and reads:

A PUE is a physical, light, very flexible, highly adaptable,

reproducible, transportable, tuneable, collective, participatory

and public experimental set-up for urban contexts that: (1) applies

Citizen Science practices and ideals to provide ground-breaking

knowledge; and (2) transforms the experiment into a valuable,

socially respectful, consented and transparent experience for non-

expert volunteer participants with the possibility of building

common urban knowledge that arises from fact-based effective

knowledge valid for both cities and citizens.

In our case, we apply this concept to CSS with the aim
of answering very specific research questions with the
participation of larger population samples than those in
behavioral experiments. The research process that emerges from
PUEs can be synthesized in the flow diagram in Figure 1. The
whole process starts with a research question or a challenge for
society that may be promoted by citizens or scientists, but also
by private organizations, public institutions or civil movements.
The initial impulse helps to create an adequate research group,
which will need to be multidisciplinary if it is to tackle a complex
problem consisting of many intertwined issues. The group then
co-creates the experiment both considering the experimental
set-up and the tasks that unavoidably involve public engagement.
The experiment is then carried out and data are generated
collectively (crowdsourced) under the particular constrains of
public spaces which depend not only on the conditions designed
by the scientists but also on many other practical limitations.
The data are then analyzed using standard scientific methods,
but non-professional scientists are also invited to contribute to
specific tasks [11, 12] or by using other non-standard strategies
in the exploration of the data [13]. These two contributions
by volunteers make up what we call “distributed intelligence”
and generate results that it is difficult to match by conventional
computer analysis. The results can take many forms, depending
on the audience being addressed; from a scientific paper to
personalized reports that can be read by any citizen or even
recommendations that are valid for policymakers at the city level.
Finally, the whole process can generate the impulse necessary
to promote and face a new social and scientific challenge or an
existing need through the same scheme.

The PUE solution also represents middle ground between
behavioral science experiments and big data methodologies. To
understand the context in which the PUEs we propose can
be placed better, Figure 2 compares the different approaches
considered using a radar chart that qualitatively measures, with
three degrees of intensity (low, medium and high), six different
aspects that characterize each type of experiment. We can
observe that the three different approaches cover different areas.
Behavioral experiments and big data have a limited overlap,
while the PUEs share several aspects with the former two.
One might argue that the excess of openness of CS constitutes
a severe limitation with respect to objectivity, compared to
the solid experimental protocols in behavioral science [27, 52].
However, it is also true that the highly participatory nature of
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FIGURE 1 | The research process in pop-up experiments. We identify the different steps in the whole process in a set of boxes, from conception to completion.

Starting from the research question, we introduce the design and performance of a given experiment that is intended to respond to a particular challenge. The

crowdsourced data gathered can be analyzed both by expert scientists and amateur citizens to produce new knowledge (the return) in different forms. The results are

finally taken as inspiration and renewed energy to face new challenges and new research questions. Data quality is also part of the process: the lessons learned from

the scientific analysis can improve future experimental conditions. Ovals in orange: volunteers’ contributions; squares in magenta: tasks performed exclusively by

scientists; rounded rectangles in green: tasks shared by both citizens and scientists.

CS can be very effective at reaching a more realistic spectrum
of the population and a larger sample thereby obtaining more
general statements with stronger statistical support (see [28],
for alternative and complementary methods). Since it is directly
attached to real-world situations, the PUE solution avoids the
danger of exclusive and distorted spaces of in vitro (or ex
vivo) laboratory experiments. It also brings additional values
to the more classic social science lab-in-the-field experiments
which generally limit interaction among subjects and scientists
as much as possible. At the other extreme, CS practices will
never be able to compete in terms of the quantity of data
with the big data world, but this can be compensated for. A
better understanding of the volunteers involved and improved
knowledge of their peculiarities helps to avoid possible biases.
Furthermore, the active nature of PUEs allows some conditions
of the experiments to be tuned to explore alternative scenarios.

PUEs can indeed be an alternative to the controversial virtual
labs in social networks and mobile games which have yielded
interesting results, for instance, in emotional contagion with
experiments on the Facebook platform [53], not without an
intense public debate on ethical and privacy issues concerning
the way the experiments were performed [54].

We think that PUEs could become an essential approach for
the empirically testing of the many statements of CSS which is
complementary to the lab-in-the-field, virtual labs and in vitro
experiences. For this to happen, we have identified the main
obstacles that hinder the development of CS initiatives with
respect to other forms of social experimentation. They can be
grouped into three categories: infrastructure, engagement, and
return. In what follows, we detail each of the obstacles and
illustrate the solutions that PUEs offer, together with practical
examples applied to each case.
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FIGURE 2 | Radar chart comparing seven characteristics of the pop-up experiment approach with behavioral experiment and big data research. The

features are graded in three different degrees of intensity from low (smallest radius) to high (largest radius). “Short-time” describes the time required to run the

experiment. “Scalable” qualifies how easy it is to scale up and increase the number of subjects in the experiment while preserving original design. “Universal”

quantifies the generality of the statements produced by the experiments. “In vivo” measures how close the experimental set-up is to everyday situations or everyday

life. “Reproducible” assesses the capacity to repeat the experiment under identical conditions. Finally, “Tunable” quantifies how flexible and versatile the conditions of

the experimental design are.

2.3. Light and Flexible Experimental
Infrastructure
By infrastructure, we understand all the logistics necessary to
make the experiments possible. In a broad CS context, the
necessary elements differ from those of orthodox scientific
infrastructure. As discussed in Bonney et al. [6] and Franzoni
and Sauermann [55], they include other tools, other technical
support and other spaces. The second block of Table 1 lists some
of the elements we have deemed capital to satisfactorily collect
reliable data. PUEs should be designed favoring scalability, in
the sense of easily allowing an increase in the population sample
size or repetition of the experiment in another space. To make
this possible, the experiments must rely on solid and well-tested
infrastructure, with an appealing volunteer experience to avoid
frustrating the participants. When considering the experimental
set-up, we used several strategies to foster participation and
ensure the success of the experiments.

First, we physically set up the PUEs in very particular contexts
in urban areas and, in all cases, we placed them in crowded
(moderately to highly dense) places, to reach volunteers easily.
In other words, we preferred to go where citizens were instead of
encouraging them to come to our labs. To make this possible,
the City Council offered specific windows, for instance, at a
couple of festivals, as hosting events (the Bee-Path(1), Bee-
Path(2), Cooperation(1), Mr. Banks and Dr. Brain experiments).
This meant that we had to adapt to these specific out-of-the-lab
and in vivo contexts; the logistics and the composition of the
research teams thus unavoidably became more diverse, complex,
heterodox and highly multidisciplinary. In collaboration with the
event organizers, we then prepared a specific space, of reduced
dimensions, for the experiment, where the volunteers (whose
typology was different in each case) could participate through a
recording device.

Second, PUEs demand that the devices used by participants
to collect and manipulate data, either actively or passively,
must be familiar to them. In our experiments we designed
specific software to run on laptops (the Cooperation(1) and
Cooperation(2) experiments), mobile phones (the Bee-Path(1)
and Bee-Path(2) experiments) and tablets (the Mr. Banks and
Dr. Brain experiments). However, it may also be possible
to use cameras, video cameras, or any other sophisticated
device as long as the participants easily become familiarized
with it after a few instructions or a tutorial. This sort of
infrastructure is in the end what allows us to carry out
experiments in a participant’s everyday (not strange: in vivo)
environment. Initially, we overlooked this aspect in the design
of the set-up and the allocation of resources, but having a
user-friendly interface is important if our aim is for people to
behave normally. Similarly, both the instructions and interface
should be understandable and manageable for people of all
ages.

Third, in order to study social behavior in different
environments, the experiments need to be adaptable, tunable,
transportable, versatile and easy to set up in different places. All
the devices mentioned above fulfill this requirement as well.

Fourth, PUEs are typically one-shot affairs, since they are
hosted at a festival, a fair or in a classroom, whichmeans that they
are concentrated in time (with a duration of 0.25–2 days) and
there is no chance of a second shot. All the collectable data could
be threatened if something goes wrong. Extensive beta testing
and defensive programming is imperative to ensure that the
collected data is reliable. It is also necessary to anticipate potential
problems: one must be flexible enough to be able to retrace
alternative research questions on the fly if the PUE location and
conditions are not fully satisfactory to respond to the initial
research purposes.
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Finally, numbers matter and experiments must reach enough
statistical strength for rigorous analysis to be performed, and
this needs to be carefully taken into account during the design
phase of the experiment (see Figure 1). Typically, the more
expensive devices are, the fewer data collectors you can have;
so the capacity to collect data is affected and this is not a very
effective strategy in a rather short lived one-shot event. Therefore,
cheap infrastructure favors scalability in the end. Alternatively,
new collaborators needs to be found or an extra effort is required
to find sponsorship (for instance, related to science outreach)
which, in any case, will complicate the preparation phase of the
experiment. Scalability is indeed interesting, but it has its side
effects as well: relying on infrastructure provided by volunteers,
such as smart phones, can greatly influence the quality of
the data and its normalization (one of the central problems
related to the big data paradigm). In the Bee-Path(1) experiment,
where we used the GPS of the smartphones of the participants
themselves, the cleaning process was far more laborious than in
the other cases, due to this (see numbers in Table 1). In contrast,
the Cooperation(1), Cooperation(2), Mr. Banks and Dr. Brain
experiments, where we designed and programmed the software
and supplied the hardware for the experiences of the participants,
did not require much post-collection treatment.

2.4. Public Engagement Tools and
Strategies
PUEs are physically based and rooted in particular, temporal,
local contexts. This delimited framework allows dissemination
resources and efforts to be concentrated at a given spot over
a certain time, which increases the effectiveness and efficiency
of the campaign in terms of both workforce and budget.
Additionally, the one-shot nature of PUEs allows us to avoid the
problem of keeping participants engaged in an activity spanning
long periods of time; but consequently they rely completely on
constantly renewing the base of participants (which may require
higher dissemination). To this end, the initial action was the
creation of a census of volunteers shared by all members of the
Barcelona Citizen Science Office research group.

Another factor of major importance is related to the contact
between researchers, organizers and citizens in the set-up of the
experiment. This allows for pleasant dialogue and exchange of
views that in turn helps to frame the scientific question being
studied, as well as developing possible improvements for future
experiences. This can be achieved by stimulating the curiosity
of participants concerning the experiment and the research
associated with it. The research question should be focussed and
understandable to an average person who is not an expert in the
field.

To engage citizens in such a dialogue, however, requires
certain steps. First, it is necessary to attract potential participants
with an appealing set-up. This includes location in the physical
space, but also an effective publicity campaign on the days prior
to the experiment (see preparatory actions in Table 1). It is
important to offer a harmonized design with common themes
that citizens can relate to the experiment. To make our material
appealing, we collaborated with an artist (the Bee-Path(1)
and Bee-Path(2) experiments) and a graphic designer (the

Cooperation(1), Cooperation(2), Mr. Banks(1), Mr. Banks(2),
and Dr. Brain experiments) whose main contribution was the
creation of characters associated with each experiment. The
function of these characters, not far from to the world of cartoons,
was to attract the attention of the public, but also to present the
experiment inmost of the cases as an attractive game, since one of
the most powerful elements that engages people in an activity is
the expectation of having fun. It is certainly possible to maintain
scientific rigor while using gamification strategies to create an
atmosphere of play for the study, thus transforming it into a
more complete experience [56]. Moreover, actors were used as
human representations of these characters (Mr. Banks and Dr.
Brain). The actors were indeed an important element to bring on-
site attractiveness to the experiment, along with: having a large
team of scientists and facilitators present (a rotating team of up
to 10 people); an optimum and visible location inside the event
space; and material/devices to promote the experiment, such as
screens to visualize in real time the results of the experiments
or promotional material (flyers and merchandise). Based on the
experience, we have optimized all these ingredients and we have
included some scenographic elements in the last experiment
performed within the Barcelona DAU Board Games Festival (Dr.
Brain).

Notwithstanding, simply getting a large number of people
engaged is not enough. Additionally, it is also necessary to
aim for universality in the population sample. The experiment
must be designed in such a way that people of all ages and
conditions can really participate. Furthermore, a PUE has to be
transportable at a minimal cost after it has been implemented
once, in order to be reproduced in different environments
(which may favor certain types of population). As an example,
the Cooperation(1) and Cooperation(2) experiments are very
illustrative. In the Cooperation(1) experiment, we discovered
that different age groups, especially children ranging from 10
to 16 years old, behaved in different ways and cooperated
with different probabilities. Apparently, children were more
volatile and less prone to cooperate than the control group
in a repeated prisoner’s dilemma. Fifteen months later, we
repeated the experiment in a secondary school [12–13 years
old: the Cooperation(2) experiment]. On one hand, in this
case the results showed the same levels of cooperation as
the control group in Cooperation(1) experiment. However, on
the other hand, same volatile behavior, more intense than
for the control group in Cooperation(1), was again observed.
Therefore, thanks to the repetition of the experiment, we
rejected the early idea of different levels of cooperation in
children, while at the same time it strengthened the claim that
children exhibit volatile behavior (Poncela-Casasnovas et al.,
submitted).

2.5. Outcome and Return for the Public
Last but not least come the factors related to the management
of the aftermath of the experiment (fourth section of Table 1).
PUEs, as we have implemented them, are intrinsically cross-
disciplinary and involve a large number of agents and
institutions, which in turn may have diverging interests and
expectations regarding the outcome of a particular experiment.
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Any successful PUE must be able to accommodate all these
interests and create positive environments of collaboration in
which all the actors contribute in a mutually cooperative way.

The organizers of a festival will, for instance, find in PUEs
an innovative format with participatory activities to add to
their programme [the Cooperation(1), Mr. Banks and Dr.
Brain experiments]. PUEs can also be a transparent and pro-
active system of gathering data to provide information and
opportunities for analysis of the event itself: useful for planning
and improvement. The Bee-Path(1) experiment studied how
visitors moved around a given space and provided information
based on actual facts that could be used to improve the spatial
distribution in future editions of the fair where it was developed.
City, local and other administrations will find in PUEs an
innovative way to establish direct contact with citizens; to co-
create new knowledge valid for the interests of the city as a
whole and eventually to generate a census of highly motivated
citizens, prepared to participate in this kind of activity. Scientists
will obviously try to publish new research based on the data
gathered.

All these expectations are very different from each other and
should converge organically if a collective experiment is to be
run successfully [3]. However, we should not forget to include
quite specifically the expected return for our central actors: the
volunteers. Their contribution is essential in CS practices [10]
and it is therefore completely fair to argue that citizens who
agree to participate in these initiatives need to see a clear benefit
from their perspective, comparable to (albeit different from)
that of the local authorities, festival organizers, scientists or any
other contributors. Moreover, the high degree of concentration
in space and time, together with the intense public exposure of
PUEs, increase volunteer expectations even more compared to
other ordinary cases in CS [11, 12]. The face-to-face relationship
established between researchers and citizens in all the PUEs we
have run testifies to this being a very delicate issue that needs to
be managed with great care.

Any PUE should manage expectations on three different time
scales: short term (during and immediately after the experiment),
medium term (a week or a month afterwards), and long term (the
following months or even years). In some of the experiments we
failed in this aspect on at least one of the three time scales, since
we did not properly anticipate the effort required to respond to
the expectations of the volunteers.

The short term responds to basic curiosity. This point is
related to engagement and the experimental set-up: the physical
presence of scientists (with no mediation) allows them to explain
the experiment in the most convinced and convincing way, and
thus to motivate people. Also, the introduction of large screens
where the progress of other participants can be followed in
real time helped in this matter. In the Bee-Path experiments
[Bee-Path(1) and Bee-Path(2)] we showed the GPS locations of
the participants on a map; while in the Mr. Banks experiment
we showed a ranking of the best players (best performances
by the participants). This information was intended to boost
participation and it was also chosen in such a way that it distorted
the questions addressed to a minimally degree and thus did
not influence the results of each experiment. The medium term

relates to expectations regarding the results of the experiment.
Participants want to know whether the set-up was successful and
whether they performed well enough. In order to complement
their short-term experience, it is important to keep participants
informed as to the outcomes of the PUE. An example of a
medium timescale is the Dr. Brain case, where a personalized
report of performance during the experiment was sent to each
participant by e-mail. In some cases, and based on these results,
this also generated new dialogue between scientists and citizens.
The last timescale to bemanaged consists of a more formal way of
presenting the results of the study, through public presentations
and talks. So, in the case of the Bee-Path(1) experiment, outreach
conferences, public debates and even a summer course for
(graduate and undergraduate) students interested in CS practices
were organized.

All these are important for the success of PUEs and should
be clearly laid out to volunteers before they agree to participate.
The return for volunteers at all these scales is a key ingredient
in the building of a critical mass of engaged citizens; not only
for further experiments, but also to fulfill the objectives of the
work that are not strictly scientific. Being a scientist, the direct
relation with volunteers helps to improve the message and the
way of delivering that message; to refine understanding of the
phenomena involved in an experiment and even to refine a
given experiment at future venues. One final positive side effect
of this contact is the rise in public awareness of the difficulty
and importance of science. As can be seen, forming the project
around a rich and functional web page helps to harmonize all
the time scales discussed and opens up new and interesting
perspectives to bridge PUEswith other online-based CS practices.
It also serves as an efficient way to communicate results and
news of the project to interested citizens, and it could be used
to improve data handling and sharing standards by allowing
participants direct access to and management of their personal
registers.

3. DISCUSSION

The advent of globalization and the fast track taken by innovation
[48], combined with enormous challenges, have created demand
for answers at a very fast pace. Deeply intertwined global and
local actions are necessary to meet social challenges such as
the continuous growth of the human population, the effects of
climate change and even the need for collective decision-taking
mechanisms prepared for effective policy-making. These urgent
requirements collide with the typically long-winded process of
scientific research, and this situation is affecting the philosophy,
available resources and methods underlying science itself [55].
Society expects much from us as scientists but still lacks reflection
and knowledge concerning the route toward more collaborative,
public, open and responsive research. CS practices, even though
they may not provide definitive answers to social challenges,
aims to shorten the gap between the public and researchers, or
in the worst case scenario, at least to increase social awareness
of the problems tackled. CS practices can thus allow science to
furnish ready-made solutions in public, and with citizens playing
an active role.
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In this work we have presented our experience in bridging the
gap between CSS and the philosophy underlying CS, which in
our case has taken the form of what we call PUEs. We hope that
this work serves as a guideline for groups willing to adopt and
expand such practices, and that it opens up the debate regarding
the possibilities (and also the limitations) these approaches can
offer. The flexibility of behavioral experiments can be combined
with the strengths of big data to create a new tool capable
of generating new collective knowledge. We have conceptually
identified the main issues to be taken into account whenever
CS research is planned in the field of CSS. We have grouped
the challenges into three categories, in accordance with our
experience: infrastructure, engagement and return. Furthermore,
we have explained the solutions we implemented under the
framework of a PUE, providing practical examples grounded
in our own experience. The importance of team work and of
widening the scope to consider questions that are not directly
related with lab work has been highlighted, as well as the need to
work hand in hand with both the public and other social actors.
Other technical aspects of the approach related to necessary but
peculiar infrastructure have also been reviewed.

We firmly support the idea of abandoning the ivory tower
and opening up science and its research processes. Indeed,
CS research essentially relies on the collaboration of citizens,
but not just in passive data gathering. We think that placing
distributed intelligence (with contributions from both experts
and amateurs) at the very core of scientific analysis could also
be a valid strategy to obtain rigorous and valuable results. We
also believe that the PUEs we present here can potentially
empower citizens to take their own civil action, relying on
a collectively constructed facts-based approach [16]. To co-
create and co-design a smart city with citizens, along the
lines of the big data paradigm, will then be much easier and
even more natural, as interests and concerns will be shared
throughout the whole research process. Data gathered in the
wild or in vivo contexts could thus be understood as truly
public and open, while data ownership and knowledge would
be shared from the very start [4]. Our future venues and
experiments will be more deeply inspired by the open-source,
do-it-yourself, do-it-together andmakersmovements [57], which
facilitate learning-by-doing, and low-cost heuristic skills for
everybody. A fresh look at problems can result in innovative
and imaginative ideas that in the end can lead to out of
the box solutions. However, as scientists, we will also have
to find a way to reconcile unorthodox and intuitive forms
with the standards and methodologies of the world of science.
Lessons will need to be learnt from the “open prototyping”
approach, in which an industrial product (such as a car) can
be shaped by an iterative process during which the company
owning the product has no problem allowing input from outside
[58]. Some other clues can be found in the form of collective
experimentation, where a fruitful dialogue can be established
between the matters of concern raised by citizens and the matters
of fact raised by scientists. Latour [29] already introduced
these concepts and discussed their symbiotic relationship by
considering the case study of ecologism (a civil movement) and
ecology (a scientific activity). There are still many aspects to

test and explore concerning this approach in the field of CSS
research.

We would also like, however, to present briefly open questions
related to the way we perform science nowadays, and echo
fundamental contradictions that science is not properly handling
in this era of globalization [55]. CS practices yield pleasing
outputs for communities; but they require a major effort from
scientists, with the downside of providing very low (formal and
bureaucratic) professional recognition. Open social experiments
demand a high level of involvement in cooperation with non-
scientific actors, which may divert professional researchers
from the activity for which they are generally evaluated: the
publication of results. Furthermore, such experiments often
involve multidisciplinary teams, which then may encounter
difficulties finding the appropriate journals to publish their
findings and face difficulties with regard to acceptance in
established communities. We thus urge the scientific community
to actively recognize the valuable advantages of performing
science within our proposed experimental framework.

Lessons learned must be shared, both within the community
(as this paper attempts to do) and outside, in public spaces,
including public institutions and policy makers. Science and
CS are mostly publicly funded and therefore belong to society.
The Internet provided new ways in which new relations among
science and society can be strongly reinforced. We believe that
this is good for everyone as it raises concern for science, by
enhancing participation and, most importantly, by exploring new
effective ways to push the boundaries of knowledge further. We
hope that the present work helps in theoretically establishing the
concept of the PUE and encouraging the adoption of CS practices
in science, in whatever the field.

4. MATERIALS AND METHODS

In this section we provide descriptions of our experiences over
4 years of performing PUEs using CS practices in the city of
Barcelona. Here we detail the experimental methods and briefly
summarize the outcomes. All the experiments were performed in
accordance with institutional (from the Universitat de Barcelona
in all cases except for the Cooperation(1) experiment, when they
were from theUniversidad Carlos III) and national guidelines and
regulations concerning data privacy (in accordance with Spanish
data protection law: the LOPD) and gave written informed
consent in accordance with the Declaration of Helsinki. All
interfaces used included informed consent from all subjects. The
data collected were properly anonymized and not related to
personal details, which in our case were age range, sex, level of
education and electronic (e-mail) address.

4.1. The Bee-Path(1) Experiment
The aim of this experiment was to study the movement of visitors
during their exploration of an outdoor science and technology
fair where several stands with activities were located in an area
of approximately 3 h inside a public park. The experiment took
place during the weekend of 16th and 17th June 2012, specifically
on Saturday afternoon (from 16 to 20 h) and the morning of
Sunday (from 11 to 15 h). The participants had very different
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interests, origins, backgrounds and ages; the organization of
the event estimated that 10,000 people visited the fair. The
Bee-Path information stand was located at the main entrance
where visitors were encouraged to participate in the experiment
by downloading an App onto their mobile phones. After very
simple registration and instructions on how to activate the
App, the participants were left to wander around the fair while
being tracked. After a laborious cleaning process, we analyzed
the movement and trajectories of 27 subjects from the records
provided by the 101 volunteers. We found spatio-temporal
patterns in their movement and we developed a theoretical model
based on Langevin dynamics driven by a gravitational potential
landscape created by the stands. This model was capable of
explaining the results of the experiment and predicted scenarios
with other spatial configurations of the stands. A scientific
paper has been submitted for publication [59]. The project
description, results and data are freely accessible on the web page:
www.bee-path.net.

4.2. The Bee-Path(2) Experiment
Following the previous Bee-Path(1) experiment, this set-up also
focussed on studying the movement of people, but in this case we
were interested in searching patterns or how people move when
exploring a landscape to find something. The experiment took
place at the following edition of the same science and technology
fair (June 15th and 16th 2013). The participants also downloaded
an App, similar to that used in Bee-Path(1), that tracked them;
but in this case they were instructed to find 10 dummies hidden
in the park. Numerous problems were encountered due to several
technological and non-technological factors which impeded
satisfactory performance of the experiment. The technological
issues were principally two: the low accuracy of the recordings,
due to the proximity of the regional parliament building where
Wi-Fi and mobile phone coverage was inhibited; and the limited
performance of the App when running in low-end devices.
Non-technological problems included a bad placement of our
stand (far from the entrance) where recruitment of volunteers
was hard; and the unexpected fact that some members of the
public altered, stole or changed the positions of some of the
dummies. Notwithstanding the failure of the experiment to
produce meaningful and useful results, we learnt important
lessons from these complications.

4.3. The Cooperation(1) Experiment
Here we explored how important age is in the emergence of
cooperation when people repeatedly face the prisoner’s dilemma
(PD). The experiment was carried out with 168 volunteers
selected from the attendants of the Barcelona DAU Festival 2012
(Barcelona’s 1st board game fair; December 15th and 16th).
The set of volunteers was divided into 42 subsets of 4 players
according to age: seven different age groups plus one control
group in which the subjects where not distinguished by age.
Each subset took part in a game where the four participants
played 25 rounds (although they were not aware of it) deciding
between two colors associated with a certain PD pay-off matrix.
The participants played a 2 × 2 PD game with each of their
3 neighbors, choosing the same action for all opponents. In

order to play with an incentive, they were remunerated with
real money proportionally to their final score. During the game,
volunteers interacted through software specially programmed
for the experiment and installed on a laptop. They were not
allowed to talk or signal in any way, but to further guarantee
that potential interactions among the players would not influence
the results of the experiment, the assignment of players to the
different computers in the room was completely random. In
this experiment, together with the “Jesuïtes Casp" experiment
described in the next subsection, we found that the elderly
cooperated more, and there is a behavioral transition from
reciprocal but more volatile behavior, to more persistent actions
toward the end of adolescence. For further details see [60].

4.4. The Cooperation(2) Experiment
The purpose of repeating the Cooperation(1) experiment at the
DAU festival was to confirm the apparent tendency of children
to cooperate less than the average population. Thus, we repeated
the experiment simply to increase the pool of subjects in this
age range, which allowed us to be more statistically accurate. We
analyzed the performance of 52 secondary school children (the

“Jesù‘ites Casp” experiment) ranging from 12 to 13 years old. The
methods and protocols were the same as in the Cooperation(1)
experiment, as was the software installed on the laptops. The
results of this experiment refuted the hypothesis that children
cooperate less on average, but at the same time confirmed their
more volatile behavior, as described in Gutiérrez-Roig et al. [60].

4.5. The Mr. Banks(1) Experiment
The Mr. Banks experiment was set up to study how non-expert
people make decisions in uncertain environments; specifically,
assessing their performance when trying to guess if a real financial
market price will go up or down. We analyzed the performance
of 283 volunteers at the Barcelona DAU Festival 2013 (from
approximately 6000 attendants) on December 14th and 15th. All
the volunteers played via an interface that was specifically created
for the experiment and was accessible via identical tablets only
available in a specific room under researcher surveillance. On
the main screen the devices showed the historic daily market
price curve and some other information such as 5-day and 30-day
average window curves, the high-frequency price on the previous
day, the opinion of an expert, the price direction on previous days
and price directions of other markets around the world. All the
price curves and information were extracted from real historical
series. The participants could play in four different scenarios with
different time and information availability constrains. In each
scenario they were required to make guesses for 25 rounds, while
every click on the screen was recorded. Each player started with
1000 coins and earned an additional 5% of their current score
if their guess was correct or lost an equivalent negative return
if their guess was wrong. We used gamification strategies and
we did not provide any economic incentive, in contrast to the
social dilemma experiments: Cooperation(1), Cooperation(2),
and Dr. Brain. The analysis of the 18,436 recorded decisions and
44,703 clicks allowed us to conclude that participants tend to
follow intuitive strategies called “market imitation” and “win–
stay, lose–switch." These strategies are followed less closely when
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there is more time to make a decision or some information
will be provided (Gutiérrez-Roig et al., submitted). Both the
experiment and information on the project are available at:
www.mr-banks.net.

4.6. The Mr. Banks(2) Experiment
Here we repeated the Mr. Banks(1) experiment in a different
context, in order to study the reproducibility of the results.
The interface and the experimental set-up were the same as in
Mr. Banks(1) but the typology of participants and the type of
event were significantly different. The experiment, named Hack
your Brain in the conference programme, was situated at the
main entrance of the CAPS2015 conference: the International
Event on Collective Awareness Platforms for Sustainability and
Social Innovation, held in Brussels (July 7th and 8th 2015). The
42 volunteers who played the game provided 2372 recorded
decisions. The volunteers were all registered participants at the
conference with very diverse profiles (scientists, mostly from the
social sciences; social innovators; designers; social entrepreneurs;
policymakers; etc.). The results showed that the results of the
Mr. Banks(1) experiment had a good reproducibility, as the
percentage of correct guesses was similar in Mr. Banks(1) and
Mr. Banks(2) (53.4 and 52.7%, respectively) as was the percentage
of market-up decisions (60.8 and 60.5%, respectively). Deeper
analysis of the results is underway, to check that the strategies
adopted by Mr. Banks(1) volunteers were the same as those used
by Mr. Banks(2) volunteers. A paper has been submitted for
publication: (Gutiérrez-Roig et al., submitted).

4.7. The Dr. Brain Experiment
This was a lab-in-the-field experiment that allows for a
phenotypic characterization of individuals when facing different
social dilemmas. Instead of playing with the same fixed pay-
off matrix, as in the Cooperation experiments, here the values
and the neighbors changed every round. We discretized the
(T, S)-plane as a lattice of 11 × 11 sites, allowing us to explore
up to 121 different games grouped in 4 categories: Harmony
Games, Stag Hunt Games, Snowdrift Games and Prisoner’s
Dilemma Games. Each player was given a tablet with the App
for the experiment installed. The participants were shown a
brief tutorial, but were not instructed in any particular way, nor
with any particular goal in mind. They were informed that they
had to make decisions under different conditions and against
different opponents in every round. Due to practical limitations,
we could only host around 25 players simultaneously, so the
experiment was conducted in several sessions over a period of
2 days. In every session, all the individuals played a different
number of rounds, picked at randomly between 13 and 18. The
total number of participants in our experiment was 541, and a
total of 8366 game actions were collected. In order to play with an
incentive, they received coupons for a prize of EUR 50 to spend in
neighborhood shops. During the game,the volunteers interacted
through software specially programmed for the experiment and

installed in a laptop. They were not allowed to talk or signal
in any other way, and again were spatially placed at random.
From this experiment we concluded that we can distinguish,
empirically and without making any assumptions, five different
types of player’s behavior or phenotypes that are not theoretically
predicted. A paper has been submitted for publication: (Poncela-
Casasnovas et al., submitted).
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The spreading of behavior, such as the adoption of a new innovation, is influenced by

the structure of social networks that interconnect the population. In the experiments

of Centola [15], adoption of new behavior was shown to spread further and faster

across clustered-lattice networks than across corresponding random networks. This

implies that the “complex contagion” effects of social reinforcement are important in such

diffusion, in contrast to “simple” contagion models of disease-spread which predict that

epidemics would grow more efficiently on random networks than on clustered networks.

To accurately model complex contagion on clustered networks remains a challenge

because the usual assumptions (e.g., of mean-field theory) regarding tree-like networks

are invalidated by the presence of triangles in the network; the triangles are, however,

crucial to the social reinforcement mechanism, which posits an increased probability of

a person adopting behavior that has been adopted by two or more neighbors. In this

paper we modify the analytical approach that was introduced by Hébert-Dufresne et al.

[19], to study disease-spread on clustered networks. We show how the approximation

method can be adapted to a complex contagion model, and confirm the accuracy of

the method with numerical simulations. The analytical results of the model enable us

to quantify the level of social reinforcement that is required to observe—as in Centola’s

experiments—faster diffusion on clustered topologies than on random networks.

Keywords: clustered networks, complex contagion, clique networks, clique approximation, social reinforcement,

diffusion of behavior

1. Introduction

Many systems find a natural interpretation as a complex network where nodes identify the
objects of the system and the links between nodes represent the presence of a relationship or
interaction between those objects [1]. Such network characterizations range from friendships on
Facebook [2], connections between web-pages by hyper-links [3], to protein interaction networks
in biological systems [4]. A growing area of interest is the modeling of how behaviors diffuse
across social networks, such as the adoption of innovations [5] or the spreading of information
[6, 7]. Epidemiological models provide a convenient architecture for articulating these spreading
processes where nodes (individuals) can be in one of two states adopter (“infected”) or non-adopter
(“susceptible”).

The diffusion of social behavior is often characterized as either a “simple contagion” or a
“complex contagion” [8]. A simple contagion is any process where a node can easily become
infected by a single contact with an infected neighbor; on the other hand a complex contagion
is a process where a node usually requires multiple exposures before they change state [9]. Simple
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contagions arise naturally in disease spread-models where
a susceptible individual only requires a single contact with
an infected individual to allow a pathogen to propagate.
Traditionally simple contagion models have been applied to
sociological spreading behaviors in order to predict how a
behavior would diffuse across a network [10]. The simplest
example is the SI (susceptible-infected) model, for example,
where infected nodes transmit infection across their links at a rate
β per unit time [11]. Susceptible nodes change state and become
infected (i.e., adopt the behavior) at a rate that scales linearly
with the number of infected network neighbors (see Section 3
for more details). Once infected, a node cannot recover to the
susceptible state (an adopter node can not unadopt a behavior);
the SI model therefore provides an example of a binary-state
monotone dynamic process [11].

The importance of network topology for spreading dynamics,
specifically the density of triangles (clustering) in the network,
has been well established [12]. In social networks, clustering
provides a useful measure for how densely connected local
groups are [13]. A high density of triangles implies a high chance
that “the friend of my friend is also a friend of mine.” It has
been shown that the lower the density of triangles the further
a simple contagion will spread across a network [14], because
each additional infected node has a high chance of linking
to unexposed nodes. Conversely, a high density of triangles
results in a slower spread because the disease travels across
“redundant” links to nodes that have already been infected [15].
The ideal case for efficient propagation of a simple contagion is
a random network where each node’s links connect to different
neighborhoods; random networks necessarily have no presence
of clustering in the topology. If a simple contagion model
(such as the SI model) accurately describes the spreading of
social behaviors then we should observe faster diffusion of such
behaviors on networks with lower clustering. However, in a
groundbreaking experiment by Centola [15], the opposite was
observed. Centola found that the diffusion of adoption spread
further and faster on networks with a high degree of clustering
than on corresponding (same mean degree) random networks,
contradicting the results predicted by simple contagion models.
He observed that nodes who received multiple exposures to the
behavior were more likely to adopt than those who had only
received one exposure, indicating that the behavior spread as a
complex contagion.

In this paper we present a complex contagion model that
reflects the requirement for multiple exposures to effectively
propagate a behavior through a clustered network. Using the
complex contagion model we examine the spreading behavior
produced on networks with varying levels of clustering. Lü
et al. [16] have also numerically examined models for adoption,
but only on small networks, whereas we concentrate on the
large-network limit (N → ∞) where analytic results can
be found. Modeling simple contagions on random networks
is well understood, where analytic results for the fraction
of infected nodes in the steady state are relatively easy to
calculate by standard approximation schemes such as mean-
field (MF) or pair-approximation (PA) methods [17]. However,
accurately approximating diffusion processes on clustered

networks remains a challenge. The presence of clustering
immediately invalidates the assumption of locally tree-like
network structure that MF and PA methods are based upon
[18]. In our context, the presence of triangles is integral to the
reinforcement mechanism of a complex contagion. To address
this we modify the analytic approach introduced by Hébert-
Dufresne et al. [19]. Their framework was used to model disease-
spread processes on clustered networks. We show how the
approximation method can be adapted to a complex contagion
model, and confirm the accuracy of the method with numerical
simulations.

The remainder of the paper is structured as follows. The
clique-based network that forms the basis for our examinations
of complex contagion is outlined in Section 2. The complex
contagion model is described in Section 3. Section 4 presents
the approximation scheme that is used to account for presence
of clustering and the procedure for finding a linearized solution
to the system. In Section 5 we examine the accuracy of the
approximation and the results of the complex contagion model.
Finally, Section 6 presents our conclusions.

2. Clique-based Networks

The defining characteristic of a complex contagion is the
increased propensity to become infected (adopt) a behavior given
multiple exposures [9]. We expect to observe different spreading
behavior of a complex contagion depending on the level of
clustering on the network. This is because there is a higher
propensity on clustered networks for multiple infected nodes
to have a susceptible node in common when compared against
random networks. Therefore, clustering is the salient feature of
a network that we wish to isolate. To quantify the clustering in a
network we use the global clustering coefficient [20], defined as

C△ =
3× N△

N3
, (1)

where N△ is the total number of triangles in the network and N3

is the number of connected triples of nodes. The case C△ = 0
implies that no paths of length three are closed, meaning that the
network is locally tree-like [21].

When examining the diffusion produced on differing
networks we must be careful to compare like with like so as not
to introduce confounding factors into our analysis. Therefore, we
use networks that allow us to control the clustering, while holding
other topological features (such as the degree distribution)
constant; this is achieved using clique-based networks [1, 19, 22].
In a clique-based network, each clique has n (randomly-chosen)
nodes and each node is a part of m (randomly-chosen) cliques.
For example, a triangle is a clique with n = 3 nodes. Use
of these networks follows, in spirit, the experimental design
used by Centola, where clustered lattices were compared to z-
regular random networks of the same degree to isolate the effects
of clustering (see Appendix A for details on his experiment).
However, the clique-based networks allow us to use analytical
methods that cannot be directly applied to the clustered lattice
networks used by Centola.
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FIGURE 1 | Network topologies, each with degree z = 6. (A) z-regular network (red) with n = 2, m = 6 and C△ = 0; (B) moderately clustered network (blue) with

n = 3, m = 3 and C△ = 0.2; (C) highly clustered network (green) with n = 4, m = 2 and C△ = 0.4.

We examine various different forms of clique motifs. This
is done by varying n and m subject to the constraint that
the degree of each node is fixed, specifically, the degree of
each node is z = (n − 1)(m) = 6 (as in Centola’s main
experiments). We focus on three motif types which are illustrated
in Figure 1. The motif in Figure 1A corresponds to a random
network where each clique contains two nodes and each node
is part of six cliques (n = 2 and m = 6), i.e., each “clique”
is a just a link in the random 6-regular network. The motif
shown in Figure 1B is a triangle, with each node being part
of three cliques (n = 3 and m = 3). The last motif in
Figure 1C is a four clique and each node is part of two cliques
(n = 4 and m = 2). These local topologies result in networks
with clustering coefficients of 0, 0.2, and 0.4, respectively. As
each network is constructed from the aforementioned motifs,
there is no variation in degree or local clustering between
nodes. Thus, we can isolate the effect of clustering on the
spread of a complex contagion between the different networks.
In the next section we define our complex contagion model
which will capture the defining characteristic of a complex
contagion where nodes that receive multiple exposures have
an increased propensity to change state over those who have
received only one.

3. Complex Contagion Model

In this section we define our complex contagion model. First we
briefly define the susceptible-infected (SI) model for comparison
purposes. In the case of the continuous-time SI model (which is
a simple contagion model) an infected node transmits disease
to all its network neighbors at a rate β , where a neighboring
node’s probability of changing state from this contact is β dt in an
infinitesimal time interval of length dt. A susceptible node with i
infected neighbors therefore is exposed to i independent sources
of infection, so the probability that the node does not become
infected in a time interval dt is (1 − β dt)i, with the probability
that the node does become infected being 1 − (1 − β dt)i. We
define the transition rate FSIi by letting the probability of infection
in a small-time interval dt equal FSIi dt. As dt → 0 this probability
becomes, βi dt, and so the transition rate for a node with i
infected neighbors is

FSIi = βi. (2)

FIGURE 2 | Comparison of transition rates, Fi for simple contagion (SI)

and complex contagion (CC). Here β = 5 and i is the number of infected

neighbors.

The transition rate scales linearly with the number i of infected
neighbors, which is reasonable for a biological contagion where
each possible infection event is independent of the others.
However, for a social contagion a node will rarely adopt a
behavior after a single exposure, it is only after several exposures
that a node becomes likely to adopt [15].

As a deliberately simplified model for complex contagion we
therefore propose the following transition rate function:

FCCi =





0 if i = 0,

1 if i = 1,

β if i > 1.

(3)

where β is the rate at which a susceptible node changes state,
given multiple exposures. To model complex contagion with
strong social reinforcement, for example, we can set β ≫ 1.
Figure 2 compares the transition rates for SI and Complex
Contagion [Equations (2) and (3), respectively] as a function
of the number i of infected neighbors of a susceptible node.
Considering Equation (3) and assuming β ≥ 2, if a node
has multiple infected neighbors (i ≥ 2) it has an increased
propensity to adopt in comparison to a node with only one
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infected neighbor (i = 1). In an experiment where the contagion
begins with a small fraction of infected nodes the chance that
a node will receive multiple exposures is much higher on a
clustered network than on an random network, resulting in faster
spread over clustered topologies. As we show below, this very
simple representation of a complex contagion can capture the
spreading behavior observed by Centola while still remaining
amenable to mathematical analysis.

4. Clique Approximation

4.1. Clique Approximation Scheme
Many approximation schemes have been developed in order
to help approximate the relationships between macroscopic
observables (such as the fraction of nodes infected) and stochastic
microscopic (node-level) events, such as the number of infected
neighbors of each node. Such approximation schemes vary in
their level of complexity, with an inherent trade-off between
accuracy and complexity. There are two main approximation
schemes, the mean-field (MF) and pair-approximation (PA)
methods.

Briefly, the MF approximation assumes that the states of
every node in the network are independent. Pair-approximation
(PA) methods extend the MF approximation to incorporate
information about the pair-wise correlations between susceptible
nodes and their neighbors’ states. For a more detailed discussion
of these methods refer to Porter and Gleeson [11] and references
therein. The MF and PA methods assume that the networks are
locally tree-like (absence of local clustering). Violations of this
assumption results in poor approximations to the true behavior
of the spreading dynamics. As clustering is an integral part of
the networks we consider here, we require the development of an
analytical framework that can take into account both the complex
contagion and the presence of clustering in clique-type networks.
We will refer to this as the clique approximation (CA) scheme.
Figure 3 provides a schematic of the level of local topology that
each approximation scheme takes into account.

We extend the method introduced by Hebert-Dufresne et al.
[19] which they used to study SIS disease-spread dynamics
(where an infected node can transition back to the susceptible
state) on clique-styled networks. Our initial focus is on extending
their method from simple contagions to apply it to complex

contagion models such as Equation (3). In the CA scheme we
track the time-dependent fraction ci(t) of cliques that contain i
infected nodes, where the transition of a clique with i infected
nodes to a clique with i + 1 infected nodes is described by the
time-dependent transition rate γi(t), as illustrated in Figure 4.
Recall from Section 2 that the networks we examine are created
from basic motifs where each clique had n nodes and each node
is part ofm cliques. Consequently, the networks are (1) z-regular
(all nodes have the same degree) and (2) each node has the same
local topology (refer to Figure 1 for examples).

Tracking the dynamical states of cliques, as opposed to nodes,
results in a more complicated system of equations than the MF
or PA methods. The added complexity is required to account for
the presence of clustering in the network. We wish to calculate
the fraction of infected nodes at time t, which we denote ρ(t). To
create an evolution equation for ρ(t) we first calculate the rate
of change of the fraction ci(t) of cliques with i infected nodes at
time t. Note the normalization condition

∑n
i=0 ci = 1 applies at

all times t. The number of nodes that can leave a clique in state
ci−1 and enter state ci is the total number n of nodes in that clique
minus the number of nodes that are already infected at time t, i.e.,
n−(i−1). Similarly, the fraction of nodes that can leave a clique in
state ci and move to a clique in state ci+1 is (n− i)ci. Applying the
relevant transition rates (γi−1 and γi, respectively) at which nodes
change from one clique class to another (Figure 4) results in:

dci(t)

dt
= (n− i+ 1)ci−1(t)γi−1(t)

−(n− i)ci(t)γi(t) (4)

for i = 0, 1, ..., n.

(Note the explicit dependence of variables on t is henceforth
omitted for convenience.) Using Equation (4) we can calculate
dρ/dt by realizing that each clique with i infected nodes
contributes i/n nodes to the total fraction of infected nodes:

dρ

dt
=

1

n

n∑

i=0

i
dci

dt
. (5)

However, Equation (4) is not closed because we need to use an
approximation scheme to write the transition rates γi in terms
of the ci(t) variables. Note that the total fraction of susceptible

FIGURE 3 | Approximation schemes: (A) MF, (B) PA, and (C) CA scheme. The shaded regions represents how much of the local topology is used to approximate

the number of infected neighbors of an updating node.
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FIGURE 4 | Transition of a clique, with n = 3, between states. Note the transition rates γi are time-dependent quantities, given by Equation (9).

nodes in the network at time t is given by 1/n
∑n

i=0(n − i)ci.
We begin by calculating the probability, denoted 5i, that at
time t a chosen susceptible node is in a clique with i infected
neighbors. This probability can be represented as the conditional
probability Pr[iinf |s] = Pr[(iinf )&(s)]/Pr[s]. The numerator is
the joint probability of randomly selecting a susceptible node
from a clique and the clique having i infected neighbors. To
calculate this we first note that the probability of selecting a
clique with i infected nodes is ci and in a ci clique the number
of susceptible nodes is (n− i). Thus, the probability of selecting a
susceptible node from a ci clique is (n−i)/n, yielding the required
probability Pr[(iinf )&(s)] = ci(n − i)/n. The denominator (the
probability of selecting a susceptible node from a clique, Pr[s])
can be obtained calculating the marginal distribution of s (i.e., by
summing ci(n− i)/n over i) yielding

∑n
i=0 ci(n− i)/n. Taking the

ratio of the former to the latter yields the required probability

5i =
(n− i)ci
n∑
j=0

(n− j)cj

. (6)

The probability distribution5i can be succinctly represented as a
probability generating function (PGF) (see [23] for details), which
is a polynomial function defined as

P(y) =

n∑

i=0

5iy
i; (7)

note that the probabilities (5i) can be obtained in the usual way
by repeated differentiation of the PGF:

5i =
1

i !

diP

dyi

∣∣∣
y=0

. (8)

This PGF provides a convenient method for calculating the
probabilities inside a clique. However, a susceptible node in a
chosen clique also receives exposures from infected nodes in
other cliques, see Figure 5. Therefore, any approximation of γi

needs to take into account not only the infected nodes inside a
clique (the green area in Figure 5), but also the probability that
the susceptible node comes into contact with infected nodes in its
neighboring cliques (the blue area in Figure 5). Defining 5

m−1
ie

as the probability that a susceptible node in a chosen clique has
ie infected neighbors in its other m − 1 cliques, the probability

FIGURE 5 | Schematic for clique approximation.

distribution 5
m−1
ie

has PGF [P(y)]m−1. To approximate γi, we
consider a clique with i infected nodes in it and look at one of
the n − i susceptible nodes to calculate the probability that this
node transitions to the infected state. Such a transition changes
the state of the clique, moving it from the ci class to the ci+1 class.
Consider the m − 1 other cliques that the node is part of, letting
ie be the number of infected nodes present in the neighboring
cliques, then the total number of infected neighbors is i + ie and
the corresponding transition rate is Fi+ie . (Here and henceforth,
we write Fi in place of FCCi ). Of course ie can vary from 0 to
z − (n − 1), therefore to approximate γi we weight Fi+ie by the
probability of observing ie infected neighbors in the neighboring
cliques, yielding:

γi =

z−n+1∑

ie=0

5
m−1
ie

Fi+ie . (9)

We assume that an initial fraction ρ0 of randomly-chosen nodes
are in the infected state at t = 0. The probability that a clique
contains i infected nodes at t = 0 is therefore given by the
binomial distribution:

ci(t = 0) =

(
n

i

)
(ρ0)

i(1− ρ0)
n−i

, (10)
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which defines the initial conditions for the system given by
Equation (4). With Equation (9) we can now solve Equation (4)
numerically using the initial conditions (10) and thus calculate
the total fraction of infected nodes at a given time for the
networks of interest. In the next section we derive an early time
approximation to the CA scheme to analytically find examples
where quicker diffusion occurs on clustered networks than on the
corresponding randomnetwork, similar to the results of Centola’s
experiments.

4.2. Linearization of the CA Model
In the previous section we derived the CA scheme, which
captured the presence of clustering on clique-type networks. We
wish to gain insight into the early spreading behavior produced
by our complex contagion model (3) on the clustered networks
outlined in Section 2. As previously mentioned, the CA scheme
can be solved numerically using standard differential equation
solvers, however it is also possible to find an approximate
analytic solution to the early-time behavior. This is done by
first perturbing the system (4) about a suitable fixed point and
then linearizing the solution. The fixed point of interest is that
corresponding to no infected nodes in the network (c0 = 1 and
ci = 0 for i ≥ 1). We perturb this fixed point by introducing a
small positive parameter ǫ such that

c0 = 1+ ǫ̃c0,

ci = ǫ̃ci for i > 0,
(11)

where c̃i are time-dependent quantities. Applying Equation (11)
to the system of Equation (4) yields the perturbed system of
equations

ǫ

dc̃0

dt
= −nγ0 − ǫnγ0̃c0

ǫ

dc̃1

dt
= nγ0 + ǫnγ0̃c0 − ǫ(n− 1)γ1̃c1

ǫ

dc̃i

dt
= ǫ(n− i+ 1)γi−1̃ci−1

− ǫ(n− i)γĩci for i > 1.

(12)

The γi’s require the approximation of 5m−1
ie

, the probability that
a susceptible node in a chosen clique has ie infected neighbors
in the remaining m − 1 other cliques. These probabilities were
built from the PGF defined by Equation (7) and applying the
perturbation of Equation (11) to this results in

P(y) = 1+
ǫ

n

n∑

i=0

(
(n− i)̃ciy

i − (n− i)̃ci

)
+O(ǫ2), (13)

where we are considering the asymptotic limit ǫ → 0 throughout
this discussion and neglecting terms of order ǫ

2 and higher.
We can find the PGF that corresponds to the distribution of
probabilities for 5

m−1
ie

by noting that

[
P(y)

]m−1
= 1+ ǫ

m− 1

n

n∑

i=0

(
(n− i)̃ciy

i − (n− i)̃ci

)
+O(ǫ2).

(14)

Next, we use Equation (14) to retrieve the required probabilities
via the usual method of differentiation (Equation (8)). Using this
relationship we find the first-order approximations

5
m−1
0 ≈ 1− ǫ

(m− 1)

n

n∑

i=0

(n− i)̃ci,

5
m−1
i ≈ ǫ

m− 1

n
(n− i)̃ci for i = 1 to n.

(15)

We are now able to approximate the γi’s by applying Equation
(15) to Equation (9) and using the fact that F0 = 0 (i.e., nodes
require an infected neighbor before they can become infected),
resulting in the following

γi =

n∑

ie=0

5
m−1
ie

Fi+ie

= Fi − Fiǫ
m− 1

n

n∑

ie=0

(n− ie )̃cie

+ ǫ

m− 1

n

n∑

ie=1

(n− ie )̃cieFie+i +O(ǫ
2).

(16)

Inserting these rates into Equation (12) and noting that γ0 isO(ǫ)
while γi = Fi +O(ǫ) for i ≥ 1, we obtain the linearization of the
CA system:

dc̃0

dt
= −(m− 1)

n∑

ie=1

(n− ie )̃cieFie +O(ǫ),

dc̃1

dt
= (m− 1)

n∑

ie=1

(n− ie )̃cieFie − (n− 1)F1̃c1 +O(ǫ),

dc̃i

dt
= (n− i+ 1)Fi−1̃ci−1 − (n− i)Fĩci +O(ǫ) for i > 1.

(17)

Now we have a system of equations that describes the early
spreading behavior for a general transition rate function Fi.
We want to use this to find a linearized solution (ρl(t))
that approximates the behavior of the CA scheme. Let C =

(̃c0, ..., c̃n−1)
T and further define dC/dt = f(C, t). The linearized

system (17) is defined by

dC

dt
= JC, (18)

where J is the n× n Jacobian matrix with element ∂fi/∂Cj in the
ith row and the jth column. Note that the c̃n variable does not
feature in our calculation of J because it is fully determined by the
relationship c̃n = 1 −

∑n−1
i=0 c̃i. The general solution of systems

like (18) typically can be written as

C(t) =

n−1∑

j=0

ξje
λjtuj, (19)

where ξj is a constant, λj is the eigenvalue and uj is the
corresponding eigenvector of J [24]. The constants ξj can be
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calculated by using the initial conditions C(t = 0) =
∑n

j=0 ξjuj
(refer to Equation (10) for initial conditions for the system).
The fixed point that we considered was c0 = 1 and ci = 0
for i > 0, where there were no infected nodes on the network.
Our linearized solution is therefore valid for small perturbations
from this, i.e., when the initial fraction of infected nodes is small
(ρ(t) is small and O(ρ2

0 ) terms are negligible). The linearized
approximation to the total fraction of infected nodes at time t
is given by

ρ(t) ≈ ρl(t) =
1

n

n∑

i=0

i c̃i(t). (20)

This formulation now allows us to examine the early-time
spreading behavior that is produced by our complex contagion
model (and see Appendix B for a simple worked example). It is
also possible to find the level of social reinforcement β for which
a clustered network will propagate a complex contagion faster
than a random network. The largest eigenvalue of the Jacobian
matrix (which we denote λmax) appearing in the linearization
Equation (19) provides the largest contribution to the early-time
growth of Equation (20), and so to ρ(t). Thus, by comparing the
λmax value for each network for a given β and noting which
network has the larger value, we can infer the case where the
complex contagion will diffuse faster, at least at early times.
This will be used in the following section in conjunction with
the full CA scheme and the linearized solution to examine the
complex contagion model on networks with various levels of
clustering.

5. Results

In Section 4.1 we described the clique approximation (CA)
scheme that we use to account for the presence of clustering in
clique-type networks for monotone binary-state dynamics. We
also linearized the CA scheme to approximate the early-time
spreading behavior (Section 4.2). In this section, we compare the
accuracy of the full CA scheme and the linearized approximation
to Monte Carlo (MC) simulations of the complex contagion
model given by Equation (3) (for details on simulations please
refer to Appendix C). This allows us to establish the accuracy
of both the CA scheme and its linearized approximation across
clique-type networks and varying level of social reinforcement (as
parameterized by β).

Recall that we consider three z-regular network topologies
with degree 6 (refer back to Figure 1). First, a random network
(n = 2 and m = 6), which has the lowest density of triangles
(C△ = 0), then amoderately clustered network where each clique
has three nodes and each node is part of three cliques (C△ = 0.2),
and lastly, a highly clustered network where each clique has four
nodes and each node is a part of 2 cliques (C△ = 0.4). Figure 6
presents the results across the three topologies that we consider
and for two values of β . The CA method clearly provides a
highly accurate approximation to ρ(t) across the three network
topologies. The linearized approximation of the CA scheme also
provides accurate approximations for the early-time growth of
ρ(t). However, once the fraction of infected nodes becomes large

during the later stages of spreading the approximation begins to
break down.

Now we examine the spreading behavior that our complex
contagion model FCCi produces on clustered networks. In the
definition of FCCi the parameter β is the rate at which a susceptible
node will become infected if more than one of its neighbors is
infected. As β increases we expect the infection to spread faster
on the two clustered networks than on the random network (at
least at early times) because of the existence of reinforcement
signals from triangles.

For comparison, we consider β = 1, meaning that a
susceptible node with one infected neighbor has the same
infection rate as a susceptible node with multiple infected
neighbors. From Figures 6A,C we see that in this case the
behavior spreads fastest on the random (C△ = 0) network,
because the random network allows the maximum number of
unique exposures from newly infected nodes.

However, for larger values of β it becomes more advantageous
for early-stage spreading to have a non-zero density of triangles
than a tree-like structure in the local topology. By increasing β

to 6 we find this is the case (see Figure 6D). Note that at early
times (before t = 1) the random network consistently infects a
lower fraction of the population than the clustered networks; we
analyze this phenomenon further below.

Empirical observations of spreading behavior on networks
shows that typically only a small fraction of the total network
ever adopts a behavior. Centola [15] observed that the average
percentage of the network that adopted was 38 and 53% for the
random and clustered networks respectively. The networks used
in his experiments were relatively small, with N ≤ 144 nodes.
If our complex contagion model is reflective of the spreading
behavior in real life contagions we should observe the same
behavior for small ρ(t) which corresponds to the early-time
behavior (which we consider in Figure 8). Before we examine
this in detail we calculate the critical reinforcement levels for
which we expect clustered networks to produce faster early time
spreading than the random network (at least in the limit of very
large network size, N → ∞, for which our approximations are
valid).

As mentioned in Section 4.2, by finding the network topology
with the largest λmax for a given β we can identify which network
will produce the fastest diffusion of an early-stage complex
contagion. For the random network topology (C△ = 0) the
largest eigenvalue is λmax = 4. For the moderately clustered
network topologies the largest eigenvalue is λmax = 1/2(2 −

β+
√
4+ 20β + β

2), while the highly clustered network topology
has largest eigenvalue λmax = 1/2(−β +

√
β

√
24+ β). By

plotting how these vary with β we can identify the level of
social reinforcement required to produce faster spreading on the
clustered networks than on the random network at early time.
From Figure 7 we note that for β > 4 (respectively, β > 8)
the moderately (highly) clustered network should produce faster
diffusion than the random network. The main limitation of the
predicted critical β ’s is that the exponential growth rate λmax

must dominate in Equation (19) over a sufficient range for its
contributions to become pronounced. To obtain this behavior ρ0

must be very small. This ensures that the initial transient behavior
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FIGURE 6 | Fraction ρ(t) of infected nodes from CA and linearized solution, compared with Monte Carlo simulations (symbols), on random (red),

moderately clustered (blue), and highly clustered (green) networks. (A) β = 1 , CA scheme; (B) β = 6, CA scheme; (C) β = 1, linearized; (D) β = 6, linearized.

Symbols represent the mean of 10 Monte Carlo realizations (the error bars indicate one standard deviation above and below the mean), solid lines represent the CA

results, and dashed lines the linearized approximation. Note that the y-axis of (C,D) are logarithmic. The initial fraction of infected is ρ0 = 10−3, simulated network

sizes are N = 105, using step size dt = 10−3.

FIGURE 7 | Comparison of λmax for varying β on the three network

topologies. The largest eigenvalues for the moderately clustered network

(blue) and the highly clustered network (green) intercept the random case (red)

at β = 4 and β = 8, respectively.

(the contributions from the other eigenvalues) dies off quickly
and the exponential growth at rate λmax dominates. Therefore, in
Figure 8 we show the predicted fraction of infected nodes from
the full CA model at early stages for a very small fraction of
infected nodes, ρ0 = 10−8, which would correspond to a very
large network.

Similar to what we observed in Figure 6, the level of social
reinforcement dictates how fast the diffusion spreads on each
network at early times in Figure 8. We also observe that the

order of the networks that provide the fastest diffusion is well
reflected by the comparison of each network’s λmax illustrated
in Figure 7. More specifically, in Figure 8A where β = 2, we
see that the level of social reinforcement is not high enough to
cause faster spreading on the clustered networks than on the
corresponding random network. Increasing β to 5 we observe
faster spreading on the moderately clustered network than on the
random network, with the highly clustered network producing
the slowest diffusion (see Figure 8B). Increasing β further to
10 we observe faster spreading of both clustered networks over
the random network (Figure 8C), again in accordance with what
is expected from Figure 7. Although the critical levels of social
reinforcement predicted in Figure 7 are accurate for ρ0 ≪ 1,
qualitatively similar behavior is produced for larger values of
ρ0 (refer to Figure 6), but with stronger influence of initial
transients.

Finally, we show for completeness that our complex contagion
model can produce faster spreading on a hexagonal lattice
compared with a random network, which mimics Centola’s
experimental setup (see Appendix A for details). The topology
of the hexagonal lattice is illustrated in Figure 10A, and it has
clustering coefficient of 0.4. We simulate the complex contagion
on this network using theMonte Carlomethod on large networks
(N = 105) with the hexagonal lattice structure.

The results of the simulations are compared to the expected
diffusion on a random and highly clustered network of the
same degree (z = 6) using the CA method (see Figure 9).
We find similar results to those noted in the analysis of the
clique-type networks. For low levels of social reinforcement
(β ≤ 3) the random network provides the fastest spreading
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FIGURE 8 | Fraction ρ(t) of infected nodes on three network topologies, using the CA scheme: (A) β = 2; (B) β = 5; (C) β = 10. Note that the y-axis is

logarithmic and ρ0 = 10−8.

FIGURE 9 | Fraction ρ(t) of infected nodes on random network (solid red line), highly clustered clique-type network (solid green line) and hexagonal

lattice (blue points). Solid lines represent the results from the CA method. Symbols represent the mean of 10 Monte Carlo realizations (the error bars indicate one

standard deviation above and below the mean). (A) β = 1; (B) β = 3; (C) β = 4; (D) β = 10. Parameters ρ0, N and dt are as in Figure 6.

FIGURE 10 | Network topologies. Note that Centola used networks of sizes 98, 128, and 144. These networks are wrapped around a torus to maintain the degree

of each node. (A) hexagonal neighborhood; (B) Moore lattice; (C) random graph.

(see Figures 9A,B). However, when β is increased to 4 we
observe faster diffusion on the hexagonal lattice and the highly
clustered network than on the corresponding random network

(see Figure 9C). Both the hexagonal lattice and the highly
clustered network appear to have roughly the same critical level
of social reinforcement for this initial fraction of infected nodes
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(ρ0 = 10−3). By increasing β further to 10 (see Figure 9D) we
find that the hexagonal lattice provides the fastest diffusion at
early time.This is interesting as both the highly clustered network
and the hexagonal lattice have the same clustering coefficient
of C△ = 0.4. This is explained by the difference in structure
between the hexagonal lattice and the highly clustered network.
The hexagonal lattice has a higher density of cycles of length
greater than 3. The highly clustered network on the other hand
has a lower density of cycles of length greater than 3 as each
node is randomly connected to each clique. This results in
faster spreading on the hexagonal lattice at early time than on
the highly clustered network due to the increased chance of
a susceptible node receiving multiple exposures from infected
nodes. This qualitatively reproduces the pattern of spreading
behavior observed by Centola, where for a sufficient level of
social reinforcement it is possible to produce faster spreading on
clustered networks than a random network of the same degree.
In the next section we conclude the paper with a summary,
some comments on the results and provide possible directions
for future research.

6. Conclusion

In this paper we aimed to model—in an analytically tractable
fashion—the spreading of behaviors such as the adoption of
new innovations. Such spreading processes are influenced by
the social networks that connect people. Centola performed an
experiment where he tracked the diffusion of such behavior (the
use of a health forum) across artificially created networks [15].
These networks allowed him to control the level of clustering
(density of cycles of length three) in the local topology and to
isolate its effect on how the behavior diffused (refer to Figure 10).
He observed that nodes that received multiple reinforcing signals
had a higher propensity to adopt compared to those that only
received one signal, which was much more beneficial to the
spreading of the contagion on the clustered networks. This
resulted in the contagion spreading farther and faster on the
clustered-lattices than on the corresponding random networks.

Our goal was to find a suitably simple characterization for
complex contagion that remained amenable to analysis. We
proposed modeling the complex contagion using monotone
binary-state dynamics with the transition rate function defined
by FCCi (see Section 3). Each node is either susceptible (has not
yet adopted) or infected (adopted). This simple characterization
proved to be quite effective in enabling us to obtain analytical
insight. We compared the spreading behavior produced by
the complex contagion model across three topologies with
varying levels of clustering (see Figure 1 for the topologies
and Figure 6 for results). By varying the propensity for a
node to become infected given multiple infected neighbors we
were able to produce faster spreading on clustered networks
then on the random network, which is qualitatively similar

behavior to that observed by Centola (Figure 6B). We also
showed, via simulation, that our complex contagion model could
produce similar spreading behavior between a hexagonal lattice
and comparable random network as the previously mentioned
analytic results for the clique-type networks (see Figure 9).

None of these results could have been obtained without
tackling the problem of approximating monotone binary-state
dynamics on clustered networks. As described in Section
4.1, standard approximation schemes (mean-field and pair
approximation) perform poorly in the presence of clustering.
They are heavily dependent on the assumption that the network
is locally tree-like (that is no cycles of length three in the
network). However, the use of clustered networks is crucial
to the examination of the complex contagion model, as the
presence of triangles are central to the social reinforcement
mechanism that we wished to examine. This necessitated the
development of the CA method which accurately accounted for
the effects of clustering in the local topology of the clique-based
networks we examined (see Section 4 for details). The CAmethod
proved to be highly accurate for these types of topologies. A
linearized approximation to the early-time spreading behavior of
the complex contagion model was obtained. Using this we were
able to calculate critical levels of social reinforcement required for
the contagion to spread faster on clustered networks than on the
corresponding random network (refer to Figure 7).

The characterization of a complex contagion spreading
process by a single-parameter function in Equation (3) provided
a suitable balance between simplicity and realistic behavior.
However, the approximation scheme we develop is applicable
to any Fi function, and so more realistic models can easily
be examined in this framework. Further examination of more
realistic characterization of complex contagions should also be
developed, for example including a time-decay in the memory of
each node. It is reasonable to assume that the true mechanism
that governs complex contagion depends on the interplay
between the strength of social reinforcement and also temporal
effects, such as the timing between exposures.
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Appendix

A. Centola’s Experimental Design

Centola investigated the effects of network structure on
the spread of behavior through artificially structured online
communities. These networks were carefully created to allows
for direct comparison between random graphs (low C△) and
clustered lattices (high C△).

In his experiment each network represents the connections
of an artificially created on-line health community. Each
participant created an anonymous on-line profile, they were
then linked to other participants according to a predefined
topology (see Figure 10 for examples). Each participant could
not communicate with each other directly but were informed of
their activities. Participants made decisions on whether or not
to adopt a behavior based on their neighbors’ activity, in this
case the registration to a health forum. The diffusion process
was initiated by selecting a random seed node, which signaled
(via an automatically sent email) its neighbors, encouraging
them to register for the forum. Every time a participant
adopted the behavior (registered to the forum), messages were
sent to his network neighbors. As the number of nearest
neighbors that registered increased, the participant receivedmore
signals. Several trials were conducted on two different clustered
topologies and two unclustered topologies.

The Hexagonal lattice and Moore lattice corresponded to the
clustered topologies used, each having a fixed degree of six and
eight for all nodes with a clustering coefficient of 0.4 and 0.43
(see Figures 10A,B), respectively. Each clustered topology was
then compared to a random network, where each node has the
same degree but the links were randomly assigned, as illustrated
in Figure 10C (a random network with fixed degree). Random
graphs have the lowest clustering coefficients of all the graphs that
Centola used.

B. Linearization - Worked Examples

In this section we provide a simple example of the linearized
approximation of the CA scheme described in Section 4.2. The
spreading dynamics that we will approximate is the behavior
of our complex contagion model defined in Section 3 on a
z-regular random network (zero clustering case). Recall that
random networks can be described by n = 2 and m = 6, where
each node in the network has degree six (see Figure 1). Applying
these values to the linearized system of Equation (17) we have

dc̃0

dt
= −5

2∑

ie=1

(2− ie )̃cieF
CC
ie

+O(ǫ),

dc̃1

dt
= 5

2∑

ie=1

(2− ie )̃cieF
CC
ie

− (2− 1)FCC1 c̃1 +O(ǫ).

(A1)

Recall that we do not require the c̃n variable as it is fully
determined by the other c̃i variables. The next stage in this

approximation is to compute the Jacobain matrix for this system:

J =

(
0 −5
0 4

)
. (A2)

Matrix (A2) has eigenvalues λ1 = 4 and λ2 = 0, each
with associated eigenvectors u1 = (−5, 4)T and u2 =

(1, 0)T , respectively. Applying these to Equation (19), we
obtain

C(t) = ξ1e
λ1tu1 + ξ2e

λ2tu2. (A3)

The constants (ξ1 and ξ2) can be easily obtained by noting that
C(t = 0) =

∑n
j=0 ξjuj must equal the initial conditions of

Equation (10). We ignore O(ρ20) terms, which yields ξ1 = ρ0/2
and ξ2 = 1− ρ0/2. With these constants we are able to calculate
the linearized approximation to the fraction of infected nodes on
a z-regular random network given by Equation (20) as

ρl(t) =
3

2
ρ0e

4t −
ρ0

2
. (A4)

Notably, in this simple example we find that β (FCCi for i ≥ 2)
does not feature in the result, this is a direct consequence of
the assumption that the local topology generated by n = 2 and
m = 6 is locally tree-like. Equation (A4) provides an accurate
approximation to the early-time spreading behavior of a complex
contagion on a tree-like network of degree 6, provided that the
initial fraction of infected nodes is small (see Figure 6).

C. Simulation Method

To simulate monotone binary-state dynamics we use Monte
Carlo (MC) simulation. To represent the network in the
simulations we use an adjacency matrix A, where

Aij =

{
1 if there is a link between nodes i and j,

0 otherwise,
(A5)

defines an N × N matrix, where N is the number of nodes.
Given this matrix we know the connections between nodes. We
track the state of each node using the vector v (a N × 1 vector).
The element vi is 0 if the node is susceptible and 1 if infected.
To initialize the simulation we randomly assign a fraction ρ0 of
nodes to the infected state at time 0. We wish to simulate the
dynamics for the complex contagion model defined in Section 3
by Equation (3). The transition rates in these models depend on
the number of infected neighbors of a node. Let η be an N × 1
dimensional vector where ηi is the number of infected neighbors
of node i. The vector of ηi values can be easily calculated using
the matrix multiplication

η = Av. (A6)

The probability that node i will change state is given by p =

Fηidt, where Fηi is the transition rate for node i (which has ηi

infected neighbors). This gives the update rule for the state of
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node i, where vi = 1 if p > u, for u drawn from a uniform
distribution on [0, 1]. The fraction of infected nodes is then
updated (ρ(t + dt) = 1

N

∑
v) and time, t, is advanced by dt.

These steps are repeated until either ρ(t) = 1 or until a maximum
time is reached (tmax). This process yields one realization of the

dynamics, it is repeatedM times (the number of MC realizations)
and the ensemble-average fraction of infected nodes is calculated
to approximate the expected behavior of the dynamics. The
parameters used for simulations are as follows unless otherwise
stated: N = 105, ρ0 = 10−3, tmax = 3, dt = 10−3 andM = 10.
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Information transfer in community
structured multiplex networks
Albert Solé-Ribalta *, Clara Granell, Sergio Gómez and Alex Arenas

Departament d’Enginyeria Informàtica i Matemàtiques, Universitat Rovira i Virgili, Tarragona, Spain

The study of complex networks that account for different types of interactions has

become a subject of interest in the last few years, specially because its representational

power in the description of users interactions in diverse online social platforms (Facebook,

Twitter, Instagram, etc.). The mathematical description of these interacting networks

has been coined under the name of multilayer networks, where each layer accounts

for a type of interaction. It has been shown that diffusive processes on top of these

networks present a phenomenology that cannot be explained by the naive superposition

of single layer diffusive phenomena but require the whole structure of interconnected

layers. Nevertheless, the description of diffusive phenomena on multilayer networks has

obviated the fact that social networks have strong mesoscopic structure represented

by different communities of individuals driven by common interests, or any other social

aspect. In this work, we study the transfer of information in multilayer networks with

community structure. The final goal is to understand and quantify, if the existence of

well-defined community structure at the level of individual layers, together with the

multilayer structure of the whole network, enhances or deteriorates the diffusion of

packets of information.

Keywords: complex networks, information diffusion, multivariate analysis, community structure, centrality

1. Introduction

The study of transport properties of networks is becoming increasingly important due to the
constantly growing amount of information and commodities being transferred through them. A
particular focus of these studies is how to make the capacity of the diffusion of information in
the network maximal while minimizing the delivery time. In the basic approach information is
formed by units, the “packets,” and the handling of information for processing and distribution
takes finite time. Both network packet routing strategies and network topology play an essential role
in networks’ traffic flow. In realistic settings, like online social networks, the knowledge that any one
has about the topology of the network is limited to its local area of influence. Consequently, much
of the focus in recent studies has been on “searchability,” the process of sending information to a
target when the trajectory to reach the target is unknown. Moreover, given the limited capability of
nodes to handle information packets and redistribute them, the problem of congestion arises [1–
3]. It has been observed, both in real world networks and in model communication networks, that
the network flow collapses when the load (number of packets to be processed) is above a certain
threshold [3].

In general, most real and engineered systems include multiple subsystems and layers of
connectivity, and it is important to take such features into account when trying to obtain a
complete understanding of them. It is thus necessary to generalize the “traditional” network theory

49
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tomultilayer systems in a comprehensive fashion [4, 5]. Generally
speaking, up to now, the description of networks so far has
been developed using a single and combined snapshot of the
connectivity, which is a reflection of instantaneous interactions
or accumulated interactions in a certain time window. This
description is limited when trying to understand the intricate
variability of real complex systems, which contain many different
time scales [6] and coexisting structural patterns forming the real
network of interactions [7]. This is the case of e-social networks
that are constantly changing [8], having some connections with
very short lifetime and others that are persistent. Interest groups
[9] are constantly being developed and growing, and individual
nodes participate through different interests at the same time. An
accurate description of such complexity should take into account
these differences of interactions and their evolution through time.
In the last couple of years, the scientific community on networks
theory has focused on this issue and proposed a solution that has
been commonly referred to as the multiplex network structure
[4].

General flows on multiplex networks have also been in the
focus of network scientists [10–17], and the consequences of
having such topologies have been shown to be far from trivial.
For example, in Solé-Ribalta et al. [18] the authors found that a
general diffusive process on top of the multiplex structure is able
to speed up the less diffusive of the layers. It could also give rise
to a super-diffusion process thus enhancing the diffusion of both
layers. This striking result appears when the diffusion between
the layers of the multiplex is faster than that occurring within
each of the layers. These consequences are also observed in the
discrete representation of diffusion by random walkers [17], and
have explicit consequences on the navigability of the multiplex
structure.

Here we fix our attention in the process of information
transfer on top of multiplex networks. Specifically, we aim
at determining the structural effects of a multiplex network
endowing community structure, i.e., modular at each layer, on
the dynamics of information transfer. To this end we have
investigated a particular set up in which multiplex networks are
built connecting different modular networks, and determining
analytically the onset of congestion in the information flow.
Our results reveal that when the community structure of the
different layers is equivalent and the communities overlap, the
multiplex offers higher resilience to congestion and consequently
the system may improve information transfer compared to
the individual layers. On the other side when the community
structure is considerably different and communities still overlap
the multiplex structure offers a balancing environment where
the efficiency of the system is averaged. On the intermediate
situation, that is community structure is similar in both layers
and communities overlap, the effect of the multiplex structure
is devastating and hinders information transfer by reducing the
onset of congestion in the system.

2. Materials and Methods

The proposed dynamical model considers that information flows
through networks in atomic and discrete packets that are sent

from an origin node to a destination node. Each node is an
independent agent that can store as many packets as necessary.
However, to have a realistic picture of communication we must
assume that the nodes have a finite capacity to process and deliver
packets. That is, a node will take longer to deliver two packets
than just one. This physical constraint of the agents on delivering
information can derive in network congestion.When the amount
of information a particular agent receives is too large, it is not able
to handle all the packets and some of them remain undelivered
for extremely long periods of time. In this study, the interest is
focused on when congestion occurs depending on the topology of
the multiplex network, in particular, in relation to its community
structure.

2.1. Dynamics of Information Transfer
The dynamics of the model is as follows. At each time step
t, information packets are created at every node with rate ρ

(injection rate). Therefore, ρ is the control parameter: small
values of ρ correspond to low density of packets and high values
of ρ correspond to the generation of a large amount of packets.
When a new packet is created, a destination node, different from
the origin, is chosen (uniformly) at randomly in the network.
Thus, during the following time steps t + 1, t + 2, . . . , t + T, the
packet travels toward its destination. Once the packet reaches the
destination node, it is delivered and disappears from the network.

The time that a packet remains in the network is related not
only to the length of the path between the source and the target
nodes, but also to the volume of packets that share its path. Nodes
with high loads, i.e., high volume of accumulated packets, will
take longer to deliver packets or, in other words, it will take more
time steps for packets to cross regions of the network that are
highly congested. We assume, without loss of generality, that
nodes can handle only one packet per time step (i.e., the delivery
rate is τ = 1), and undelivered packets are stored in a first-
in-first-out queue attached to each node. The paths followed by
packets between source and destination nodes are decided using
a routing strategy, being shortest paths and random walks the
most prominent strategies. It is important to note, however, that
the model is not deterministic. For example, there may be several
shortest paths between two nodes, one of them chosen randomly
in the delivery of the corresponding packet. Moreover, the order
in which packets are stored in the queues when several of them
arrive in the same time step is undefined.

Previous work on single layer networks [3] shows that for low
values of the injection rate of packets ρ there is no accumulation
of packets at any node in the network. Moreover, it is stated
that the number of packets that arrive at node i is, on average,
ρBi/(N − 1), where Bi is the effective betweenness of node i and
N the number of nodes in the network. The effective betweenness
is defined as the ratio between the number of paths that pass
through node i, and the total number of paths traversing the
network between any pair of nodes [19].

The onset of congestion is reached when a node receives more
packets than it can deliver per time step, i.e., ρBi/(N − 1) >

1. Therefore, the first node that collapses (i∗) is the one with
largest effective betweenness (Bi∗ = maxi(Bi)), and themaximum
injection rate for which the network is congestion free, the critical

Frontiers in Physics | www.frontiersin.org August 2015 | Volume 3 | Article 61 | 50

http://www.frontiersin.org/Physics
http://www.frontiersin.org
http://www.frontiersin.org/Physics/archive


Solé-Ribalta et al. Information transfer in community-structured multiplex

injection rate ρc, is given by

ρc =
N − 1

Bi∗
. (1)

The rest of the nodes will collapse with larger injection rates.
However, up to now, it is not known how to analytically compute
their critical injection rates since they not only depend on
the topological betweenness but also on the overall network
congestion.

In the generalization of the routing dynamics exposed to
multiplex networks, the average number of packets arriving to
node i in layer α is ρLBiα/(N−1), where L is the number of layers
of the multiplex network and Biα is the effective betweenness of
node i in layer α. Thus, the critical injection rate also depends on
the effective betweenness, which encapsulates the routing strategy
and the topology of the network:

ρc =
(N − 1)/L

max
i,α

(Biα)
. (2)

Next, we extend the concept of betweenness to multiplex
networks allowing the computation of the onset of congestion.

2.2. Computation of betweenness in the Multiplex
The extension of any centrality measures tomultiplex networks is
not straightforward and requires special care. In many situations
several extensions are possible and the choice of it may depend
on the problem at hand.Many attempts have been done to extend
single layer centrality measures to the multiplex framework [20–
22]. Here, we follow the line described in DeDomenico et al. [23],
which is mathematically grounded on the tensorial formalism for
multilayer networks [24].

We start by defining a walk between two individuals s and
t on a multiplex network as a sequence of nodes, following
intralayer and/or interlayer edges, which starts at node s “in
any layer” and finishes in node t “in any layer.” Note that
in this definition we do not care about the layer, just the
node. The reasoning behind this lack of discrimination is
that, in the multiplex structure, the different node replicas
in the different layers correspond to the same individual
(social networks) or location (transportation networks), thus
it is only important to know if the packet has arrived, but
not in which layer. Figure 1 shows an example of a walk
between two nodes in a multilayer network where non-trivial
effects can be observed because of the presence of interlayer
connections that affect the navigation through the networked
system [17].

Given the definition of a walk in the multiplex topology, the
effective betweenness of a node i in layer α, Biα , can be directly
obtained as the fraction of walks that pass through node i in
layer α for every possible origin-destination pair (s, t). In some
cases it might be convenient to obtain the betweenness of node i
irrespective of the layer. In this case, the betweenness can be
obtained just by accumulation of the individual contributions of
each layer where i is represented, Bi =

∑
α
Biα .

For the specific case of the shortest path betweenness, every
walk is restricted to be the path with minimum distance that

FIGURE 1 | Example of a walk (dotted trajectory) between two

individuals s and t using a multilayer network. The walker can jump

between nodes within the same layer, or it might switch to another layer. This

illustration evidences how multilayer structure allows a walker to move

between nodes that belong to different (disconnected) components on a given

layer (L1).

starts from the source node s in any layer, and reaches the
destination node t in any layer. The distance function may
take into account the weights of the edges the path traverses.
In this work, without loss of generality, we assume the edges’
weights are unitary and define the distance as the number of
traversed edges in the path. The shortest path between two
locationsmay be degenerated and consequently the set of shortest
paths may contain paths using a single layer (classical shortest
paths) and paths which change layer (pure multiplex paths).
For an accurate computation of the shortest path betweenness
special care must be taken with the path degeneration. A
good and efficient algorithm can be found in Solé-Ribalta
et al. [25].

Equivalently to the shortest path betweenness, the random
walk betweenness depends on the particular definition of the
network traversal procedure. In this case, a random walk is
defined as a walk in which, at each time step, the next visited
node is chosen with uniform random probability among the
neighbors of the last visited node. The random walk betweenness
is usually computed considering a transition matrix obtained
from the adjacency matrix of the network. For a detailed
description of random walks in a multiplex network, see [17].
In this document we will use the classic random walk definition.
For the random walk betweenness the walk degeneracy is
enormous and consequently is impractical to compute the
betweenness accounting for all the possible individual random
walks. Fortunately, the random walk betweenness can be
efficiently computed using matrix inversion and absorbing
random walks [26].
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2.3. Community Structure in Multiplex
Networks representative of complex systems are characterized
by having community structure, meaning the presence of dense
groups of nodes with sparse connections between them [27].
It is known that dynamical processes running on top of such
networks have a big dependency on community structure,
which affects the process either by fostering or hampering
it [28–30]. As evidenced in several works [7, 31], when the
different layers of a multiplex network exhibit community
structure, the influence on the overall system is not trivial to
determine.

Here, to uncover the basic effects of communities in
information flow process, we propose a simple setting with
imposed community structure where communities fully overlap
between layers and the degree of each node of the network is
kept constant. Each multiplex network consists of two layers,
and each layer has 256 nodes distributed in four communities
(64 nodes per community) [32]. The links are generated in
such a way that the density of links inside the communities is
always higher than the density between them. The networks are
generated independently for each layer, resulting in a two-layer
multiplex network with different community structure in each
layer.

For the experiments, we consider 12 different multiplex
community structures and 300 different realizations for each.
For all of them, we fix the bottom layer (L1) to kin = 31 and
kout = 1 (i.e., 31 edges inside the community and 1 link outside,
per node), which displays strong and clear communities, and we
vary the community structure of the top layer (L2), which ranges
from the previous strong block structure to a more diluted one
(kin = 20 and kout = 12) where the communities are almost
imperceptible. We quantify the strength of the community
structure of the L2 layer using a mixing parameter defined as
µ = kout/〈k〉. Figure 2 depicts three examples of such generated
networks.

3. Results

To evaluate the influence of the multiplex networks with
community structure in information transfer we assess several
aspects of the information transfer dynamics, namely the shortest
paths distribution, the packets ingoing rate of each node and the
critical injection rate of the network.

Figure 3 shows the obtained distribution of shortest paths
in the different layers of the multiplex. In the case of having
equivalent community structure in both layers (leftmost points
in the plot), the multiplex structure provides a very good
load balance where the same fraction of paths traverse using
layer 1 and 2. In general, we can conclude that the effect
of the multiplex is negligible for the overall system behavior
since only a very small fraction of paths (0.5%) makes use
of the full multiplex structure. In fact, paths using both
layers of the multiplex are only used in the case where
the origin and destination are in different communities. As
we increase the mixing parameter of the second layer, its
community structure dilutes, enhancing the communication
between communities but slightly hindering the transfer of
information internally. This effect is evident in Figure 3, which
shows a large increase of intercommunity trips in the second
layer and a small increase of intracommunity paths in the first
layer. At the same time, the improvement of intercommunity
paths in the more diffuse layer yields a disappearance of
the (already small number of) shortest paths using both
layers.

To assess themicroscopic behavior of the systemwe show how
the ingoing rate of packets to each node varies with respect to the
mixing parameter. We compute the ingoing rate of each node of
the multiplex structure as

σ̂iα =
L Biα

N − 1
. (3)

Results are shown in Figure 4. For the shortest path routing
strategy (subplot A) we observe a clear distinction between the
behavior of nodes in layers 1 and 2. As can be seen in Figure 3,
the main effect on the increasing of the mixing parameter is
clearly a migration of the shortest paths from layer 1 to layer 2,
i.e., paths that traversed layer 1 now find a more efficient
route through layer 2, which has a more diluted community
structure. This migration of paths should increase the ingoing
rate of nodes in layer 2 similarly to the observed decrease of
ingoing packets of layer 1. This is the situation for small mixing
parameters, but increasing the mixing parameter means also an
increase in the efficiency of layer 2 routing packets between
nodes in different communities, which in turn substantially
reduces the overall node betweenness provoking an interesting
tradeoff that will prescribe the final efficiency of the full system.

FIGURE 2 | Samples of the multiplex networks generated, represented by means of their superposed adjacency matrices. From left to right, the top layer

diffuses its community structure (increasing mixing parameter), while the bottom layer remains fixed.
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FIGURE 3 | Shortest paths distribution in a multiplex network

with community structure as a function of the mixing parameter.

The plot shows the fraction of shortest paths that traverse the

network using only layer 1 (with fixed topology), using only layer 2

(with varying topology) and using the full multiplex structure. The

horizontal axis corresponds to the mixing parameter. For the paths

that only use a single layer, we divide the contribution between paths

where the source and target nodes are within the same community

and in different communities. There are no intracommunity paths that

use both layers.

A B

FIGURE 4 | Ingoing rate of each node in the network for different mixing parameter values, and two routing strategies: shortest paths (A) and random

walks (B). The different colors indicate the layer to which the node belongs to.

These two opposed effects (migration of shortest paths and
reduction of node betweenness) have a huge impact on the
ingoing rate of nodes in layer 2, which experience a constant
decrease after the maximum ingoing rate is reached. For the
random routing strategy the scenario is completely different.
The increase of the mixing parameter has an equivalent impact
in both layers, which experience an important decrease of the
ingoing rate.

Figures 5, 6 show the effect of the community structure
on the critical injection rate ρc. For the shortest path routing
strategy (Figure 5) the critical injection rate of the multiplex
network reaches its minimum value around µ = 0.1.
This minimum indicates that there is a worst-case scenario
for which the multiplex topology is less efficient than the
individual layers. On the other side, the behavior of the critical
injection rate of layer 2 is monotonically increasing. This
situation is expected since a less clear community structure

leads to a reduction of the average shortest path, which in
turn is positively correlated with a decrease of the node
betweenness.

In general, if we compare the values of ρc for the multiplex
network and the separate layers L1 and L2, we clearly observe
three possible situations: (i) the multiplex is more resilient to
congestion (efficient) than the individual layers. This situation
arises when both layers have a similar community structure.
(ii) The multiplex is less efficient than any of the layers. This
setup corresponds to the minimum resilience of the multiplex
structure. And (iii), the multiplex efficiency achieves a medium
value which is a trade-off between the resilience of both layers.
In a real setup, this situation would mean that joining those
two layers in a multiplex improves the resilience observed in
one layer at the cost of deteriorating the resilience observed
in the second layer. However, as we can observe in the plot,
the reduction of the efficiency is larger than the average of the
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FIGURE 5 | Comparison of the critical injection rate of layer 1, layer 2 and the multiplex for different mixing parameter values and shortest path

routing strategy. The values of the critical injection rate for single layer network and multiplex networks are computed using Equations (1) and (2) respectively.

FIGURE 6 | Comparison of the critical injection rate of layer 1, layer 2 and the multiplex for different mixing parameter values and random walk routing

strategy. The values of the critical injection rate for single layer network and multiplex networks are computed using Equations (1) and (2) respectively.

efficiency of both layers and consequently the coupling of layers
is inefficient.

With respect to the random walk routing strategy
(Figure 6), the situation is completely different. For similar
community structures the multiplex worsens the efficiency,
because the paths get trapped within the communities. For
different community structures, in general, we obtain a
efficiency that corresponds to the average efficiency of both
layers.

4. Discussion

We have shown that packet information flow can be
compromised when community structure is considered
in some layer of the multiplex network structure. Since

community structure implies the presence of topological
bottlenecks, the information flows migrate to those layers
where these constraints are relaxed (diluted communities).
We have shown that community structures produce a
non-trivial effect in the transfer of information and in the
resilience to information flow congestion, that here defines
the efficiency of the structure. Essentially, the better defined
the communities, the more affected the packet transportation.
Information tries to avoid bottlenecks and packets migrate
toward the layer where the community structure is diluted,
because it is more efficient, but as a direct consequence of
this migration the most efficient layer becomes overloaded.
This nonlinear relation makes the problem of assessing
the performance of the multiplex structure particularly
challenging.
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Using the analytical approach presented, we are able to
determine for any multiplex topology what is the onset of
congestion in the information flow and how it compares with
the onset of the individual layers. We have also provided
results, for very specific scenarios, of shortest path and random
walk routing strategies respectively. The results show that
the shortest path approach heavily depend on the particular
sharpness of the prescribed communities. This work provides
the starting point for the discrete flow analysis of more
complicated scenarios of community structure in multiplex
networks.
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We study complex time series (spike trains) of online user communication while spreading

messages about the discovery of the Higgs boson in Twitter. We focus on online social

interactions among users such as retweet, mention, and reply, and construct different

types of active (performing an action) and passive (receiving an action) spike trains

for each user. The spike trains are analyzed by means of local variation, to quantify

the temporal behavior of active and passive users, as a function of their activity and

popularity. We show that the active spike trains are bursty, independently of their

activation frequency. For passive spike trains, in contrast, the local variation of popular

users presents uncorrelated (Poisson random) dynamics. We further characterize the

correlations of the local variation in different interactions. We obtain high values of

correlation, and thus consistent temporal behavior, between retweets and mentions, but

only for popular users, indicating that creating online attention suggests an alignment in

the dynamics of the two interactions.

Keywords: social dynamic behavior, twitter social network, time series analysis, communication types in twitter,

classifying active and popular users, ranking activation and popularity

1. Introduction

In recent years, online social media (OSM) have become a major communication channel, allowing
users to share information in their social and professional circles, to discover relevant information
pre-filtered by other users, and to chat with their acquaintances. In addition to their practical
use for individuals, OSM have the advantage of generating a rich data set on collective social
dynamics, as social relations among individuals, temporal properties of their interactions, and
their contents are automatically stored. The study of these digital footprints has led to the
emergence of computational social science, allowing to quantify at large-scales our political ideas
and preferences [1], to discover roles in social networks [2, 3], to predict our health [4] and
personality [5], and to determine external effects on online behavior [6]. Importantly, in OSM, users
are at the same time both actors and receivers and therefore the amplification of a trend originates
from the interplay between influencing [7, 8] and being influenced [9–13].

A crucial aspect of OSM and more generally of human behavior is the underlying complex
dynamics [14–17]. The time series of user activities, e.g., posting a tweet and replying to
a message, are quite distinct from uncorrelated (Poisson random) dynamics in the presence
of burstiness [18–20], temporal correlations [6, 21, 22], and non-stationarity of human daily
rhythm [23, 24], which has significant implications. Diffusion on a temporal network cannot be
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accurately described by models on static networks and
consequently the process presents non-Markovian features
with strong influence on the time required to explore the
system [25, 26]. Furthermore, the dynamics drives a strong
heterogeneity observed in user activity [27, 28] and user/content
popularity [29–31]. Specifically, in Twitter, the heterogeneity in
popularity has been observed and quantified in different ways
by the size of retweet cascades, i.e., users re-transfer messages
to their own followers with or without modifying them [32–36]
or by the number of mentions of a user name, identified by the
symbol @, in other people’s tweets [37].

In this paper, we focus on the dynamics of social interactions
taking place when diffusing rumors about the discovery of the
Higgs boson on July 2012 in Twitter [38]. Ourmain goal is to find
connections between the statistical properties of user time series
established on the same subject, e.g., the announcement of the
discovery of the Higgs boson, and their activity and popularity.
To this end, we analyze tweets including social interactions, such
as retweets of a message (RT), mentions of a user name (@), and
replies to a message (RE). For each type of the interactions, a
user can either play an active, e.g., retweeting, or a passive, e.g.,
being retweeted, role. Therefore, we characterize each user by
8 time series: one active and one passive time series for each
of the 3 types of interaction as well as for the aggregation of
all interactions, as illustrated in Figure 1. Active time series are
denoted as WHO and passive time series are defined by WHOM.
We then investigate whether the statistical properties of each
signal is a good predictor for the activity and popularity of a user.

The following sections are organized as follows. In Section 2,
we describe the data set and provide basic statistical properties
of who and whom time series. In Section 3, we introduce a
technique dedicated to the analysis of non-stationary time series,
so-called local variation, originally established for neuron spike
trains [39–42] and recently applied to hashtag spike trains in
Twitter [43, 44]. In Section 4, we search for statistical relations
between local variation and measures of popularity of a user.
Finally, Section 5 summarizes the key results and raises open
questions.

2. Activity and Popularity of Users

Our aim is to examine the dynamics of user communications in
Twitter. We investigate how frequently users talk to each other
on a certain topic, e.g., the discovery of the Higgs boson, and
identify how complex dynamic patterns of the communications
evolve in time. To this end, we focus on the three different
types of interaction between users, retweet (RT), mention (@),
and reply (RE). Twitter users can adopt a tweet of someone and
use it again in their own tweet by RT or contact to other users
directly by typing user names in a message called @ or simply RE
to any tweets, e.g., regular tweets, retweets, and tweets/retweets
including @s. Typically, @s and REs are associated to personal
interactions between users, whereas RTs are responsible for large-
scale information diffusion in the social network and for the
emergence of cascades. Here, we count all types of interaction as
a part of complex information diffusion in the network.

FIGURE 1 | Illustration of communications in Twitter. The sketch

summarizes the two positions of each user, e.g., active (who) and passive

(whom). Who interacts in time with any other whom by retweeting (RT) the

messages and mentioning (@) the user names of whom in a message and

replying (RE) to the messages from whom. Quantifying temporal patterns in

time series of who with various ranges of the activity of users aU and of whom

by increasing the popularity of users pU is the main scope of this paper.

Interactions in Twitter are performed between at least two
users (for instance, a user can mention several other users in
a single tweet). Each action is directed and characterized by its
timestamp. The users performing the action play active roles
(who users), the users receiving their attention play a passive
role (whom users), and each user can appear in both active and
passive roles described in Figure 1. Therefore, we construct active
and passive RT, @, and RE spike trains for each user.

2.1. Data Set
As a test bed, we consider the publicly available Higgs Twitter
data set [38, 45], first collected to track the spread of the rumor
on the discovery of the Higgs boson via RT, @, or RE. The data set
is composed of tweets containing one of the following keywords
or hashtags related to the discovery of the Higgs boson, “lhc,”
“cern,” “boson,” and “higgs.” The start date is the 1st July 2012,
00:00 a.m. and the final date is the 7th July 2012, 11:59 p.m.,
which covers the announcement date of the discovery, the 4th
July 2012, 08:00 a.m. All dates and timestamps in the data are
converted to the Greenwich mean time. Detailed information on
the data collection procedure and basic statistics can be found in
Domenico et al. [38].

In total, the data is composed of 456,631 users (nodes) and
563,069 interactions (edges). Among those, we detect 354,930 RT,
171,237 @, and 36,902 RE, which shows that RT is more popular
than the other communication channels. For RT interactions, we
find 228,560 users join in who, in contrast, only 41,400 users
appear in whom. These numbers are smaller for @, e.g., 102,802
who and 31,477 whom, and even smaller for RE, with 27,227
who and 18,578 whom. In each case, whom is much lower
than who, as expected because a small number of users tend to
attract a large fraction of attention in both friendship [46, 47] and
online social [48–52] networks. This observation is confirmed
in Figure 2, where we present Zipf plots associated to each
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A B

C D

FIGURE 2 | How often users in who pool communicate with users

appear in whom. Zipf plots describe heterogeneities of users in the types of

Twitter interaction, e.g., (A) all of retweet, RT, mention, @, and reply, RE, (B)

only RT, (C) only @, and finally (D) only RE. The frequency of the

communication fU is measured in two-fold: The activity of who (red squares)

aU and the popularity of whom (blue circles) pU. The x−axis ranks the users rU
from high fU to low values. Each plot indicates that who more likely contacts to

someone, as observed in the smoother decays, however only few users in

whom are addressed and become popular in these communications.

interaction, clearly showing a strong heterogeneity in the system.
For who, the frequency of the user communication fU ranks how
active users are andmeasures the activity of users aU , on the other
hand, for whom, fU quantifies how often the users or their tweets
are addressed and so gives the popularity of users pU .

3. Local Variation of Who and Whom

3.1. Communication Spike Trains
Evaluating each directed interaction (RT, @, and RE) of the users
in the pool of who with any users in the whom class, as sketched
in Figure 1, we extract salient temporal patterns of the user
communication time series. We don’t check whether the whom
participates in the conversation in a later stage and only construct
independent time series of the individual who and whom. The
elements of the time series are the timestamps of the data [38, 45]
providing us the exact time in second of the interaction and the
user name or ID of the corresponding who and whom. Ordering
the timestamps from the earliest to the latest, we generate spike
trains carrying full story of the communication of each user.
The resultant user communication spike trains are grouped in
eight: For each who and whom, the spike trains of all interactions
together (i) and the spike trains of filtered timestamps of RT
(ii), @ (iii), and RE (iv).

3.2. Local Variation
A standard way of investigating the dynamics of human
communication is to examine the statistics of the inter-event
spike intervals such as its probability distribution [14], short-
range memory coefficient and burstiness parameter [15] or

Fano factor. However, recent works have showed that further
detail analysis is required to resolve temporal correlations [31,
32], bursts [19–22], and cascading [53] driven by circadian
rhythm [23, 24], complex decision-making of individuals [3,
27, 54], and external factors [6] such as the announcement of
discoveries, as considered in the current data [38].

To uncover the dynamics of the communication spike trains
elaborately, we apply the local variation LV originally defined to
characterize non-stationary neuron spike trains [39–42] and very
recently has been used to analyze hashtag spike trains [43, 44].
Unlike the memory coefficient and burstiness parameter [15], LV
provides a local temporal measurement, e.g., at τi of a successive
time sequence of a spike train . . ., τi−1, τi, τi+1, . . ., and so
compares temporal variations with their local rates [41]

LV =
3

N − 2

N−1∑

i= 2

(
(τi+1 − τi)− (τi − τi−1)

(τi+1 − τi)+ (τi − τi−1)

)2

(1)

where N is the total number of spikes. Equation (1) also takes the
form [41]

LV =
3

N − 2

N−1∑

i= 2

(
1τi+1 − 1τi

1τi+1 + 1τi

)2

(2)

Here, 1τi+1 = τi+1 − τi quantifies the forward delays and
1τi = τi − τi−1 represents the backward waiting times for
an event at τi. Importantly, the denominator normalizes the
quantity such as to account for local variations of the rate at
which events take place. By definition, LV takes values in the
interval (0:3) [43]. It has been shown that helps at classifying
dynamical patterns successfully [39, 40, 42–44]. Following the
analysis of Gamma processes [39, 40, 43] conventional in neuron
spike analysis [42], it is known that LV = 1 for temporarily
uncorrelated (Poisson random) irregular spike trains, and that
higher values are associated to a burstiness of the spike trains.
In contrast, smaller values indicate a higher regularity of the time
series.

We now perform an analysis of LV on the user communication
spike trains. Equation (2) is performed through the spike trains
with removing multiple spikes taking place within 1 s. Such
events are rare and their impact on the value of LV has been
shown to be limited [43]. Figure 3 describes the distribution of
LV , P(LV ) of full spike trains all together with RT, @, and RE
for the who (a, b) and whom (c, d). Grouping LV based on the
frequency fU , e.g., the activity of the who aU and the popularity
of the whom pU , we examine the temporal patterns of the trains
in different classes of aU and pU . For the real data in (a, c),
in Figure 3A, LV is always larger than 1 in any values of aU ,
suggesting that all users playing a role in who contact to the
whom in bursty communications. However, in Figure 3C, we
observe distinct behavior of the whom users and bursts present
only for low pU . By increasing pU , LV ≈ 1 indicating that there
is no temporal correlation among the who referring the whom
and LV is slightly smaller than 1 for the most popular users,
indicating a tendency toward regularity in the time series, as also
observed for the hashtag spike trains [43]. These observations
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A B

C D

FIGURE 3 | Probability density function of the local variation LV , P(LV )

of who (A,B) and whom (C,D) users in various ranges of the two

communication frequencies, e.g., aU and pU. (A,C) describe the results of

the real data. When we only observe bursty communication patters in who

independently of the average user activity frequency 〈aU〉 in (A), significant

variations in LV by increasing the average user popularity 〈pU〉 are clear in (C).

The results prove that popular users are addressed randomly in time and

slightly more regular patterns observed in the most popular users. On the

other hand, (B,D) present the statistics of artificially generated random spikes

serving as a null model and all frequency ranges give the distributions around

1, as expected for temporarily uncorrelated signals.

are significantly different for artificial spike trains constructed
by randomly permuting the real full spike train and so expected
to generate non-stationary Poisson processes. Therefore, all
distributions are centered around 1 in this case, independently
of aU and pU , as shown in Figures 3B,D. The randomization and
obtaining a null set follow the same procedure explained in detail
in Sanli and Lambiotte [43].

Even though Figure 3 represents P(LV ) of full spike trains,
i.e., all interactions together, P(LV ) of individual RT, @, and
RE communication spike trains describes very similar temporal
behavior for both the who and whom. Figure 4 summarizes the
detail of P(LV ), the mean of LV , µ(LV ) with the corresponding
standard deviations σ (LV ) as error bars, comparatively. The
results highlight that to classify the communication temporal
patterns neither the position of the users, whether active or
passive, nor the types of the interaction, but the frequency
of the communication fU such as aU and pU plays a major
role. All Figures 4A–D, we observe three regions: Bursts in low
fU , log10〈fU〉 < 2.5, irregular uncorrelated (Poisson random)
dynamics in moderate and high fU , log10〈fU〉 ≈ 2.5–3, and
regular patterns in very high fU , log10〈fU〉 > 3. This conclusion
supports the importance of frequency so time parameter overall
human behavior [14, 16]. Applying standard linear fittings to the
underlying data of Figure 4, composed of 5104 data points for
whom, the understanding can be further proven. We observe the
significant negative trend of LV with increasing pU , i.e., the slope
is−0.32.

A B

C D

FIGURE 4 | Mean µ of the local variation LV of the user communication

spike trains vs. the logarithmic average frequency log10〈fU〉. The results

of who are represented by red squares and blue circles describe that of whom.

Types of the interaction are investigated in detail: (A) All communications of

retweet, RT, mention, @, and reply, RE. (B) Only RT. (C) Only @. (D) Only RE.

Independent of the types of the interaction, the frequency of communication,

e.g., the activity of users aU and the popularity of users pU, designs overall

communication patterns. While low fU gives bursty patterns with LV > 1,

moderate fU indicates irregular uncorrelated (Poisson random) signals, e.g.,

LV ≈ 1. For all high fU, LV < 1 presenting the regularity of the

communications. The error bars show the corresponding standard variations.

We now perform a more thorough comparison in Figure 5,
on the disparity of LV in different frequency ranges. To this end,
we calculate the standard z-values in two ways. First, to compare
LV of the full spike trains with LV of only RT and also with LV of
only @ spike trains, LRT

V and L@
V , respectively, we introduce

z(fU) =
µ(LkV )− µ0(LV )

σ (LkV )/

√
f kU

(3)

Here, k in superscripts labels the interaction, e.g., either RT or
@. Precisely, LkV is determined based on a filtered spike train
composed of the user timestamps of either RT or @, as already
used in (Figures 4B,C). In addition, µ

k is the mean of LkV , also
presented in Figures 4B,C, andµ0 is themean LV of the full spike
train, given in Figure 4A.

In Figure 5, black squares show z-values of RT and black
circles describe z-values of @. For who in Figure 5A where LV
only presents bursty patterns (orange shaded area) and low aU ,
we have small z-values proving the agreement of the temporal
patterns suggested by LV in the same aU . However, for whom
in Figure 5B where we have rich values of pU compared to the
values of aU , while z-values are small in bursty patterns (low pU ,
orange area) as also in who and in regular patterns (high pU ,
yellow area), larger z−@ value (the black circle) is calculated in
uncorrelated Poisson dynamics (moderate pU , purple area). The
disagreement of LV with large z−@ indicates that even though
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A

B

FIGURE 5 | Detail comparison between the temporal patterns of

different interactions in each frequency range. While x−axis is the

logarithmic average of frequency, e.g., (A) log10〈aU〉 for who and (B)

log10〈pU〉 for whom, y−axis provides the calculation of three z-values (i) z−RT

in black squares, the comparison of LV of the full spike train with LV of RT, (ii)

z−@ in black circles, the same with LV of @, and (iii) z−@RT in green

diamonds, the comparison between LV of @ and RT. All z-values are

consistent with each other such that except moderate frequency range in (B),

e.g., z−@ and z−@RT, we observe small z concluding that the temporal

patterns in the similar frequency ranges are in a good agreement. The three

distinct regions are colored due to the discovered patterns in calculating LV in

Figure 4. Orange shaded area describes the ranges of the bursty patterns (aU
and low pU ), purple area is for the Poisson random dynamics (moderate pU ),

and yellow area covers the regular patterns (high pU ).

LV ≈ 1 in this region the results of @ are quite sensitive in the
same pU , which is not observed in z−RT (the black square).

Furthermore, we repeat the analysis across communication
channels by comparing temporal patterns of RT and @ as follows

z(fU) =
µ(L@

V )− µ0(L
RT
V )

σ (L@
V )/

√
f @U

(4)

The corresponding z-values, z−@RT are presented in green
diamonds in Figure 5. Comparing to the previous z−RT and
z−@, we now obtain even lower values for who (Figure 5A)
showing a better agreement between RT and @ patterns.
Moreover, we have a very similar trend for whom (Figure 5B)
as before and so a large fluctuation is only observed in the purple
area.

4. Correlation of LV in User Communication
Habits

In this final section, our interest turns into building new
measures to quantify how the local variation LV fluctuates inside

different classes of the frequency, fU . What extend temporal
communication habits of two independent users in the same fU
ranges agree with each other is the first question we address.
Second, we examine whether the temporal patterns of the
interactions are consistent for the same users and how the metric
varies with increasing fU .

We consider rkk
′

ij (fU), the Pearson correlation coefficient of LV
of two different users selected independently from the same fU
classes

rkk
′

ij (fU) =

NU∑
i,j= 1,i 6= j

[LkVi
− µ(LkVi

)][Lk
′

Vj
− µ(Lk

′

Vj
)]

σ (LkVi
)σ (Lk

′

Vj
)

(5)

where σ (LkVi
) =

√
NU∑
i= 1

[LkVi
− µ(LkVi

)]2. Here, LVi and LVj are

the local variations of user i and j, respectively, µ’s are the
corresponding mean values, and NU is the total number of users.
Moreover, k and k′ represent all permutations among the full, RT,

and@ spike trains. Furthermore, rkk
′

ij (fU) is evaluated for who and

whom, separately. Therefore, i and j are different users, but from
the same (who/whom) pool and in the same frequency classes of
aU and pU , as grouped in Figure 3. Note that before performing
Equation (5), the corresponding LV ’s in the same fU class are
ordered from the highest to the smallest (or vice versa) not to

deform rkk
′

ij (fU) artificially due to the random selection.

Figure 6 presents the results of rkk
′

ij (fU) for who in (a, b) and

whom in (c, d). Similar to z-values performed in the previous
Section, we suggest three correlation coefficients: Red (left)

triangles describe rfull,RTij , blue (right) triangles are for rfull,@ij , and

black and green diamonds show the values of rRT,@ij . The average

frequency of the users 〈fU〉 in the same class is similar but not
equal and that is why Figures 6B,D are plotted with respect to
both the mean frequencies of RT and @, e.g., the average activity
〈aU〉 and popularity 〈pU〉 of RT and @. All correlations are above
0.85 proving the high dependency of the communication patterns
of the users in the same 〈fU〉, independently of the types of the
interaction.

We now consider Equation (5) with imposing the same user
and repeat the procedure above for the correlation coefficient

rkk
′

i (fU) =

NU∑
i
[LkVi

− µ(LkVi
)][Lk

′

Vi
− µ(Lk

′

Vi
)]

σ (LkVi
)σ (Lk

′

Vi
)

(6)

Figure 7 summarizes the results of Equation (6). While
Figures 7A,C are in parallel with that of Figure 6 with slightly
lower correlations for @ (blue right triangles), distinct behavior
is observed in Figures 7B,D. Low correlations in Figure 7B

indicate that the same who users present different temporal
behavior in RT and @. On the other hand, Figure 7D shows an
interesting temporal habit of whom users. Having no remarkable
dependency captured in low popular users, we show that the
correlation increases with 〈pU〉 describing that the popular users
are addressed in RT and @ in a temporarily similar procedure.
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A B

C D

FIGURE 6 | Linear correlations of LV of user pairs. The standard Pearson

correlation coefficient quantifies the dependency on the temporal

communication habits of two different users independently chosen from the

same frequency classes, as introduced in Figure 3. The coefficient covers 3

potential relations in the communication interactions, e.g., full and RT spike

trains, red (left) triangles, full and @, blue (right) triangles, and finally RT and @,

black and green diamonds. These 3 coefficients are calculated for who (A,B)

and whom (C,D), separately. Six coefficients in total prove that the temporal

patterns present high consistency in each average frequency classes, the

activity 〈aU〉 and the popularity 〈pU〉. In (B,D), the corresponding coefficients

are described with the sensitivity of the frequency classes since the average

frequency in the class of RT is so similar, but not exactly equal to that of @.

The colored areas are as defined in Figure 5 and characterize the three main

regions of the temporal patterns of the individual user spike trains, e.g., bursts

(orange), irregular random (purple), and regular patterns (yellow).

4.1. Nomenclature

• OSM: Online Social Media,
• @: Mention a user name in a tweet message,
• RE: Reply to a tweet or retweet message,
• RT: Retweet, share a message of other users in her/his own

tweet blog,
• WHO: Twitter users starting an interaction via @ or RE or RT

with any other users,
• WHOM: Twitter users addressed by who such that their

message is retweeted or user name is mentioned in a message
by who or they get a reply from who.

Any relation between who and whom such as the following-
follower is not imposed.

5. Discussion

In this paper, our interest is to quantify online user
communication in Twitter. To reduce the complexity in
the communication, the data studied here consider only a unique
subject which users talk about, that is the discovery of the Higgs

A B

C D

FIGURE 7 | Linear correlations of LV of the same users. The procedure

and representation of the coefficients follow the same strategy as introduced in

Figure 6. However, we now impose the same users in the same frequency

classes. Even though (A,C) present the agreement in the temporal patterns of

full and RT spike trains of the same users, with high correlation coefficients in

almost all frequency ranges, (B) indicates lower consistency between RT and

@ spike trains during entire activity 〈aU〉 and (D) provides a significant result.

While less temporal coherence is observed between RT and @ spike trains in

low popularity 〈pU〉, the correlation drastically increases with 〈pU〉.

boson on July 4, 2012 within a restricted time window, e.g., 6
days [38]. The main aim is to extract salient temporal patterns
of communication in various types of interaction observed in
Twitter such as retweet (RT), mention (@), and reply (RE).
Adopting the technique so-called local variation LV originally
introduced for neuron spike trains [39–42] and recently has
applied to hashtag spike trains in Twitter [43, 44], we perform
detailed analysis on user communication spike trains. Showing
strong influences of the frequency of the hashtag spike trains on
the resultant temporal patterns in the earlier work [43, 44], in
parallel we here examine the differences in the patterns induced
by the frequency of the user communication spike trains, fU .

We investigate user communication spike trains in two
categories, the first set of users are the active ones, who users,
and the other set is composed of the passive users, whom users,
in the communication, and each user can appear in both pools.
For who, fU simply gives what extend users contact to whom
and so it is the activity of who, aU . On the other hand, for
whom, the generated spike trains present how often who refers
the messages or the user names of whom and therefore, fU is
the popularity of whom, pU . Providing comparative statistics on
LV of who and whom with increasing aU and pU , respectively,
we observe quite distinct temporal behavior of online users.
First, we observe an asymmetry between active and passive
interactions, as only the former give rise to hubs, with few users
attracting a large share of the attention.Moreover, who constantly
presents bursts, LV > 1 for all values of aU , whereas whom
demonstrates various dynamic behavior patterns, depending on
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the popularity: The least popular users with low pU experience
bursty time series, popular users with moderate and high pU are
contacted by temporarily uncorrelated who users and so show
Poisson random spike trains LV ≈ 1, and the most popular
users with the maximum pU are referred regularly in time,
e.g., LV < 1.

These scenarios are independent of both the position of users,
e.g., who or whom, and the preferred interactions, e.g., whether
RT or @, suggesting that the frequency of the communication
dominates to design social dynamic behavior. This conclusion
is also supported by high correlation coefficients of LV on
the user pairs in the same frequency classes. Furthermore, the
linear correlation of LV on the same users reveals interesting
patterns. There, we observe that only popular users have similar
dynamic behavior in both RT and @, which confirms that
both metrics are complementary to characterize the influence of
users.

The analysis could be improved by integrating the
communication spike trains with the following-follower
relation in Twitter, and focusing on the who and whom trains
of connected users. An important concern is the limited time
period of the data which the collection started 3 days before
the announcement of the discovery and continued until 3
days after this date. Yet, it has been shown that the dynamics
of the communication is drastically different before/after and
during the announcement [38], and this variation could be
investigated in our analysis. Our study shares the similar aims
of the other research on online user behavior and the influence
of the frequency in online platforms such as Flickr, Delicious
and StumbleUpon, which user profiles have been included in the

analysis [47]. This understanding could be also applied to our
analogy with considering further details in the data.

5.1. Data Sharing
The full data studied in this paper has open access [38, 45].
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Nowadays, millions of people interact on a daily basis on online social media like

Facebook and Twitter, where they share and discuss information about a wide variety

of topics. In this paper, we focus on a specific online social network, Twitter, and we

analyze multiple datasets each one consisting of individuals’ online activity before, during

and after an exceptional event in terms of volume of the communications registered.

We consider important events that occurred in different arenas that range from policy

to culture or science. For each dataset, the users’ online activities are modeled by a

multilayer network in which each layer conveys a different kind of interaction, specifically:

retweeting, mentioning and replying. This representation allows us to unveil that these

distinct types of interaction produce networks with different statistical properties, in

particular concerning the degree distribution and the clustering structure. These results

suggests that models of online activity cannot discard the information carried by this

multilayer representation of the system, and should account for the different processes

generated by the different kinds of interactions. Secondly, our analysis unveils the

presence of statistical regularities among the different events, suggesting that the

non-trivial topological patterns that we observe may represent universal features of the

social dynamics on online social networks during exceptional events.

Keywords: multilayer, social networks, complex networks, exceptional events, big data

1. Introduction

The advent of online social platforms and their usage in the last decade, with exponential increasing
trend, made possible the analysis of human behavior with an unprecedented volume of data.
To a certain extent, online interactions represent a good proxy for social interactions and, as a
consequence, the possibility to track the activity of individuals in online social networks allows one
to investigate human social dynamics [1].

More specifically, in the last years an increasing number of researchers focused on individual’s
activity in Twitter, a popular microblogging social platform with about 302 millions active users
posting, daily, more than 500 millions messages (i.e., tweets) in 33 languages1. In traditional social
science research the size of the population under investigation is very small, with increasing costs
in terms of human resources and funding. Conversely, monitoring Twitter activity, as well as other
online social platforms as Facebook and Foursquare to cite just some of them, dramatically reduces
such costs and allows to study a larger population sample, ranging from hundreds to millions of

1https://about.twitter.com/company.
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individuals [2], within the emerging framework of computational
social science [3].

The analysis of Twitter revealed that online social networks
exhibit many features typical of social systems, with strongly
clustered individuals within a scale-free topology [4]. Twitter
data [5] has been used to validate Dunbar’s theory about
the theoretical cognitive limit on the number of stable social
relationships [6, 7]. It has been shown that individuals tend to
share ties within the same metropolitan region and that non-
local ties distance, borders and language differences affect their
relationships [8]. Many studies were devoted to determine which
and how information flows through the network [9–12], as well
as to understand themechanisms of information spreading—e.g.,
as in the case of viral content—to identify influential spreaders
and comprehend their role [13–17]. Attention has also been given
to investigate social dynamics during emergence of protests [18],
with evidences of social influence and complex contagion
providing an empirical test to the recruitment mechanisms
theorized in formal models of collective action [19].

Twitter allows users to communicate through small messages,
using three different actions, namely mentioning, replying and
retweeting. While some evidences have shown that users tend
to exploit in different ways the actions made available by the
Twitter platform [20], such differences have not been quantified
so far. In this work, we analyze the activities of users from a new
perspective and focus our attention on how individuals interact
during exceptional events.

In our framework, an exceptional event is a circumstance not
likely in everyday news, limited to a short amount of time—
typically ranging from hours to a few days—that causes an
exceptional volume of tweets, allowing to perform a significant
statistical analysis of social dynamics. It is worth mentioning
that fluctuations in the number of tweets, mentions, retweets,
and replies among users may vary from tens up to thousands
in a few minutes, depending on the event. A typical example of
exceptional event is provided by the discovery of the Higgs boson
in July 2012 [21], one of the greatest events in modern physics.

We use empirical data collected during six exceptional events
of different type, to shed light on individual dynamics in the
online social network. We use social network analysis to quantify
the differences between mentioning, replying and retweeting in
Twitter and, intriguingly, our findings reveal universal features
of such activities during exceptional events.

2. Materials and Methods

2.1. Material
It has been recently shown that the choice of how to gather
Twitter data may significantly affect the results. In fact, data
obtained from a simple backward search tend to over-represents
more central users, not offering an accurate picture of peripheral
activity, withmore relevant bias for the network ofmentions [14].
Therefore, we used the streaming Application Programming
Interface (API) made available by Twitter, to collect all messages
posted on the social network satisfying a set of temporal and
semantic constraints. More specifically, wemade use of the public

streaming API2 subjected to filters (keywords, hashtags or a
combination of both). If the flow of tweets corresponding to the
filter is smaller than 1% of the total flow on Twitter, then all tweets
satisfying the filters are obtained, otherwise a warning reporting
the number of missed tweets is received.

We consider different exceptional events because of their
importance in different subjects, from politics to sport. More
specifically, we focus on the Cannes Film Festival in 20133

(Cannes2013), the discovery of the Higgs boson in 20124 [21]
(HiggsDiscovery2012), the 50th anniversary of Martin Luther
King’s famous public speech “I have a dream” in 20135

(MLKing2013), the 14th IAAF World Championships in
Athletics held in Moscow in 20136 (MoscowAthletics2013), the
“People’s ClimateMarch”—a large-scale activist event to advocate
global action against climate change—held in New York in 20147

(NYClimateMarch2014) and the official visit of US President
Barack Obama in Israel in 20138 (ObamaInIsrael2013).

For each event, we collected tweets sent between a starting
time ti and a final time tf containing at least one keyword or
hashtag, as specified in Table 1. For almost all events, we have
chosen keywords and hashtag that are very specific, reducing the
amount of noise (i.e., tweets that are not related to the event
although they satisfy our filters). In the case of the visit of Barack
Obama in Israel in 2013 we have included the more generic
keyword “peace,” because in this specific context it was relevant
for gathering data. However, it is worth anticipating here that our
results show that the (unknown) amount of noise in this dataset
did not alter the salient statistical features of the dataset.

Finally, we report that in a few cases we complemented a
dataset by including tweets obtained from the search API (atmost
5% of tweets with respect to the whole dataset) and that in the
worst cases, the flow of streaming API was limited causing a loss
of less than 0.5% of tweets.

2.2. Methods
To understand the dynamics of Twitter user interactions during
these exceptional events, we reconstruct, for each event, a
network connecting users on the basis of the retweets, mentions
and replies they have been the subject or object of. In the
literature on Twitter data what is usually built is the network
based on the follower-followee relationships between users [4, 8,
9]. However, this kind of network only captures users’ declared
relations and it does not provide a good proxy for the actual
interactions between them. Users, in fact, usually follow hundreds
of accounts whose tweets appear in their news feed, even if there
is no real interaction with the majority of those individuals.
Therefore, to capture the social structure emerging from these
interactions we build instead a network based on the exchanges
between users, which can be deduced from the tweets that they

2https://dev.twitter.com/streaming/public.
3https://en.wikipedia.org/wiki/2013_Cannes_Film_Festival.
4https://en.wikipedia.org/wiki/Higgs_boson#Discovery_of_candidate_boson_at_

CERN.
5https://en.wikipedia.org/wiki/I_Have_a_Dream.
6https://en.wikipedia.org/wiki/2013_World_Championships_in_Athletics.
7https://en.wikipedia.org/wiki/People’s_Climate_March.
8https://en.wikipedia.org/wiki/List_of_presidential_trips_made_by_Barack_

Obama#2013.
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TABLE 1 | Information about events used in this work.

Dataset Starting date Ending date Keywords

Cannes2013 06 May 2013 03 Jun 2013 cannes film

festival,cannes,

canneslive

05:23:49 GMT 03:48:26 GMT #cannes2013,

#festivalcannes,

#palmdor

HiggsDiscovery2012 30 Jun 2012 10 Jul 2012 lhc, cern, boson,

higgs

21:11:19 GMT 20:59:56 GMT

MLKing2013 25 Aug 2013 02 Sep 2013 Martin Luther King

13:41:36 GMT 08:16:21 GMT #ihaveadream

MoscowAthletics2013 05 Aug 2013 19 Aug 2013 mos2013com,

moscow2013,

mosca2013

09:25:46 GMT 12:35:21 GMT moscu2013,

#athletics

NYClimateMarch2014 18 Sep 2014 22 Sep 2014 peopleclimatemarch,

peoplesclimate

22:46:19 GMT 04:56:25 GMT marciaxilclima,

climate2014

ObamaInIsrael2013 19 Mar 2013 03 Apr 2013 obama, israel

15:56:29 GMT 21:24:34 GMT palestina, peace

Note that starting and ending dates reported here consider only tweets where users

perform a social action, i.e., tweets without mentions, replies or retweets are not

considered.

produce. In particular, there are three kinds of interactions that
can take place on Twitter and that we will focus on:

• A user can retweet (RT) another user’s tweet. This means that
the user is endorsing a piece of information shared by the other
user, and is rebroadcasting it to her/his own followers.

• A user can reply (RP) to another user’s tweet. This represents
an exchange from a user to another as a reaction of the
information contained in a user’s tweet.

• A user can mention (MT) another user in a tweet. This
represents an explicit share of a piece of information with the
mentioned user.

A fourth kind of possible interaction is to favourite a user’s
tweet, which represents a simple endorsement of the information
contained in the tweet, without rebroadcasting. However, we do
not have this kind of information for this dataset and therefore
we do not consider this kind of interaction.

As just discussed, each kind of activity on Twitter (retweet,
reply, and mention) represents a particular kind of interaction
between two users. Therefore, an appropriate framework to
capture the overall structure of these interactions without loss
of information about the different types is the framework
of multilayer networks [22–27]. More specifically, in the
case under investigation the more appropriate model is
given by edge-colored graphs, particular multilayer networks

TABLE 2 | Number of nodes and edges of the network corresponding to

each event considered in this study.

Event Aggregate RT RP MT

Cannes2013 N = 514,328 337,089 85,414 91,825

E = 700,492 490,268 82,952 127,272

HiggsDiscovery2012 N = 747,659 434,687 167,385 145,587

E = 817,877 542,808 122,761 152,308

MLKing2013 N = 346,069 286,227 24,664 35,178

E = 339,143 288,543 18,157 32,443

MoscowAthletics2013 N = 103,319 73,377 11,983 17,959

E = 144,591 102,842 12,768 28,981

NYClimateMarch2014 N = 115,284 94,300 7,900 13,084

E = 239,935 213,158 8,038 18,739

ObamaInIsrael2013 N = 2,641,052 1,443,929 737,353 459,770

E = 2,926,777 1,807,160 586,074 533,543

The second column reports the total number of nodes and edges, corresponding to a

network in which information is aggregated. The last three columns report the number

of active nodes and edges per layer. A node is considered active on a given layer if the

corresponding user is the subject or the object of the corresponding kind of interaction.

where a color is assigned to different relationships—i.e., the
edges—among individuals defining as many layers as the number
of colors. We refer to Kivelä et al. [28] and Boccaletti et al. [29]
for thorough reviews about multilayer networks.

Here, for each event, we build a multilayer network composed
by L = 3 layers {RT,RP,MT}, corresponding to the three actions
that users can perform in Twitter, and N nodes, being N the
number of Twitter users interacting in the context of the given
event. A directed edge between user i and user j on the RT layer
is assigned if i retweeted j. Similarly, an edge exists on RP layer
if user i replied to user j, and on MT layer if i mentioned j. An
illustrative example is shown in Figure 1.

Details about the number of nodes and edges characterizing
each event are reported in Table 2. We can observe that the
number of nodes and edges can vary importantly across events
and across layers, but for each event and each interaction type
the size of the corresponding networks is sufficient to allow a
statistically significant analysis of the data.

3. Results

In the following we present an analysis of the networks
introduced in the previous section, which is oriented at exploring
two different but complementary questions.

Firstly we want to know if, within one same event, the three
kinds of interactions produce different network topologies. To
this aim, we consider basic multilayer and single-layer network
descriptors relevant to characterize social relationships, and we
study how they vary when considering different layers.

Secondly, we want to unveil if different exceptional events
present any common pattern regarding users interactions. As
shown in Figure 2, the temporal pattern of the different events
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FIGURE 1 | Illustrative example of a multilayer network representing the different interactions between Twitter users in the context of an exceptional

event. Different colors are assigned to different actions.

A B C

D E F

FIGURE 2 | Volume of tweets, in units of number of messages posted per hour, over time for the six exceptional events considered in our study. In

panels (A–F) we show the volume corresponding to each exceptional event reported in Table 1, respectively.

considered in our study presents highly heterogeneous profiles.
Some events are, in fact, limited to one day or only to a few
hours, whereas others span over a week or more, and the profile
of tweets volume varies accordingly. However, despite of these
differences, do the user interactions that take place during these
events present any common feature?

3.1. Edge Overlap Across Layers
To understand if the kinds of interaction produce similar
networks or not, we analyze if users interact similarly with

each other regardless of the type of activity (retweet, reply, or
mention), or not. This information can be obtained by calculating
the edge overlap [26, 30] between each pair of layers. However,
when the number of edges is very heterogeneous across layers, a
more suitable descriptor of edge overlap is given by:

oαβ =
|Eα ∩ Eβ |

min(|Eα|, |Eβ |)
, (1)

where Eα (Eβ ) is the set of edges belonging to layer α (β) and
| · | indicates the cardinality of the set. This measure quantifies
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FIGURE 3 | Heatmap representing the edge overlap between pairs of

layers, averaged over the different events.

TABLE 3 | Number of nodes and edges of the network corresponding to

each event considered in this study.

Layer pair Edge overlap Degree-degree correlation

MT-RP 0.05± 0.04 0.50± 0.12

MT-RT 0.06± 0.03 0.33± 0.08

RP-RT 0.08± 0.04 0.35± 0.10

the proportion of pair-wise interactions—represented by the
edges—that are common to two different layers. Because, as
shown in Table 2, the number of edges can vary largely on the
different layers, the normalization is given by the cardinality of
the smallest set of edges, to avoid biases resulting from the size
difference. The results are reported in Figure 3. Each value is
obtained by averaging over the different events. The standard
deviations are not shown in the figure for the sake of clarity,
but are reported in Table 3. We see that, for every couple of
layers, (α, β), oαβ ≪ 1. This result indicates that different layers
contain different pairwise interactions, i.e., the users that we
retweet are not necessarily the same that we mention or we reply
to, for example. This result suggests that considering the different
activities separately might be very relevant in order to understand
human interaction dynamics on Twitter.

3.2. Degree-degree Correlations Across Layers
In this section, we study the degree connectivity of users, themost
widely studied descriptor of the structure of a network. We focus
in particular on the in-degree ki,α , which quantifies the number
of users who interacted with user i on layer α (α = RT, RP, and
MT). This is the simplest measure of the importance of the user
in the network.

First, we explore if users have the same connectivity on the
different layers, or not, i.e., if the users consistently have the
same degree of importance on all the layers, or not. To this
aim, we compute the Spearman’s rank correlation coefficient
[31] between the in-degree of users on one layer and their
in-degree on a different layer, for each pair of layers. The results,

FIGURE 4 | Heatmap representing the average degree-degree

correlation between layer pairs.

averaged across the different events, are reported in Figure 4,
with statistical details reported in Table 3. The value of two
degree-degree correlations out of three is about 0.35, and the
third—and highest—correlation is 0.5. This means that users
tend to have different in-degree values on the different layers,
i.e., a highly retweeted user is most likely not to be mentioned
or replied to by as many users. This result suggests that the
different types of interaction might produce different networks
and should be considered separately in realistic modeling of
individual dynamics.

3.3. Degree Distribution Per Layer
Building on the result discussed in the previous section, we
also explore, for each event, the distribution of the in-degree
on the different layers, separately. Intriguingly, for each layer,
we find that the empirical distributions corresponding to all
the exceptional events present very similar shape, as shown in
Figure 5. This result suggests that individuals’ communications
on Twitter present some universal characteristics across very
different types of events.

The in-degree, shown in Figure 5, exhibits a power-law
distribution for about three order of magnitudes. To validate our
observation, we fit a power law to each distribution following a
methodology similar to the one introduced in Clauset et al. [32].
By noticing that the in-degree is a discrete variable, we estimate
the scaling exponent of a discrete power law for each empirical
distribution. The goodness of fit is estimated by using the Chi
Square test [33]. We find that the null hypothesis that the data
is described by a discrete power law is accepted for all empirical
distributions with a confidence level of 99%.We have tested other
hypotheses, by considering other distributions with fat tails such
as lognormal, exponential, Gumbel’s extreme values, and Poisson.
In the cases where the null hypothesis is accepted with the same
confidence level, we used the Akaike information criterion (AIC)
[34, 35] to select the best model. It is worth remarking that, in all
cases, we find that the power law provides the best description of
the data.
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FIGURE 5 | Distribution of the in-degree for each event considered in this study (encoded by points with different shape and color) and each layer:

retweets (left), mentions (center), and replies (right).

Power-law distributions of the degree have been found in a
large variety of empirical social networks [36]. Here, the main
finding of our results is that each kind of interaction presents
a different scaling exponent. To show this, in Figure 6 we
report three notched box plots, each corresponding to a different
layer and including the information about the different events.
Notched box plots present a contraction around the median,
whose height is statistically important: if the notches of two boxes
do not overlap, this offers evidence of a statistically significant
difference between the two medians. This is indeed the case in
Figure 6, meaning that the median scaling exponent of the in-
degree distribution of each of the three layer is different from the
exponent characterizing the in-degree distribution of the other
layers. The fact that the in-degree distributions corresponding to
the different types of interaction are characterized by different
scaling exponents indicates that the dynamics of each type of
interaction in Twitter should be modeled as a distinct process,
and that existing models of Twitter activity that do not take into
account this fact should be carefully rethought.

3.4. Average Clustering Per Layer
Lastly, for each layer separately, we calculate the average
clustering coefficient of the corresponding network. This is a
measure of the transitivity of the observed interactions, and
constitutes an important metric to characterize social networks

FIGURE 6 | Notched box plots showing the value of the scaling

exponent of the in-degree distribution for each layer. Each box

aggregates the values corresponding to the different events considered.

Notched box plots present a contraction around the median, whose height is

statistically important: if the notches of two boxes do not overlap, this offers

evidence of a statistically significant difference between the two medians. This

is the case here, meaning that the median scaling exponent of the in-degree

distribution of each of the three layer is different from the exponent

characterizing the in-degree distribution of the other layers.
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FIGURE 7 | Notched box plots showing the value of the average

clustering coefficient for each layer. Each box aggregates the values

corresponding to the different events considered.

[37]. In particular, for each event and each layer, we compute the
average local clustering coefficient defined by:

C̄ =
1

N

N∑

i= 1

Ci, (2)

where

Ci =
2|{ejk : vj, vk ∈ Ni, ejk ∈ E}|

ki(ki − 1)
, (3)

where ejk indicates the edge between users j and k. We show
in Figure 7 the values of the clustering coefficient using three
notched box plots, each corresponding to a different layer
and including the information about the different events. The
mention network has the highest clustering level, whereas
the reply network has the lowest one. The clustering level
of the retweet network is the most variable across events,
however the three medians are again different because the
notches do not overlap. This result is a further confirmation
that the three layers, and therefore the three types of
interaction that they represent, form different network topologies

and that the dynamical processes producing them are thus
distinct.

4. Discussion

In this paper we analyze six datasets consisting of Twitter
conversations surrounding distinct exceptional events. The
considered events span over very different topics: entertainment,
science, commemorations, sports, activism, and politics. Our
results show that, despite the different fluctuations in time and in
volume, there are some statistical regularities across the different
events. In particular, we find that the in-degree distribution
of users and the clustering coefficient in each of the three
layers (representing interactions based on retweet, replies, and

mentions, respectively) are the same across the six different
events. Our first conclusion is therefore that users behavior
on Twitter—during exceptional events—presents some universal
patterns.

Secondly, we show that different types of interactions between
users on Twitter (retweeting, replying, and mentioning) generate
networks presenting different topological characteristics. These
differences were captured making use of the multilayer network
framework: instead of discarding the information contained in
the tweets regarding how users interact, we use this information
to build a more complete representation of the system by means
of three layers, each representing a different type of interaction.
The fact that networks corresponding to different layer present
different statistical properties is an important hint for models
aiming at reproducing human behavior in online social networks.
Our results indicate that, to faithfully represent how users
interact, these models cannot be based on an aggregated view
of the network and should account for all the different processes
taking place in the system, separately.
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Humans, like almost all animals, are phase-locked to the diurnal cycle. Most of us sleep

at night and are active through the day. Because we have evolved to function with this

cycle, the circadian rhythm is deeply ingrained and even detectable at the biochemical

level. However, within the broader day-night pattern, there are individual differences: e.g.,

some of us are intrinsically morning-active, while others prefer evenings. In this article,

we look at digital daily cycles: circadian patterns of activity viewed through the lens of

auto-recorded data of communication and online activity.We begin at the aggregate level,

discuss earlier results, and illustrate differences between population-level daily rhythms in

different media. Then we move on to the individual level, and show that there is a strong

individual-level variation beyond averages: individuals typically have their distinctive daily

pattern that persists in time. We conclude by discussing the driving forces behind these

signature daily patterns, from personal traits (morningness/eveningness) to variation in

activity level and external constraints, and outline possibilities for future research.

Keywords: circadian rhythms, electronic communication records, mobile phones, digital phenotyping, individual

differences

1. Introduction

Almost all life on Earth is affected by the planet’s 24-h period of rotation. Humans are no different;
the rhythms of our lives are phase-locked with the diurnal cycle. Because our bodies have evolved to
cope with the external environment, we have genetic circadian pacemaker circuits that intrinsically
follow a period of approximately 24 h [the circadian period length may vary from one person
to another, vary by age and there are known gender differences [1, 2]]. The operation of these
circadian circuits manifests at various levels: biochemical, physiological, psychological, and in
various markers from hormone levels to body temperature [3–6]. While our daily rhythms can be
modulated by exogenous factors [e.g., decoupling alertness from the sleep/wake cycle [7]], there is
a very strong endogenous component in these rhythms, as indicated by the persistence of a near-24
h rhythm in the absence of environmental cues or despite imposition of a non-24 h schedule [8, 9].

Within this broader pattern, however, there are substantial inter-individual differences. Such
differences are apparent in the existence of chronotypes—morning types and evening types, those
who go to bed early and those who find it difficult to wake up early. The traits of morningness
and eveningness correlate with distinctive temporal patterns of physiological and psychological
variables, such as body temperature and efficiency. They also appear to be linked to gender as well
as personality traits; in particular, studies have shown weak negative correlations of morningness
with extraversion and sociability [10, 11].

The daily rhythms that humans follow are visible in the digital records that are left in the
wake of human online activity. Population-level and system-level daily rhythms can be observed
in time variation of activity in Youtube, Twitter and Slashdot, and in frequency of edits in
Wikipedia and OpenStreetMap [12–15]. They are also seen in the frequency of mobile telephone
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calls [16, 17], and in traces of human mobility derived from
mobile phone data [18–20]. But what do the circadian patterns
displayed by activity levels in an online system actually reveal
about human behavior? The behavior of an online system is
determined by a number of factors: the day/night cycle, the
function and purpose of the system in question (e.g., work-
related emails mostly being sent during office hours, see below),
the variation of behaviors of user groups (e.g., Wikipedia edits
from multiple time zones), and, importantly, variation at the
individual level.

In this paper, we discuss findings regarding the daily patterns
in electronic records of human communication, along with
results of analyses that illustrate such patterns in four different
datasets. We start at the aggregate level, studying system-level
average patterns and discuss the origins of the findings. From
the system level, we will move on to the level of individuals,
and focus on the variation that remains hidden within system-
level averages: individual differences reflected in persistent,
distinct daily activity patterns. This part confirms that earlier
findings of persistent individual differences in a mobile telephone
dataset [21] are general, and that persistent, distinct daily patterns
of individuals are common to different communication channels.
These finding are important in two ways: one is that in order
to better understand human behavior, more focus is required
on individual-level behavior. Second, showing that behavior of
each individual persists in time opens up several new questions
to better understand the reasons behind this persistence and
how and why this persistence can be perturbed. We conclude by
discussing the implications of these findings, and address future
research questions from large-scale analysis of sleep habits of
individuals with big data to daily activity patterns as part of digital
phenotypes.

2. Daily Patterns at the Aggregate Level

2.1. Previous Work
Let us begin by discussing observations of digital daily cycles in
different systems at the aggregate level, computed from digital
records of communication and online activity. In every instance
where the temporal variation of the activity levels in such systems
is monitored, the result is a periodic pattern of activity on several
time scales [22]. The longest scale is that of a calendar year, where
special periods such as holidays can typically be distinguished
(see, e.g., 17). Then there is a weekly cycle, where weekends
typically differ fromweekdays, and where there can be differences
between weekdays as well [12–14, 17, 23]. Finally, there is a daily
pattern which may significantly differ between different systems.

We stress that any observed system-level pattern rises out
of the superposition of a multitude of individual patterns,
and attributing system-level behavior to individuals would
amount to an ecological fallacy. Therefore, interpreting what
the system-level patterns represent remains a non-trivial task.
Solving the problem of disentangling the superposition of daily
patterns, however, may provide important information of the
user population. A good example of this is Yasseri et al. [14],
where the authors studied Wikipedia in various languages, and
were able to infer the geographical spread of their editor base

from the assumption that the observed edit frequency cycles are
a superposition of circadian patterns on different time zones. The
method is based on the argument that Wikipedias in different
languages exhibit universal daily patterns, with minima and
maxima at around the same time of the day (when correcting for
time zones).

Temporal patterns of activity have been studied for different
online platforms. For example, in Yasseri et al. [15], the authors
look at differences between editing patterns on OpenStreetMap,
which is a geo-wiki, for two different cities (London and Rome).
Circadian patterns of edits for the two cities have been compared
to each other and to that of Wikipedia edits. The authors also
followed changes in the circadian rhythms for each of the two
cities over several years. In ten Thij et al. [24], daily and weekly
patterns of Twitter activity in different languages have been
studied and it has been shown that circadian patterns emerge
for tweets in all the studied languages. In Noulas et al. [25], the
authors have looked at data from Foursquare and found geo-
temporal rhythms in activity both for weekdays and weekends.

Analysis of aggregate-level daily cycles with geospatial
information has been used in the context of cities and transport.
As an example, in Toole et al. [26], the authors infer dynamic
land use of different parts of a city based on temporal patterns
of mobile phone activity in different locations. In Ahas et al.
[19], temporal data is combined with location data from mobile
phones. Comparing daily rhythms for different days of the week,
the authors show a significant difference in mobility of suburban
commuters in city of Tallinn on weekends as compared to work
days. In Louail et al. [20], the authors investigate the daily
rhythms of different Spanish cities in terms of spatiotemporal
patterns of mobile phone usage, and show how the structure
of hotspots, places of frequent usage, allow them to distinguish
between different cities. Also, in Grauwin et al. [27], the authors
study rhythms of mobile phone traffic records in three global
cities in three different continents (London, New York, andHong
Kong). They look at daily patterns at the city level as well as at the
local scale within each city and find similarities between cities in
some features as well as distinctive patterns for each city for other
features. In Dong et al. [28], Call Detail Record (CDR) data for a
period of 5 months from Cote d’Ivoire is used to detect unusual
crowd events and gatherings.

As a more applied and non-conventional example of the
analysis of daily rhythms, inMay 2014 a number of different news
outlets (e.g., 29) described how an elaborate campaign run by
Iranian hackers on social media, targeting American officials and
figures, was revealed only after analysing the temporal patterns
of three years of activity. The daily and weekly activity patterns
of the hackers matched precisely the activity profile of Tehran
(i.e., low activity at lunch hours of Tehran local time, and little
or no activity on Thursdays and Fridays which are weekend days
in Iran).

Finally, let us mention that electronic records contain
evidence of daily/weekly patterns that go beyond activity rates.
Using network analysis [17] show that when mobile telephone
calls between individuals are aggregated to form networks, the
structural features of those networks differ depending on the
starting time of the aggregation process. In particular, weekends
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differ from weekdays. It is probable that the explanation is that
during weekends, communication is mainly targeted to close
friends and relatives who reside within the dense core of one’s
egocentric network. At a smaller scale, in Aledavood et al. [21],
the authors show that closest friends are frequently called in the
evenings.

2.2. Results
In this work, we study three different datasets, one with calls,
one with calls and text messages, and one containing email
records [30]. For calls, we use the RealityMining dataset [31], and
another mobile phone dataset containing data from a small town
in a European country with a population of around 8000 people,
a subset of the data used in e.g., [32]. For the latter, we also study
text messages. For all sets, we use 8-week slices. A summary of
different sets can be found in Table 1. Preprocessing of the data
is discussed in Section 5.

As the first step, we look at aggregated hourly event
frequencies for each of the four different sets (Figure 1). It is
clear that while the sleep/wake cycle is apparent in each set,
there are also noticeable differences. Calls in the European town
show a double-peaked daily curve, whereas the Reality Mining

TABLE 1 | Overview of the datasets used in this study.

Dataset Participants Active users Total events

Reality mining call 87 47 14,187

Town call 1204 277 45,844

Town text 708 64 13,014

Email 2430 431 206,723

FIGURE 1 | Number of events per hour for each day of week in our

datasets. This curve has been aggregated over the entire 8-week period.

From top to bottom: calls in Reality Mining, calls and texts in small town, and

emails. We observe strong diurnal patterns in all datasets; for the small town

datasets there are also differences between calls and and texts activity. The

email dataset shows decreased activity during weekends.

data displays no such pattern. It is possible that this is due to
different conventions; students in Boston can be expected to
behave differently than people in a small European town. Note
that for the Reality Mining data, time zone information is not
available, so we have manually shifted them such that the lowest
points correspond to night and there is a possibility that this
estimate is inaccurate. However, this only affects the phase of the
pattern, not its shape.

Interestingly, in both call datasets, the highest peak occurs on
the fifth day (Friday). Also note the very low email activity level
during the weekend in the email data. For email, time stamps are
relative to some unknown t0, so the daily cycles appear shifted
compared to the other datasets.

In Figure 2 we focus on the difference between daily cycles
the various datasets. Here, we plot the average daily patterns in
each system on the third day of the week. Since there is no exact
timezone information for Reality Mining and email datasets, we
identified the third day of the week by assuming that two low-
activity days correspond to the weekend. We also aligned the
timelines by assuming that the lowest activity of the day occurs at
4 AM for all datasets.We then average over the third-day patterns
across all 8 weeks in each set. As in Aledavood et al. [33], we find
differences between the communication channels: for the small
town dataset, the peak of text messages is later than that of calls.
This is perhaps due to different nature of these channels; while
getting calls in the late hours might not be appreciated, receiving
text messages which are much less obtrusive is still acceptable.

3. Daily Patterns at the Level of Individuals

3.1. Previous Work
In Aledavood et al. [21], two present authors investigated
individual-level daily cycles in mobile phone call data from 24
individuals (12 male and 12 female) over 18 months. The data
collection was performed in a setting where the participants
completed high school some months after the collection began,

FIGURE 2 | The daily pattern in each of the datasets, computed as an

average over all Wednesdays in the data. Colors are the same as in

Figure 1. We observe distinct patterns across the various data channels.

Email activity is early in the day, whereas (unobtrusive) text messages peak late

at night.
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FIGURE 3 | A sample of 12 individual-level daily patterns for four datasets to illustrate the diverse nature of individual patterns. Columns correspond to

datasets, while rows (A–C) correspond to different individuals (who are not the same across datasets). The black line shows the average daily pattern for the dataset in

question—and therefore is the same in each column—whereas green/red areas denote where this individual’s pattern is above or below average. We observe that in

almost every case, the individual patterns differ strongly from the average behavior, for example by increased calling frequency during mornings, mid-days, or evenings.

and then started their first year at university, often in another
city, or went to work. This design guaranteed a high turnover
in their social networks [34], and provided an opportunity to
study a major change in their life circumstances. Looking at
individual-level daily call patterns, however, it was clear that
there were persistent individual differences; each individual has
their distinctive daily cycle despite social network turnover
and changes in circumstances. This observation speaks in favor
of intrinsic factors (such as the aforementioned chronotypes)
dominating individual-level variations in daily patterns (see
Section 4).

3.2. Results
Continuing the analysis of the four datasets, we first calculate
for each set the daily patterns for each individual (“ego”) by
counting the total number of events associated with the ego at
each hour of the day through the whole 8 weeks. The counts
are then normalized to one for each ego to yield that person’s
daily activity pattern. As a reference, we also compute the average
pattern over all egos from the normalized patterns.

Figure 3 displays a sample of the individual-level daily
patterns for each dataset. For each set, we have picked three
egos to demonstrate individual differences; for each ego, their
differences from the aggregated average are emphasized by red
and green colors. For all datasets, we can observe clear variation
between individuals. Considering the differences between the
aggregate and individual daily cycles serves two purposes. While
the average pattern in each dataset reveals general underlying
mechanisms, the individual patterns show that each person has
their own preferences for the timing of communication with

others. The daily communication cycles point at variation beyond
morningness and eveningness: while individuals clearly have
different sleep/wake cycles, they also have their specific patterns
during their wakefulness periods.

Using the same methodology as Aledavood et al. [21] in order
to study whether these daily patterns for each individual are
persistent and thus characteristic for the individual, we divide
the 8 weeks of data into two 4-week time intervals and use
the Jensen–Shannon divergence to measure self and reference
distances between patterns. A detailed explanation of these
calculations can be found in the Section 5. The results are shown
in Figure 4. We observe an effect similar to the findings in
Aledavood et al. [21]: the daily patterns of individuals tend to
be more similar to themselves in consecutive time intervals as
compared to daily patterns of other individuals in the same
time interval. This indicates that individuals have distinct daily
patterns that retain their shapes in time. In other words, Figure 4
shows that the individual differences seen in Figure 3 are not just
caused by random fluctuations: were fluctuations the reason for
individual differences, each individual’s patterns in consecutive
intervals would be equally similar or dissimilar to those of
everyone else. As self-distances are on average lower, this is clearly
not the case.

4. Discussion

Circadian rhythms have deep roots in human physiology, driven
by the environment in which we live. These patterns manifest
themselves in different ways at the individual and aggregate
levels. There are diurnal patterns that are only visible at the
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FIGURE 4 | Self and reference distances for daily patterns in our datasets. Self-distance measures the distance between one individual’s daily patterns in two

consecutive 4-week intervals, whereas reference distances are computed between all pairs of individuals in a 4-week interval.

aggregate level in the overall frequencies of various phenomena
that are rare or one-time events at the individual level:
time of birth, heart attacks, suicides or committing unethical
behavior [35–37]. To the contrary, the daily rhythms that we
have focussed on here originate at the level of individuals,
where they manifest as time-dependent event rates of e.g., digital
communication.

What are the factors that determine an individual’s daily
rhythm as viewed through the lens of electronic records? The
most obvious one is the sleep/wake cycle: we do not send
emails or edit Wikipedia while asleep. This is known to be the
central driver behind individual differences. First, individuals
have different intrinsic chronotypes [morningness/eveningness
tendencies [3]]. Second, the preferred duration of sleep also varies
from one person to another [38]. Third, besides these intrinsic
factors, external forcing such as different work schedules also
have an effect on the sleep/wake cycle [39].

In addition to differences in the sleep/wake cycle, our alertness
and propensity to sleep are distinct for each individual and vary
throughout the day. Naturally, individuals go on average through
fairly similar cycles of wakefulness and sleepiness, which may
explain the qualitatively similar features of aggregate-level daily
patterns across different systems. At the level of individuals,
however, there are important differences, which are reflected in
the observed daily patterns in digital records. As an example, a
tired person might be less likely to write an important email or
edit a Wikipedia article. Likewise, in addition to these intrinsic
alertness cycles, one’s daily schedule (work, commuting, etc.)
plays a role by imposing constraints on the times when it is

possible to send emails or make calls. In terms of daily patterns of
telephone calls, things are more complicated, because every call
involves two individuals—a caller and a recipient. When calling,
one must consider social norms and the availability of the other
party.

Understanding which of the factors discussed above dominate
the digital daily cycles of individuals and give rise to individual
differences and persistent circadian patterns is a task that requires
further attention. While the persistence of daily patterns appears
to indicate that the intrinsic components (chronotypes, alertness
cycles) do play a major role [21], external factors should also
be of importance (see, e.g., 40). Further, it will be necessary to
study whether individuals bound by (strong) social ties tend to
synchronize their communication and availability.

While analysing digital records at the aggregate level can
provide us invaluable population-level insights and help to
replace or improve traditional survey or census methods [26,
41], studying the temporal fingerprints of individuals will
unveil many new opportunities. As smartphones and other
wearable devices are becoming ever more ubiquitous, they also
increasingly provide high-velocity, high-volume data streams
describing human behavior [42]. This data-collection capability
makes these devices excellent tools for research, particularly
within health, psychology and medicine, since smartphones
allow researchers to study individual behavioral patterns [“digital
phenotypes,” [43, 44]] and their changes over time [45].
Monitoring an individual’s digital behavioral patterns on
different timescales is also an easy and inexpensive way for
medical intervention, especially in the case of mental problems,
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where there are fewer biomarkers than for other types of disease.
Data from smartphones have already been used to monitor
the time evolution of different measures that are known to
be indicative of behavioral changes in patients, which makes
daily monitoring and early intervention possible [46–48]. As an
example, Faurholt-Jepsen et al. [49] suggest that data frommobile
phones can be used as objective measure of symptoms of bipolar
disorder.

Because the sleep/wake cycle is a dominant feature of
circadian patterns, Big Data describing the digital daily cycles
of large numbers of individuals might prove to be highly useful
for sleep research. However, obtaining an accurate picture of
the sleep times of individuals requires solving several non-trivial
problems. While one does not send emails when asleep, emails
are not necessarily a reliable proxy for awake-time; it is possible
to be awake and not send emails. In this sense inferring the
actual times of sleep from electronic records is challenging. This
problem is made more severe by the ubiquitous burstiness in
human dynamics [32, 50, 51]: broadly distributed inter-event
times make the times from last observation to bed time (or from
wake-up to first observation) highly unpredictable. Nevertheless,
we believe that this is an important direction for future research.

Finally, a particularly promising source of data comes from
large dedicated cell-phone based data collection efforts, focusing
on collecting multiplex (face-to-face, telecommunication, online
social networks) network data in a large, densely connected
populations, e.g., [52]. Data from a single communication
channel can be too sparse and noisy for obtaining accurate daily
patterns; here, having a multiplex dataset can provide a great
advantage since one can combine information from all data-
channels to form a much more comprehensive picture of the
activity of each person (e.g., for studying sleeping patterns).
Furthermore, if the participants of the dataset are densely
connected through social ties, it is also possible to investigate the
significance of and correlations between the activity patterns of
close personal relations using such a dataset. Finally, a dataset
of this nature may function as a kind of “rosetta stone,” helping
researchers determine the biases of each electronic dataset, and
allowing us to understand to which extent telecommunication
data or Twitter datasets with hundreds of millions of active users
can be used to study the daily cycles of individuals.

5. Methods

5.1. Data Filtering
We have used 8-week time slices of all datasets. Filters have been
applied to remove users who are inactive or whose activity is too
low for producing meaningful information on daily patterns. In
Table 1, the total number of participants means the total number
of users who have at least one event during the study period of
8 weeks. For plotting aggregate-level patterns (Figures 1, 2), we
have used data from all participants. The column “Active users”
in the table represents the number of users who have at least one
event per day on average (minimum56 events in total); these have
been used for calculating average daily patterns (Figure 3). For

measuring persistence of daily patterns and calculating Jensen–
Shannon divergence, we used a subset of active users who have at
least one event in each of the two time intervals of 4 weeks.

5.2. Self and Reference Distances
In order to quantify the level of persistence of daily patterns for
individuals, we compare the daily patterns of each ego for two
consecutive 4-week time intervals. For this, we use the Jensen–
Shannon divergence (JSD) and measure the distance of the daily
patterns viewed as two probability distributions (P1 and P2). The
JSD is calculated as follows: JSD(P1, P2) = H( 12P1 + 1

2P2) −
1
2 [H(P1) − H(P2)], where Pi = p(h) and p(h) is the fraction
of calls at each hour, i = 1, 2 indicates the time interval, and
H(P) = −

∑
p(h) log p(h) is the Shannon entropy. In order to

compare these self-distances against a reference, we calculate a
set of reference distances dref as the distances between the daily
patterns of each ego and all other egos in the same time interval.
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Viral marketing seeks to maximize the spread of a campaign through an online social

network, often targeting influential nodes with high centrality. In this article, we analyze

behavioral aspects of influential users in trust-based product reviews communities,

quantifying emotional expression, helpfulness, and user activity level. We focus on two

independent product review communities, Dooyoo and Epinions, in which users can

write product reviews and define trust links to filter product recommendations. Following

the patterns of social contagion processes, wemeasure user social influence bymeans of

the k-shell decomposition of trust networks. For each of these users, we apply sentiment

analysis to extract their extent of positive, negative, and neutral emotional expression.

In addition, we quantify the level of feedback they received in their reviews, the length

of their contributions, and their level of activity over their lifetime in the community. We

find that users of both communities exhibit a large heterogeneity of social influence,

and that helpfulness votes and age are significantly better predictors of the influence

of an individual than sentiment. The most active of the analyzed communities shows

a particular structure, in which the inner core of users is qualitatively different from its

periphery in terms of a stronger positive and negative emotional expression. These

results suggest that both objective and subjective aspects of reviews are relevant to

the communication of subjective experience.

Keywords: social network analysis, social influence, sentiment, trust, spreading processes

1. INTRODUCTION

Popularity of socially-powered online platforms increased so much during the last years that, if we
could imagine a country with a population as large as the user-base in Facebook, then it would be
ranked as world’s second largest country, with more than 1.23 Billion active users at the end of 2013
[1]. Users interact online via different platforms for personal blogging, dating, online shopping,
reviewing products, etc. The latter two kind of platforms use their massive user community to both
collect and disseminate information: Users create and discover reviews, form opinions based on
the experience of others, and ultimately make the informed decision of buying a product or not.
This form of socially-powered platforms are usually referred to as Social Recommender Systems
(SRS) [2].

Similar to real-world social interactions, in online SRS platforms, some users manage to
distinguish themselves from the rest by acquiring fame and social influence. If seen from a graph’s
perspective, some nodes become more central than others, but how this process works is not clear
for real and online networks alike. How can a user increase its social influence and visibility?
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Are there any similarities in the career path of successful users?
In this article, we address these questions by performing an
empirical analysis on two datasets of online SRS that contain
both product reviews and explicit social networks. Information is
transferred in these systems through social ties, bymeans of social
recommender filtering, which selects products and reviews from
the peers that a user trusts. This functionality creates a spreading
process through the social network that offers opportunities for
viral marketing [3], using the social capital of online communities
to maximize the visibility of a product [4].

The emotional content in product reviews is an interesting
resource not only to overcome the bias present in ratings, but for
the role emotions play in human communication and product
evaluation. Studies in social psychology show that people find
emotional information more interesting than the non-emotional,
and that they show more engagement with emotional narrators
[5]. Additionally, the social link between narrator and listener has
been observed to strengthen when emotions are involved [6]. We
are interested in testing these social theories, and assess whether
they hold also in online recommender systems: Does a user who
shares its emotions have a larger impact in the community? Do
users prefer neutral product evaluations or, on contrary, is the
personal experience, as emotional as it can be, considered more
valuable?

In the theory of core affect [7], emotions are partially
conscious, short-lived internal states, as opposed to the nature
of opinions. A reviewer might not be fully aware of its own
emotions, and if asked a long time after making the review,
these emotions would have relaxed or disappeared, while its
opinion about a product would remain. There is an expected
overlap between rating and emotional classification [8], but
the properties and social dynamics of opinions and emotions
differ. For example, disclosure of emotions has been shown to
be a better predictor for social connection than the sharing
of facts and information [9], and collective emotions pose
additional questions regarding collective identity, social action,
and emergent phenomena in human societies [10].

The topic of social influence and spreading processes in
social networks has attracted increasing attention, due to the
presence of frequent cascades and viral phenomena in social
systems. Influence processes have been studied in the context
of rumor spreading in social networks [11]. To identify social
influence, traditional measures focused on the concept of
centrality [12], often measuring it as degree or betweenness
centrality [13]. Recent works have shown that coreness centrality
[14, 15] outperforms degree and betweenness centrality in
detecting influentials both data-driven simulations [16] leading
to applications to political movements [17, 18], scientific rumors
[19, 20], gender inequality in Wikipedia [21], and cascades of
users leaving a social network [22].

Finding influentials is often motivated by viral marketing,
aiming at the maximization of the reach of a marketing campaign
and user adoption [4, 23, 24]. Beyond purchase decisions, users
of social recommender systems create star ratings and write
reviews that can influence product adoption. The straightforward
manner to analyze these reviews is to take into account the
star rating as a measure of consumer satisfaction. This approach

has been proved useful in the field of recommender systems
[2, 25]. On the other hand, self-selection biases difficult the
analysis of star-rating distributions, as their high bias reduces
the heterogeneity of user evaluations, following a J-shaped
distribution [26].

The large amount of product reviews in a social recommender
system produce a state of information overload [25]. This kind of
information overload influences the priority processing patterns
of individuals [27]. Works in psychology identify emotions as
one of the mechanisms for priority assignment: while we seek for
positive experiences, negative ones make us react faster [28]. This
leads to a stronger influence of emotions in social sharing [29],
which also appears in product reviews [8]. Emotional expression
cascades through social interaction have been identified in the
context of chatrooms [30] and political movements [18], as well
as for experimental [31] and field studies in social psychology
[32]. Furthermore, pieces of information are more likely to be
shared in a social context when they contain a stronger emotional
content, as it has been shown for the case of urban legends [33].

Sentiment analysis tools allow researchers to process and
analyze emotions in large scale datasets. Different techniques
can be used to extract emotional content from short, informal
texts [34, 35], being SentiStrength one of the leading tools for
sentiment analysis in this context [36, 37]. Product reviews are
much longer and better composed than tweets or YouTube
comments, calling for the application of established lexicon-
based techniques based on human annotation of words [35, 38].
These techniques have been proved useful to reveal patterns of
depressive moods [39] and analyze the dynamics of happiness
of whole societies [38]. We chose to apply this kind of lexicon-
based sentiment analysis tool, due to its previous validation with
large, formal texts, and for its possibility for extension to other
languages [40].

To explore the role of emotions and activity into the
social influence of users of product reviews communities, we
empirically quantify user behavior in various aspects. First,
we analyze the trust network of two independent online
communities, measuring social influence in relation to spreading
processes in social networks [41]. We compute the coreness
centrality of all users [14], and validate that it serves as
an indicator of the spreading potential of users. Second, we
measure emotions in product reviews by means of sentiment
analysis, and aggregated these values into emotional expression
profiles of each users. Combining this subjective information
with other objective dimensions, such as age in the community
and review votes, we create extended user profiles with rich
behavioral information. Third, we analyze the signatures of
emotional expression across the different centrality values of
each network, testing the existence of patterns of emotional
expression.

2. MATERIALS AND METHODS

2.1. Product Reviews Communities Data
We base our empirical analysis on two independent datasets
based on two trust-based product reviews communities:
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Dooyoo1 and Epinions2. Dooyoo claims to be a
“social-shopping platform which helps consumers make informed
purchasing decisions”3. Similarly, Epinions is a product
comparison website which features product reviews with a
social component [42]. Both platforms are intended for English-
speaking users, and allow them to post written reviews about
products with a star-rating from 1 to 5. A particularly interesting
feature of these two communities is that both allow the creation
of directed social links that can be defined as trust and distrust
links toward other users. Distrust links are not publicly available
on the website, and for that reason our study is restricted only to
trust links. These links are directional, meaning that the origin of
the link trusts the destination of the link, as a way to acknowledge
the quality of the reviews of the trusted user. The motivation for
the creation of these links is advertised in both platforms as a way
to improve product recommendations, as their recommender
systems would refine the way they filter information based on
this explicit trust [25].

Both platforms are product-generic, in the sense that users
can review products in multiple categories, not limited to books
or software. Apart from reviewing and creating trust links, users
can also provide feedback about the quality of product reviews
written by other users. This evaluation is done by clicking a
helpful/unhelpful button, which the website uses to measure the
helpfulness of a review as the aggregation of the votes of all users.
This feedback feature is precisely relevant in Dooyoo, where
users have the possibility of receiving money from the website as
a reward for the creation of useful reviews4. In both communities,
each review has a helpfulness score summarized as Very helpful,
Somewhat helpful, Helpful, Not helpful, or No feedback if the
review did not receive positive nor negative votes.

In our network datasets, nodes represent users, and a directed
link from user u1 to user u2 means that u1 explicitly trusts u2.
In both communities, users are allowed to see all the reviews
created by all the other users, i.e., there are no private reviews.
This means that there is a global information flow between users,
which does not necessarily depend on the trust network. On
the other hand, both websites advertise that their recommender
systems take into account trust links in order to personalize
recommendations. This implies that the trust network exercises
a “filtering influence,” increasing the visibility and impact of the
reviews of user u2 for user u1, if u1 trusts u2. This opens the
question of the role of the trust network, especially when users are
allowed to see all the reviews and can vote any review, regardless
of the trust network, as helpful or unhelpful.

For Dooyoo, we gather a dataset which we refer to as the DY
dataset. Datasets onEpinions are available from previous work
[42], but to the best of our knowledge, none of them used the
text of the reviews for extracting additional information beyond
ratings. Therefore, we performed a web crawl on Epinions

and fetched, besides the trust network, the text of reviews. The
raw data was further cleaned up, by removing duplicate reviews,

1http://www.dooyoo.co.uk.
2http://www.epinions.com.
3“About”-page of www.dooyoo.co.uk.
4Description of monetary rewards in Dooyoo: http://www.dooyoo.co.uk/

community/_page/advice_participate.

users, etc. We will refer to this dataset as the EP dataset. This
second dataset is smaller, in terms of number of users, number of
trust links and number of reviews than the version used inWalter
et al. [25], but contains richer information including reviews text
and helpfulness feedback. As shown in Table 1, the DY dataset
contains roughly half the number of users in comparison to EP
dataset, however, the amount of users that contributed at least
one review is roughly the same. More details on the distributions
of lifetimes and activity levels can be found in the Supplementary
Information.

2.2. User Sentiment Analysis
The star-rating of a review provides the explicit opinion given
by the user, but the emotional content is not acknowledged
when making the review, contrary to other communities like
Livejournal [43]. For this reason, we apply a sentiment
analysis technique that extracts an estimation of the valence
v, which represents the amount of pleasure or displeasure
associated with an emotional experience [44]. Among other
dimensions that can be used to measure emotions [45], valence is
the one that explains the most variance of emotional experience
[46, 47]. This technique analyzes each word in the review by
looking into a lexicon on word valence, providing an estimation
of v as the mean valence of the words appearing in the text (for
more details see Supplementary Information). Then, this value of
valence is compared with the baseline distribution of the valence
for emotional words in generalized text, as estimated from a large
dataset from web crawls [40]. If the valence of a review r is above
a threshold given this baseline distribution, the review is classified
as positive (er = 1), if it is below another threshold, it is classified
as negative (er = −1), and if it is between both it is classified as
neutral (er = 0).

Given the emotional classification of each review, we calculate
the degree of positivity, negativity, and neutrality of every user,
by aggregating its emotional scores over the whole number of
reviews it contributed in the following way:

Pu =
1

|Ru|

∑

r∈Ru

2[er = 1] Nu =
1

|Ru|

∑

r∈Ru

2[er = −1]

Uu =
1

|Ru|

∑

r∈Ru

2[er = 0] (1)

where Ru is the set of reviews written by the user u, |Ru| is
the number of reviews created by u, which is a metric for the

TABLE 1 | Descriptive statistics on the Dooyoo and Epinions datasets.

Dooyoo (DY) Epinions (EP)

Users 40,535 75,361

Reviews 524,000 101,595

Users with reviews 37,122 31,331

Trust links 199,061 544,469

Avg. rating 4.03 3.98

Avg. review length (words) 534 638

Avg. user lifetime (days) 100 138
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amount of information it contributes to the community, and
2(x) is a Boolean function that returns +1 if the argument is
true and zero otherwise. These three metrics contain additional
information about user behavior that is not contained in the
average star-rating of a user.

Intuitively, one could expect that a successful user, a
professional product reviewer, creates neutral, rigorous reviews,
without emotional charge, in a similar fashion in which a
journalist would write news and articles. However, in both
datasets, we find that a large fraction of the reviews are positively
charged, i.e., the user presents the product or service in a
favorable manner by using positively emotional words. Reviews
with negative emotions are less frequent than positive ones,
but they are significantly present. These ratios are presented in
Table 2.

2.3. Network Analysis
We quantify the social influence of users of Dooyoo and
Epinions by analyzing their respective social networks. First,
we measured a set of descriptive statistics on each network,
measuring diameter, reciprocity, path length, and finding the
largest weakly and strongly connected components. These
metrics are included in Table 3, showing that a significant
difference between the two datasets is the size of their largest
strongly and weakly connected components. Beyond that
difference, the rest of statistics show relative similarity, displaying
typical properties of social networks such as low average path
length and diameter. The reciprocity for both networks is
relatively low, in line with previous findings on Twitter [48].

We measure the level of social influence of a user through
the k-shell decomposition of the social network [14, 15, 18, 49].
We measure the influence of a node by its coreness centrality
ks, which is the state of the art metric to measure influence in

TABLE 2 | The fraction of positively, negatively charged, and neutral

reviews.

Dooyoo UK Epinions

Positive reviews 152,172 (29.05%) 24,104 (23.73%)

Negative reviews 93,649 (17.87%) 21,887 (21.54%)

Neutral reviews 278,096 (53.08%) 55,604 (54.73%)

Classifiable reviews 523,917 (99.98%) 101,595 (100%)

The percentages are calculated using the total number of classifiable reviews, because

some reviews in the DY dataset were lacking emotion carrying words.

TABLE 3 | Network statistics of the analyzed datasets, Dooyoo and

Epinions.

Dooyoo (DY) Epinions (EP)

Network diameter 13 16

Network reciprocity 0.2736 0.2151

Average path length 4.2299 4.8615

Largest SCC Size 10,200 30,396

Largest WCC Size 17,233 68,748

social networks, as it is the best known predictor for the size of
cascades [16].

In general, the k-shell decomposition of a graph is obtained
by recursively removing all its vertices with degree less than k,
until all the remaining vertices have minimum degree k+ 1. The
removed vertices are labeled with a shell number (ks) equal to k.
For our study, we choose to collapse links into undirected ones,
using as degree the sum of unidirectional and bidirectional links
of a user. The reason for this stems from previous studies on
Twitter, which show that the undirected k-shell decomposition
of follower networks can predict empirical cascades of tweets in
various phenomena [17, 50].

With the k-shell decomposition we are able to obtain a
ranking of nodes which is related to a hierarchical organization
in terms of importance, as illustrated in Figure 1. The larger
the ks of a node, the more influential it is. We should note
that the coreness centrality is, in general, highly correlated with
the degree centrality. However, there is no one to one relation,
since as shown in Figure 1, a node can have large degree and
still be located at an external shell. Figure 2 shows the networks
visualized with LaNet-vi [51], in which nodes have a color and
position corresponding to their coreness.

3. RESULTS

3.1. Network Position and Social Influence
3.1.1. Heterogeneity of Coreness
For the EP network we find 126 shells, while for the DY network
we find 84 shells. The distribution of coreness values ks of both
networks, shown in Figure 3, is skewed and reveals that the
location of users in the k-shells follows similar patterns. The
majority of users are located in the periphery of the network, and
only a small fraction of them is paced in the more central k-shells.
However, though, despite that the EP network is almost twice as
large as the DY network (see Table 1; the LCC of the EP is more

FIGURE 1 | Example of a k-shell structure. Nodes in the same k-shell have

the same coreness centrality ks. A high degree is not a sufficient condition for

a high coreness, for example for the case of the yellow node.
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FIGURE 2 | k-shell structure of the trust networks, where nodes have a

color and position according to their coreness, and size according to

their degree. The plots were created using the LaNet-vi software [51].

FIGURE 3 | Frequency of coreness values for DY (triangles) and EP

(squares). Inset: Probability density function of coreness values.

than three times the LCC of the DY) the number of users in the
more central k-shells is similar in both networks. This means that
the number of very central users is not directly proportional to
the total amount of users in a network, thus, there should be other
factors determining users’ centrality.

The heterogeneity of the distributions of ks values becomes
evident when fitting power-law distributions to the empirical
data. Applying a maximum likelihood criterion that minimizes
the Kolmogorov-Smirnov distance between empirical and
theoretical distributions [52], we find that both distributions
can be explained by truncated power laws of exponent
αEP = 1.39 ± 0.004 for EP and αDY = 1.207 ± 0.005
for DY. This result is robust, since log-likelihood ratio tests
vs. log-normal and exponential alternatives give positive and
significant values, i.e., the power-law distribution explains
the distribution of ks significantly better than its non-scaling
alternatives.

3.1.2. Social Influence Simulation
One of the goals of social networks is to facilitate information
exchange between its users, i.e., information from user A
can reach user B through the network link connecting them.
Subsequently, the same piece of information can be forwarded
by user B to user C through their respective link, and so on.

This is an example of a classical spreading process taking place
in a network topology [41]. In product review communities
an underlying explicit social network facilitates information
exchange about products (i.e., reviews). For example, when a
review is created, the peers of the author will get access to
new information and they have the option to either read it
(and become informed) or not. Therefore, a natural way to
simulate information propagation in such systems is by means of
a Susceptible-Infectious (or better suited to our case Susceptible-
Informed, SI) model. Such models have been used widely in the
literature to describe processes like the spreading of epidemics,
rumors, economic crises, etc. [53–58].

We perform large scale computer simulations of spreading
processes, assuming that users stay informed after reading a
review, i.e., users do not return to the susceptible state. This SI
process is modeled as follows: starting from the explicit social
network (DY or EP) we choose a user at random and we assume it
will try (through the creation of a review) to spread information
to all users it is connected to. The probability that a targeted
user becomes informed by reading the review is β , and remains
constant throughout the simulation. Next, the informed users
will try to pass this information to all their neighbors, and so
on. This process is terminated after all informed users have tried
to propagate information through their respective connections.
For both networks, we perform 10 runs initiating the spreading
process from a specific user, and we repeated this sequentially
for every user in the network using probability of infection β ∈

[0.1, 0.6] with step 1β = 0.1.
In Figure 4, we plot the average fraction f of users that become

informed from reviews created by users belonging to a k-shell
vs. the k-shell number (ks). In agreement with [16], we find
that information initiated by the more central users in terms
of ks can reach a larger percentage of users in both networks.
Therefore, the incentive of increasing ones impact in the network
is correlated with the network centrality. As a result if users
want to increase the impact of the transmitted information, they
should try to become more central.

In the left panel of Figure 5 we plot the average fraction, fc,
of the network that becomes informed by a review created from
users belonging to the Largest Connected Component (LCC) of
the network vs. the probability of transmission β . Besides the
expected trend that fc increases with the probability β , in the left
panel of Figure 5 it is shown that in the DY network fc can receive
much higher values for the same β than in the EP network.
This result suggests that the DY network allows a more efficient
information transmission in comparison to the EP network, if we
only consider the Largest Connected Component (LCC). But, if
we consider the full network, then the situation is inversed. This
can be attributed to the different connectivity pattern observed in
the two communities (as discussed in Table 1), where for EP the
largest connected component is almost 90% of the nodes, while
for DY this percentage is almost 40%.

We calculate topological features of users measured through
the k-shell decomposition neglecting any possible effect of
directionality in the links that connect them. However, the
evolution of a dynamical process on a network could be heavily
affected by the presence of directed links. Thus, in order to test
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FIGURE 4 | Average fraction f of informed population by reviews created from users of different k-shells vs. the k-shell number (ks). The different curves

show results for different probabilities β ∈ [0.1,0.6], with the lower curves corresponding to smaller β’s. Inset: Average fraction f of informed population by reviews

created from users of the lowest (circle) and the highest (diamond) k-shell vs. probability of information transmission β. Left panel: DY. Right panel: EP.

FIGURE 5 | (A) Average fraction fc of informed population by reviews created from users of the LCC of the network vs. the probability of transmission β. The error

bars stand for the standard deviation. (B) Average fraction f of informed population by reviews created from users of different k-shells vs. the k-shell number (ks) for

the case of DY with β ∈ [0.1,0.3]. The solid line is according to the assumption that information propagates contrary to the directionality of the link and the dashed line

is according to the assumption that information propagates following the directionality of the link (dashed line).

whether link directionality affects our conclusions we apply the
SI model to the DY network assuming two distinct hypotheses,
(a) that information flows according to the direction of the
links, and (b) that information flows inversely to the direction
of the links. The right panel of Figure 5 shows the fraction f vs.
ks for both hypotheses described above i.e., information flows
following the link directionality, and information flows in the
opposite direction. In general, we find that for ks > 5 the link
directionality does not influence heavily the process of spreading,
thus, the results we discussed in the previous analysis are valid
for both cases. In what follows we try to identify the profile of
the more central users, in order to understand whether there
are common patterns in their behavior. After all, it is natural
to assume that they did not end up being central purely by
“luck.”

3.2. User Production
3.2.1. Helpfulness
Users give feedback on the quality of other users’ reviews
by voting individual reviews as helpful or unhelpful. In both

TABLE 4 | Ratios of community feedback values for the reviews of each

dataset.

Dooyoo UK Epinions

Very helpful 354,927 (67.73%) 48,575 (47.81%)

Somewhat helpful 22,190 (4.23%) 17,023 (16.76%)

Helpful 137,750 (26.29%) 35,340 (34.79%)

Not helpful 1540 (0.29%) 1 (0.00%)

No feedback 7593 (1.45%) 656 (0.65%)

communities, each review has a helpfulness rating calculated as
a combination of these votes. The helpful rating hr is displayed
along with a review r in a qualitative scale of four grades: “very
useful,” “useful,” “somewhat useful,” and “not useful.” We map
these ratings on a scale from 0 (not useful) to 4 (very useful),
in order to quantify the impact of a review in the community.
Table 4 contains the ratios of each type of feedback in EP and DY.

Given this measure of helpfulness of a review, for each user u
we can calculate a value of total helpfulness
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hu =
∑

r∈Ru

hr (2)

which is a sum of all the helpfulness scores attributed by the
community to the reviews created by the user, Ru. Figure 6
shows the distribution of the values of hu in each community.
This figure reveals the large heterogeneity in the helpfulness of
users, where most users have very few helpful reviews, while
some others accumulate large amounts of positive feedback
from the rest. The two communities differ in the shape of this
heterogeneity, as in DY there are significantly larger amounts of
users with high helpfulness in comparison with EP.

While the distribution of hu in EP is very irregular, it seems
to follow a stylized broad distribution in DY. While the tail is not
long enough to verify a power-law distribution [59], we tested the
possibility of a log-normal distribution. A maximum likelihood
estimation, discussed in the Supplementary Information, gives a
set of parameters that fail to fit the tail of the distribution, leading
us to reject the log-normal hypothesis. This initial observation
indicates the existence of a process of helpfulness accumulation
that creates larger heterogeneity than the one present in a log-
normal distribution, but we do not have enough data to precisely
explore its properties at larger scales.

3.2.2. Ratings and Emotions
Product reviews contain factual information about properties
of the product and its experienced quality from the reviewer’s
point of view. In the two communities we study, as discussed
above, a product review contains two elements: a star rating,
which summarizes product experience in a form of opinion, and
a review text with detailed information written by the user. The
straightforward manner to analyze these reviews is to take into
account the star rating, as a measure of consumer satisfaction
with the product. This approach has been proved useful in the
field of recommender systems [2, 25, 60, 61]. On the other
hand, self-selection biases make it difficult to analyze star-rating
distributions, as their high bias reduces the heterogeneity of user
evaluations, following a J-shaped distribution [26]. This is the
case for both EP and DY, where the distribution of star-ratings of

FIGURE 6 | The distribution of the total helpfulness (hu) of users for DY

(triangles) and EP (squares).

the reviews follows a J-shaped distribution, as shown in Figure 7.
Most of the reviews have star ratings≥ 4, with a small increase on
the amount of 1-star reviews in comparison with 2-star reviews.
In addition, user average ratings suffer from this bias, as shown
in Figure 8. To overcome this limitation, we study the emotions
expressed in the text of the review, as explained below.

Figure 8 shows the scatter plots of the user ratios of emotional
expression vs. the average rating of users, with the corresponding
distributions in each axis.We can clearly observe how the average
rating of users, ru is skewedwith amean around 4, while the ratios
Nu, Uu, and Pu have different distributions between 0 and 1. The
pairwise Pearson correlation coefficients of ru with each of the
other three variables has absolute values below 0.25, indicating
that there is significant variance of the emotional expression of
users that is not captured by the ratings. The three metrics Nu,
Uu, and Pu provide us with additional data beyond the simple
average rating provided by a user, profiling the different types of
users by the way they express their emotions in the reviews they
create.

3.3. The Profile of Influential Users
We test whether there are user specific features associated with
an increased coreness of the user ku and thus with an increased
user social influence. For our analysis, we use a linear regression
technique on a logarithmic transformation of ku, using the
behavior metrics explained above as independent variables. This
technique of substitution models has been used before to study
the relation between Facebook user popularity and personality
metrics from a survey [62]. In our case, we fit the following
model:

log(ku + 1) = α + βPPu + βNNu + βRru + βT log(tu)

+ βH log(hu + 1)+ βW log(wu) (3)

The dependent variable is a transformation of the coreness
in two ways: (i) calculating the logarithm to provide a
monotonic transformation that decreases the variance of ku, as its
distribution is right skewed (see Figure 2), and (ii) an increment
of 1 to include in our analysis active but disconnected nodes

FIGURE 7 | Distribution of ratings in the reviews of EP (dark) and DY

(light). Both distributions show a strong bias toward positive ratings, with a

moderated J-shape.
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FIGURE 8 | Scatter plot of user average ratings ru vs. user emotional ratios for negative (Nu, left), neutral (Uu, right), and positive (Pu, right) reviews.

The histograms show the distributions of each variable.

with ku = 0. The independent variables of our model capture
the different metrics of user behavior explained above. The first
two variables, Pu and Nu account for the emotional expression
of the user. We omit the ratio of neutral messages Uu, as its
redundancy with the previous two would lead to a singularity
due to the identity Pu + Nu + Uu = 1. The third variable, the
average rating of the user ru accounts for the style of the user in
capturing its opinions into a precise number. The fourth variable
is the lifetime of the user in the community tu, as explained
in Section 3.2.1. This variable accounts for heterogeneity in the
age of users, and it might play a relevant role in the impact
a user can have in the product reviews community. The fifth
variable is a transformation of the total helpfulness of the user
hu, following the same principle as for the dependent variable.
Finally, the last variable accounts for the logarithm of the average
amount of words in the reviews of the user log(wu), as a proxy
for the amount of unfiltered information in a typical review
of the user, which could have an effect on its relevance in the
community (for more details on the amount of words of reviews,
see SI).

We fit Equation 3, first normalizing each variable and then
solving the linear regression by the method of least squares,
obtaining results summarized in Table 5. Our first observation
is that the linear regression is different for the two datasets. The
R2 for the case of DY is 0.6174, while for EP is 0.1751. This
indicates that the data we obtained for Dooyoo allows us to
better estimate the social influence of a user by its activity, in
comparison with the EP dataset. Second, in both cases the largest
significant coefficient is the total helpfulness of the user. This
shows that the total helpfulness and the k-shell number of a user
are directly related. In other words, a user becomes central, and
therefore, more important in the community, if it contributes
with many helpful reviews.

The second largest weight for the users in DY corresponds
to the lifetime of a user in the community tu, with significant
positive value. This means that users that have been longer in the
product reviews community also have higher coreness. For EP,
the average length of the reviews created by a user is the second

TABLE 5 | Linear regression coefficients and p-values for log(ku + 1) from

the rest of the user metrics (normalized), for Dooyoo (DY) and Epinions

(EP).

DY EP

Variable Weight Weight

Intercept 0.782*** 1.527***

log(wu ) 0.072*** 0.259***

log(hu + 1) 0.805*** 0.360***

log(tu ) 0.121*** −0.032***

Pu −0.008* 0.047***

Nu 0.009* 0.007

ru 0.022*** 0.061***

Significance levels: *p < 0.1, ***p < 0.001.

most important factor for centrality. As in DY with lifetime,
wu is less relevant than the total helpfulness implying that the
community is not concerned about the size of reviews but rather
about their overall quality.

Focusing on the relation between the coreness of a user and its
total helpfulness, we computed Pearson’s correlation coefficients
between log(hu+1) and log(ku+1), giving a value of 0.677±0.006
for DY, and 0.337±0.01 for EP, both with p < 0.001. This way, we
conclude that the total helpfulness of a user is a good predictor
for its network centrality, as both variables are significantly
correlated in both datasets. Figure 9 shows the mean coreness
values for users of different helpfulness levels. Both communities
display a clear relation between both variables: users with
higher amounts of helpful reviews also have more social
influence.

Testing the role of emotionality ratios and average rating in
the results of Table 5, we notice that all three variables have very
low regression weights. Pu and Nu have low significance in DY,
and Nu is not significant in EP. This indicates that the role of
emotions in social influence cannot be observed through this
analysis at the individual level, and that helpfulness and age are
more predictive variables.
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3.4. The Emotional Core of Dooyoo
Motivated by the theory of collective emotions [10], we tackle the
question of how do the aggregated emotions of users in different
k-shells differ. For a given coreness number ks, we aggregate the
activity of all the users in that shell by the average values 〈P〉s,
〈U〉s, 〈N〉s, calculated over all the users with coreness ks. The
emotional profile of the users in different k-shells can be observed
in Figure 10, where each k-shell is represented by a semicircle
with distance to the center according to their coreness number.
Each shell has three colors that range from the minimum to the
maximum values of each 〈N〉s, 〈U〉s, 〈P〉s. For both communities,
k-shells closer to the core have stronger negativity and weaker
neutrality. It is important to notice that, even though these
emotions increase within their individual ranges, the maximum
values of 〈N〉s in DY still remain lower than the other two average
ratios.

FIGURE 9 | Dependency of the ks value given the logarithm of the

helpfulness of its users (DY in red, EP in black). Points are mean values of

ks and error bars are standard error. Helpfulness serves as a predictor for

coreness in both communities.

A close inspection of Figure 10 shows a pattern in DY that
does not appear in EP: There is an inner core composed of
some shells with high coreness number that have stronger average
emotion indicators, as compared with the rest of shells with lower
ks numbers. This inner vs. outer part difference is described
by a critical value of kc, which highlights a stronger emotional
expression for k-shells with ks at least kc (the core), in comparison
with the weaker emotional expression of those with ks < kc (the
periphery).

We test the existence of this core by a set of Wilcoxon tests
dividing each community in users with k-shell number above
and below different values of kc. Figure 11 shows the Wilcoxon
distances 1 of 〈N〉s, 〈U〉s, and 〈P〉s between the core and
periphery, for values of the division kc from 1 to the maximum
coreness number. For EP we did not find any significant nonzero
distances separating the neutral and negative average scores of
the inner and outer parts. For DY, on the other hand, the scenario
is different. There is a value kc = 68, where there is a sharp
transition that indicates a maximal distinction between core and
periphery, highlighting the existence of a more emotional central
subcommunity.

The significant separation of DY in core and periphery
leads to a central core with stronger emotional expression. The
right panel of Figure 11 shows the Wilcoxon distance between
emotion ratios, comparing core and periphery divided by kc =

68. The core has significantly higher negative and positive ratios,
with decreased neutrality ratio. This result is supported by the
dependence of the p-value of the Wilcoxon test and the ratios of
emotional expression vs. kc, as shown in the SI.

4. DISCUSSION

Our analysis of two online product reviews communities shows
the relation between community feedback, emotions, and social
influence within the trust network. We measure social influence
by means of the coreness of individual users, and validated
such metric based on the SI process of information spread.
Our findings show that, in line with previous research [16],

FIGURE 10 | Representation of the average emotional expression of the nodes of each k-shell, for EP left and for DY right. Each circle represents the

nodes with a particular k-shell number, with a distance from the center inversely proportional to their coreness. Circles are colored in three intervals according to 〈N〉s,

〈U〉s, and 〈P〉s, ranging from minima to maxima as indicated by the color bars.
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FIGURE 11 | Wilcoxon distances for averaged user emotions between divisions in core and periphery, depending on the division value kc, for EP on

the left and DY on the center. Right: Wilcoxon distances between inner and outer parts of DY.

the expected size of a cascade increases with the coreness
centrality of the node it starts from. Furthermore, we analyze the
heterogeneity of coreness through model fitting to the empirical
distributions, finding that the coreness in both communities
follows a power-law distribution. The exponents we found for
these fits suggest that the mean and variance of coreness scales
with system size, i.e., larger online communities serve as training
grounds for even more influential users. Testing this type of
scaling requires the analysis of several online communities, and
remains open for future research.

We measure emotional expression in reviews through the
ANEW lexicon, and aggregate the emotions of individual users in
three scores for positivity, negativity, and neutrality. These three
dimensions create a richer representation of individuals beyond
average ratings, as emotional expression contains information
not encoded in the star-ratings of reviews. Combining these
features with the lifetime in the community, the average
review size in words, and the levels of helpfulness votes of
the users, we find that total helpfulness and average review
length are the most relevant indicators for individual social
influence, beyond emotional expression. Our observational
analysis of one snapshot of the system point at the relevance
of emotions in social influence, but further research should
test other individual and temporal aspects of this explanation.
Experimental studies can isolate the individual components
that drive the decisions and expressions of users. Data with
temporal resolution in network formation should further
explore the career path of influential users, measuring the
changes in k-core values as a function of contributions and
emotions.

Our statistical analysis shows the existence of a sharp
transition in coreness that divides the Dooyoo community in
two levels: An emotional core and a more neutral surface. This
structure was absent in Epinions, opening the question what
process could create such difference in the relation between
topology and emotional expression. An initial conjecture would
point to the different reward schemes of the two communities:

Dooyoo offered monetary rewards to its most successful users,
who created the emotional core of influential users. While our
results at the individual level are inconclusive with respect to
emotional expression, this characterization of emotions in a core-
periphery structure suggests that the expression of emotions
provides a medium for the communication of subjective
experience. Such kind of communication process would enhance
the interaction of certain types of users, improving their social
influence as a whole rather than if they just wrote reviews with
purely factual information. Understanding how such a pattern
emerges from individual emotional interaction is a question open
for future research, which could potentially link individual and
collective patterns of emotions and social influence.
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In recent years researchers have gravitated to Twitter and other social media platforms

as fertile ground for empirical analysis of social phenomena. Social media provides

researchers access to trace data of interactions and discourse that once went

unrecorded in the offline world. Researchers have sought to use these data to explain

social phenomena both particular to social media and applicable to the broader social

world. This paper offers a minireview of Twitter-based research on political crowd

behavior. This literature offers insight into particular social phenomena on Twitter, but

often fails to use standardized methods that permit interpretation beyond individual

studies. Moreover, the literature fails to ground methodologies and results in social or

political theory, divorcing empirical research from the theory needed to interpret it. Rather,

investigations focus primarily on methodological innovations for social media analyses,

but these too often fail to sufficiently demonstrate the validity of such methodologies. This

minireview considers a small number of selected papers; we analyse their (often lack of)

theoretical approaches, review their methodological innovations, and offer suggestions

as to the relevance of their results for political scientists and sociologists.

Keywords: social media, twitter, mobilization, campaign, collective action, bias, theory

1. INTRODUCTION

Since its founding in 2006, Twitter has become an important platform for news, politics, culture,
and more across the globe [1]. Twitter, like other social media platforms, empowers new forms
of social organization that were once impossible. Margetts et al. discuss changing conceptions of
membership and organization on social media [2]; Twitter communities and conversations need
not be bounded by geography, propinquity, or social hierarchy. As a result, social and political
movements have taken to the site as a means of organizing activity both online and offline. In
facilitating these movements, Twitter simultaneously makes available a data trail never before seen
in social research. Researchers have embraced these data to create an expanding body of literature
on Twitter and social media writ large. On the other hand some researchers have been more
skeptical about using social media data in general, and specially data fromTwitter, in studying social
behavior [3]. And some others question the relevance of such data to social sciences completely; see
Figure 1 for a satirical illustration of this view.

This literature is quite diverse. Some investigations seek to relate Twitter to the offline world [4].
Kwak et al. [5] crawl the entirety of Twitter and find that the platform’s social networks differ from
offline socialiability in important ways. Huberman et al. [6] examine user behavior in addition to
network structure, and find strong “friend” relationships, akin to offline sociability, are important
predictors of Twitter activity. Gonçalves et al. [7] use Twitter data to validate anthropologist Robin
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FIGURE 1 | Social Media: an illustration of overstimating the relevance of social media to social events from XKCD. Available online at http://xkcd.com/

1239/ (Accessed June 16, 2016).

Dunbar’s proposed quantitative limit to social relationships.
Still other investigations analyze the various uses of Twitter.
Examining social influence, Bakshy et al. [8] study Twitter
cascades, and find that the largest are started by past influential
users with many followers. Semantic investigations in various
languages and national contexts have been quite popular [9–11].
Questions of how Twitter and platform phenomena map onto
offline geographic have also been widely studied [12, 13].

Yet, this body of literature is only unified in the source of
its data; it remains fractured across many disciplines and fails
to establish set procedures for drawing conclusions from these
rich datasets; for an earlier survey of the literature see Jungherr
[14]. Indeed, metareviews of election prediction using Twitter
have raised significant concerns of this literature’s validity [15,
16]. This minireview extends this critical discussion of Twitter
literature to political action. We selected the reviewed studies in
order to sample a variety of topics and methodologies, however
this collection is not exhaustive by any means and hence we
named the paper a “biased review.” The approach we have taken
in this work deviates from systematic reviews in the field such
as ones described in Petticrew and Roberts [17]. Our sample
purposively draws a geographic diversity of papers studying
Twitter-based political action in Europe, the Middle East, and
the United States. Yet, some gaps certainly remain, including
the glaring absence of hashtag activism studies and terrorist
propaganda activity, two topics important to political action on
Twitter that warrant further study. Hence we acknowledge that
our review is not inclusive in terms of coverage of all the relevant
papers in the field. For a general overview of studies on online
behavior see DiMaggio et al. [18].

In reviewing the state of Twitter literature on political action,
we seek to explain the role of computational social science (also
called social data science) methodologies in augmenting political
scientific and sociological understanding of these phenomena.
Our minireview is structured as follows. We begin by examining
the role of theory, and find that most often authors do not
consider the expansive political and social theoretical literature in

their analyses of online social phenomena. Instead, they provide
case studies and methodological developments exclusively for
Twitter research. We next examine the methodologies of these
studies, and, drawing upon Ruths and Pfeffer [3], we find
that many papers fail to support their choice of methodology
within the greater literature. We then examine significant results
and discuss implications for further Twitter studies of political
action.

2. WHERE IS THE THEORY?

Social and political theory serves an important role in making
sense of social research by fitting individual studies into larger
theoretical frameworks. In this way, individual studies can
intelligibly inform future research. Alternatively, data analysis
without a coherent, defensible theoretical framework serves
only to explain a single observation at one point in time.
The papers reviewed here fall into three broad categories in
their use of theory: no theory, theory-light, and theory-heavy.
Papers fall into these categories irrespective of methodological or
phenomenological focus.

Papers without theoretical grounding may cursorily cite
but fail to engage theoretical texts. Beguerisse-Díaz et al. [19]
examine communities and functional roles on Twitter during
the UK riots of August 2011. To explain these phenomena,
however, they cite no social theory. While the authors offer
sophisticated methodical innovations for determining interest
communities and individual roles in those communities, they do
so without reference to a broader social science literature. Some
other investigations offer cursory theory in their discussions of
Twitter data. Borge-Holthoefer et al. [20] investigate political
polarization surrounding the events that precipitated Egyptian
President Morsi’s removal from power in 2013. Their analysis
of changes in loudness of opposing factions, although quite
enlightening, is not grounded in any theoretical model of political
action. Instead, the authors proceed based on a number of
platform-specific assumptions that do not readily permit results
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to be generalized beyond Twitter. The authors suggest their
findings contribute to the study of bipolar societies yet do
not develop a theoretical model for such applications. The
authors do use social theory, however sparingly, in order to
contextualize their results, but even here theoretical discussion
is lacking. Conover et al. [21] study partisan communities and
behavior on Twitter during the 2010 U.S. midterm elections.
They similarly prioritize analytical innovations over theoretical
explanation. The authors analyze behavior, communication, and
connectivity between users, but do not seek to explain observed
partisan differences. Their research yields statistically significant
differences between liberal and conservative communities in
follower and retweet networks, which begs the question: why
do these differences exist? Such explanations could benefit
from examining elections literature to develop a general
theoretical model of partisan sharing. Although the authors
do briefly address the 2008 U.S. presidential election, it is
only to contrast resulting phenomena, not to offer explanatory
theories.

In contrast, Alvarez et al. [22] explain political action in the
Spanish 15M movement using Durkheimian theory of collective
identity and establish their work on firm basis in collective
action literature. Yet, while the authors base their methodology
in theory, their findings do not directly engage with that theory
aside from “quantifying” it. A similar fate befalls sampled
predictive studies, which draw on theory to produce empirical
results, but often fail to engage those results with underlying
theory. Weng et al. [23] develop a model that predicts viral
memes using community structure, based on theoretical insight
from contagion theory. The authors find that viral memes spread
by simple contagion, in contrast to unsuccessful memes which
spread via complex contagion; still, only the briefest theoretical
discussion for this result is offered. Garcia-Herranz et al. [24]
develop a methodological innovation using individual Twitter
users as sensors for contagious outbreaks based in the “friendship
paradox” and contagion theory. This mechanism uses network
topology as an effective predictor, but does not address the
social phenomena that create and sustain that topology. Such
methodological innovations provide researchers new analytical
tools for observational analysis, but these tools remain of dubious
explanatory value because they fail to ground methods in theory
of the social world.

Twitter data present an opportunity not simply for analysis of
social interactions on the platform but, if done well, these insights
hold potential to contribute to new visions of the social world.
Rigorous data science can generate new theory. Coppock et al.
[25] are particularly notable in this regard. The authors base their
methodological innovation in Twitter mobilization inducement
on an extensive theoretical literature review, which yields three
opposing hypotheses. They assess the political theory of collective
action as it applies to Twitter via these three hypotheses, and
find that the Civic Voluntarism Model is most consistent with
their results. Likewise, González-Bailón et al. [26], in their study
of protest recruitment dynamics in the Spanish 15M movement,
offer both an extensive grounding in social theory and theory-
engaging results. The authors’ findings serve to clarify threshold
models of political action and “collective effervescence.”

As to the particular theories addressed, the above mentioned
papers focus primarily on political action and network theories
of diffusion and contagion. Important in such topics, but absent
from all investigations, is discussion of power or hierarchy.
Although Twitter may permit communication between the
powerful and powerless, it does not do so in a vacuum.
The platform operates within numerous contexts, e.g., the
offline influence of particular users and the online influence
of those with numerous followers. Reconciling methodologies
with theories of power promises to provide further insight into
political action on Twitter. More broadly, a greater focus on
theory is needed for Twitter analyses to provide externally valid
insight into the social world, both online and off.

3. DIVERGENCE IN METHODS

In developing analyses of Twitter data, researchers have not
drawn on a coherent body of agreed-upon methodologies.
Rather, methodological choices differ considerably from one
paper to another. Ruths and Pfeffer [3] offers a critique of
many common social media analysis practices. Drawing from
that work as well as our own insights, we examine many of the
methodological choices made in our sample papers. We have
delineated these choices into several overarching categories: data,
filtering, networks and centrality, cascades and communities,
experiments, and conjecture.

Before addressing the methodological choices outlined above,
we first address several important findings from Ruths and
Pfeffer [3]. Today, academic research writ large—including
social media work and much more—is insufficiently transparent.
Academic journals publish only “successful” studies. Without
publishing methodologies that failed to explain political action
phenomena, how is one to weigh the probability that the
supposed “fit” observed is not due to random chance? Even
those papers which address the robustness of their analysis,
often stop at a very shallow significance tests using p-value,
which is argued to be a flawed practice [27, 28]. Similarly,
when new methodologies are created, as in Weng et al. [23],
Garcia-Herranz et al. [24] and Coppock et al. [25], they are
justified vis-à-vis random baselines and not prior methods. New
methods are useful, but are they better than existing tools? These
opacity critiques are fundamental to the current state of Twitter
scholarship. Researchers should be cognizant of these limitations
when drawing conclusions from their work and should alter
their methodologies to account for these limitations whenever
possible.

3.1. Data
Twitter data ultimately comes from the Twitter platform. If
scholars wish to make claims about the versatility of their
methodologies and findings, they must justify their data-
collectionmethods as representative of underlying populations—
on Twitter or elsewhere. This proves a problematic task. The
Twitter API offers researchers an incredible array of tweet, user,
and more data for analysis; yet, the API acts as a “blackbox”
filter that may not yield representative data [29, 30]. For
example, Weng et al. [23] “randomly” collect 10% of public
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tweets for one month from the API. Not only does the API
preclude analysis as to the representativeness of the sample but
it too prevents researchers from comparing studies over time,
as the API sampling algorithm itself will change. Proprietary
sampling methods only further exacerbate the opacity problem.
In González-Bailón et al. [26], the authors use a proprietary
samplingmethod to generate their dataset of Spanish tweets from
Spain. The authors of Borge-Holthoefer et al. [20] do as well,
using Twitter4J1 and TweetMogaz2 as data sources.

Other papers do not use a global sampling method, but
obtain data in other ways. Beguerisse-Díaz et al. [19] use a
list of “influential Twitter users” published in The Guardian
as the starting point for data collection. Coppock et al. [25]
develop their experimental design in cooperation with the League
of Conservation Voters, and use their Twitter followers as
test subjects. Other papers, including Conover et al. [21] and
Alvarez et al. [22] collect data by following particular hashtags
and the users who tweeted them. Garcia-Herranz et al. [24]
collect Twitter data by snowball-sampling from one influential
user, Paris Hilton, as well as all users mentioning trending
topics. None of these sampling methods allows authors to make
broad claims about the Twitter platform and political action
in general. The method used in Garcia-Herranz et al. [24] is
particularly concerning, as it attempts to collect a large sample to
sufficiently model a Twitter population, but the choice of method
undermines this very goal.

A final complication of data in Twitter studies regards the
publication of that data. Once data is collected and analyzed, it
is rarely made available for others to replicate these studies—
the hallmark of good research. The problem here lies with
Twitter itself; the terms of use preclude the republication of tweet
contents that have been scraped from the site3.

3.2. Filtering
Following data collection, researchers often filter an intractable
dataset into a manageable sample. Researchers often use filtering
to select a coherent sample. Language and geography offer clear
examples. Borge-Holthoefer et al. [20] limit their dataset to
Arabic tweets about Egypt. Both González-Bailón et al. [26]
and Alvarez et al [22] limit their datasets to Spanish tweets
from Spain. To do so, however, both papers use a proprietary
filtering process from Cierzo Development Ltd4 As addressed
above, proprietary methodologies stymie research transparency
and replication.

Filtering can likewise facilitate a narrowing of research focus
given a particular sample population. One common means of
achieving a relevant dataset is to use hashtags as labels for
tweets in which they appear. In González-Bailón et al. [26] the
authors obtain a sample of protest-related tweets using a list of
70 hashtags affiliated with the Spanish 15M movement. Conover
et al. [21] filter to a sample of political tweets using a list of
political hashtags and, in an excellent technique, allow the list

1http://twitter4j.org/en/index.html
2http://www.tweetmogaz.com/
3Twitter Terms of Service: https://twitter.com/tos?lang=en
4Formerly http://www.cierzo-development.com; see archive at http://tinyurl.com/

jzbewt8

of hashtags to grow based on co-occurring hashtags. In Borge-
Holthoefer et al. [20] the authors go one step further, and query
not only hashtags but complete tweet content. Arabic tweets were
normalized for spelling and filtered by a series of Boolean queries
with a set of 112 relevant keywords.

Researchers, after filtering for a relevant sample and topic,
may further filter for user attributes. Borge-Holthoefer et al. [20]
restrict their sample to high activity users with more than ten
tweets extant in the limited sample. Beguerisse-Díaz et al. [19]
limit their dataset to users central in the friend-follower network,
those in the giant component. Users outside the giant component
generally had incomplete Twitter information, and, as such, were
dropped from the analysis. Weng et al. [23] limits the data to
only reciprocal relationships. Conover et al. [21] filter tweets with
geo-tags. The authors use a self-reported location field as their
data source, despite the fact that someone can put “the moon”
or anything else as their location. Indeed, Graham et al. use
linguistic analyses to determine that such user-provided locations
are poor proxies for true physical location [13]. Although the
authors acknowledge the preliminary status of their analysis and
its utility as an illustration of potential data-driven hypotheses, it
left us unsatisfied with a lack of methodological rigor that should
underlie even the most tentative of filtering claims.

Authorsmay choose to filter for no other reason than to obtain
a manageable dataset. Such decisions need not be arbitrary.
Garcia-Herranz et al. [24] settle on a particular sample size for
their analyses, seeking to balance statistical power and the need
to keep test and control groups from overlapping in the network.
The authors offer an effective defense of their decision, presenting
brief analyses of other sample sizes as well. Coppock et al. [25], on
the other hand, arbitrarily remove Twitter users with more than
5000 followers from their sample because, they argue, these users
are “more likely” to be influential or organizations, and therefore
differ from the rest of the sample. This decision to remove outliers
and the arbitrariness of the choice of threshold introduces
systematic biases in the results, fundamentally undermining their
analyses.

These myriad filtering decisions often go insufficiently
defended. Those who do defend filtering choices often do
so without referencing past literature. Even sound filtering
decisions, however, undermine the general claims researchers
can make. This may be one reason most of the studies fail to
contribute to social theory beyond their micro case studies.

3.3. Networks and Centrality
Twitter lends itself to fruitful network analyses—of both explicit
interactions and other derivative relations. Conover et al. [21] use
three network projections to analyze partisan political behavior
during the 2010 U.S. midterm elections: one network sees users
connected when mentioned together in a tweet, another where
users are linked by retweeting behavior and third, the original
explicit user follow-ship network. Weng et al. [23] also uses
three networks—mention, retweet, and follow—to study meme
virality. The authors conduct primary analysis on the follow
network and use the other two as robustness tests. In studying
protest recruitment to the 15M movement, González-Bailón et
al. [26] make use of two networks, one symmetric (comprised
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of reciprocated following relationships) and one asymmetric to
study protest recruitment to the 15M movement. The authors
use these networks to determine the influence of broadcasting
users. Still other authors use single, traditional follower networks
in their analyses [24, 25].

Network analyses are all the more powerful when they are
combined, as in Weng et al. [23] and González-Bailón et al. [26].
In Borge-Holthoefer et al. [20], the authors offer another insight
when they use network analyses over time with temporally
evolving networks in response to events that preceded Egyptian
President Morsi’s removal from power. The authors recreate a
sequence of networks that evolve over time. This method offers
insight into how online activity responds to offline events in
Egypt, and could be a powerful tool in many other contexts,
helping to parse a key question of political action: how groups
respond to events and evolve over time. The opposite, to assume
a network remains static during a given period, precludes this
insight and undermines social analysis. In González-Bailón et al.
[26], the authors exemplify this pitfall, as a network of protesters
being recruited surely saw significant changes during their study’s
time period. Given the fast growing literature on temporal
networks [31, 32], more attention is required in analyzing the
dynamics of networked political activities.

Beyond decisions of network type and temporality, authors
make important choices in projecting and using Twitter
networks. Weng et al. [23] does not weight network edges based
on number of tweets, and choses to limits the network projection
to reciprocal relationships. Both decisions fundamentally affect
results, and undermine its validity as representing activity on the
Twitter platform. Others, including González-Bailón et al. [26]
account for asymmetry in their network projections.

In doing network analysis, many researchers use centrality
scores as a means to find the most influential users. Researchers
have developed a number of different definitions and algorithms
for centrality [33]. The choice of a specific approach, however,
depends on the particular context and research questions. Often
times this choice is not well justified in the given context of online
political mobilizations. Among the papers considered here, k-
core centrality [34] is the most common choice [21, 22, 26].
While k-core centrality is a very useful tool to find the backbone
of the network, it neglects social brokers, or the nodes with
high betweenness centrality,—relevant features in their own right
when studying social behavior [35].

3.4. Cascades and Communities
Whether in networks or another form, Twitter data yield insight
through a multitude of different analytical techniques. One such
technique examines tweets as they flow through the network
in cascades. Cascades follow a single tweet that is retweeted
or similar tweets as they move across a network. The Twitter
platform makes these analyses difficult, however, as retweets are
connected to the original tweet, not the tweet that triggered the
retweet [3]. Researchers address this pitfall by using temporal
sequencing to order and connect tweets or retweets. To achieve
meaningful results, studies must sufficiently filter the tweets to
establish that sequential tweets are related in content as well as

time, which undermines representativeness, as discussed above
[20, 22, 23].

Another common technique examines tweet content. Alvarez
et al. [22] analyze their data for its social and sentiment content
using semantic and sentiment analytic algorithms that analyzes
tweets based on a test set. The authors use this technique
to draw conclusions of individual users opinions of the 15M
movement in Spain by analyzing up to 200 authored tweets
on the topic per user. This technique holds great promise for
future studies of political activity, and indeed any activity, on
Twitter. Borge-Holthoefer et al. [20] use a less sophisticated
solution toward a similar goal: they characterize users as either
for or against military intervention in Egypt. The authors
attempt to show changes in opinion, and so cannot not rely
on comprehensive opinion from a mass of past tweets as
done in Alvarez et al. [22]. Instead, Borge-Holthoefer et al.
[20] uses coded hashtags to indicate users’ opinions. Although
this technique allows for discernable changes in opinion, the
authors establish a dichotomy that threatens to oversimplify
users’ opinions.

Community detection is another key analytical tool for
Twitter researchers. Using network topology or node (user or
tweet) content, researchers can cluster similar nodes and provide
insight into social systems on a macroscopic scale. There are
a variety of techniques, each with its own set of strengths and
weaknesses. Weng et al. [23] uses the Infomap algorithm [36]
and test the robustness of their results by applying a second
community detection technique, Link Clustering. Conover et
al. [21] uses a combination of two techniques, Rhaghavan’s
label propagation method [37] seeded with node labels from
Newman’s leading eigenvector modularity maximization [38].
The authors selected this combination of methods because it
“neatly divides the population ... into two distinct communities.”
Yet, the authors fail to defend these observations rigorously
in their paper. Beguerisse-Díaz et al. [19], on the other hand,
effectively defend their decisions in setting resolution parameters
for the Markov Stability method [39]. The authors also use
community detection creatively in conjunction with a functional
role-determining algorithm to assign “roles” to users without a
priori assignments of those groups. Borge-Holthoefer et al. [20]
select an apt community detection method that corresponds well
with their objectives: to follow changes in polarity over time,
the authors use label propagation, whereby nodes spread their
assigned polarity. This method allows for seeding with nodes
of known belief—useful in monitoring the progression of the
Egyptian protests on Twitter, as many important actors’ positions
were publicly known. Yet this decision too comes with a cost:
the authors program the label propagation to allow for only two
polarities: Secularist or Islamist, even though they acknowledge
that a third camp likely existed, namely supporters of deposed
Hosni Mubarak.

While community detection is still considered as an open
question in network science, both at the definition and
algorithmic implementation levels [40], many papers use one or
more of these methods without enough care to make sure that
the methods and definitions that they are using in their specific
problem is well justified.
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3.5. Experiments
Twitter also lends itself as an experimental platform for
researchers to implement controlled studies of social phenomena.
In particular, Garcia-Herranz et al. [24] and Weng et al. [23]
seek to predict viral memes on Twitter using network topology
and activation in linked users and communities, respectively.
Coppock et al. [25] run two experiments on inducing political
behavior on Twitter using different types and phrasing of
messages. In all cases, authors necessarily use controls in their
experimental context. Garcia-Herranz et al. [24] create a null
distribution of tweets with randomly shuffled timestamps to
distinguish the effect of user centrality from user tweeting rate.
Weng et al. [23] use two baseline models to quantify the
predictive power of their community-based model. The authors
use a random guess and community-blind predictor, against both
of which the model is highly statistically significant. Coppock
et al. [25], with a true experimental design, offer an extensive
discussion of experimental controls on Twitter. The platform
has inherent limitations for public tweet experiments because
there is no effective way to separate experimental and control
users given an inherently interconnected network structure. But
the authors design their study to use direct messages to selected
users as the experimental variable. The authors even tweaked and
repeated the study to improve randomization in the control. Such
a methodology makes [25] an example of a particularly strong
experimental Twitter paper.

3.6. Conjecture
As we have seen, Twitter provides researchers myriad analytical
techniques. Methodological choices as to which techniques to
use present a fundamental challenge for researchers. They must
select and properly defend their choice of methods that both
work and fit their theoretical objectives. As we have noted above,
there are numerous instances where researchers will do better
jobs than others are achieving a methodological fit and defending
it in their studies. Some researchers may face the temptation
to extend analyses to produce exciting results, but do so at the
expense of sound methodologies. Future Twitter research would
be well served to stress defensible, rigorous methodologies that
are couched within existing theoretical literature from the social
sciences, something that is rare today.

4. WHAT DID WE LEARN?

Taken collectively, the reviewed investigations offer considerable
insight into political activities conducted on the Twitter platform,
through analyses that examine political action in the abstract
and others that offer case studies of concrete political action.
These insights particularly address the roles of communities and
individual users, connections between such entities, as well as
the content they tweet. Predictive models take these insights
and offer tools for, perhaps, understanding political action in
real-time. Garcia-Herranz et al. use a sensor group of central
users to predict virality of content, and extend this predictive
sensor beyond Twitter to Google searches [24]. Weng et al. use
connection topology to predict virality, although the predictive
model is not extended to other content [23]. González-Bailón

et al. observe viral tweets emerge from randomly distributed
seed users, indicating exogenous factors determine the origins
of viral content [26]. Taken together, these three studies offer an
understanding of mass communication on Twitter: viral content
tends to originate randomly across the platform, reach more
central users first, and spread across communities more easily
than non-viral content. Theoretical explanations of what makes
viral content in the first place, however, is lacking in these
analyses, and warrants further attention.

Given a methodological focus, topology can offer insights into
its embedded users. Beguerisse-Díaz et al. [19] use topographical
analyses to reveal flow based roles, interest communities, and
individual vantage points without a priori assignment. Conover
et al. [21] assign political leaning and then examine differences in
partisan topologies in communities, tweeting activity, retweeting
behavior, and mentions. Both approaches offer insight into
political behavior using topology, with different strengths. The
techniques used in Beguerisse-Díaz et al. [19] are quite useful
when the partisan landscape on a particular issue is unknown;
The approach in Conover et al. [21] yields greater understanding
of known divisions.

Topology is not the sole determinant of activity, however, and
tweet content analyses offer a second means of understanding
political activity on Twitter. Alvarez et al. [22] finds that, in the
context of the Spanish 15M indignados, tweets with high social
and negative content spread in larger cascades. Tweet content
also readily lends itself to analyses which link Twitter with offline
phenomena. Borge-Holthoefer et al. [20] and González-Bailón
et al. [26] find that, in 2013 Egyptian protests and Spanish 15M
protests, respectively, real world events impact tweeting behavior.
Coppock et al. [25] successfully induce off-Twitter behavior using
the content of tweets. Content analyses offer insight into non-
platform-dependent political activity.

Topology and content are distinct analyses. Research that
combines the two to answer a single question can yield robust
results. Several papers attempt this, Borge-Holthoefer et al. [20]
most successfully. The authors use content analysis to classify
tweets and users into opinion groups, and then create temporally
based retweet networks to follow changes in the activity and
composition of those opinion groups. Alvarez et al. [22] use
content analysis of observed network topological phenomena,
e.g., cascades, to quantify the social and emotional effects of
content on sharing outcomes. Beguerisse-Díaz et al. [19] too
combine methodologies, although less rigorously: they use word
clouds to label topologically derived network communities.

In this vein, many of the above mentioned investigations
could benefit from incorporating mixed methodologies and
drawing on each others analyses. Future research should seek to
emulate the approach in Borge-Holthoefer et al. [20]. Further
use of sentiment analyses from Alvarez et al. [22] would render
even more robust results. Additional joint content and topology
analyses would be evenmore useful: would using Garcia-Herranz
et al. [24]’s central users in communities, i.e., incorporate Weng
et al.’s methods [23], result in to more precise virality predictor?
Would adding content analysis as used in Alvarez et al. [22]
further improve precision? If holistic understanding of social
phenomena is researchers goal, future efforts should seek to

Frontiers in Physics | www.frontiersin.org August 2016 | Volume 4 | Article 34 | 96

http://www.frontiersin.org/Physics
http://www.frontiersin.org
http://www.frontiersin.org/Physics/archive


Cihon and Yasseri Twitter Studies on Political Action

incorporate not one but numerous methodologies in pursuit of
that end.

5. CONCLUSION

The papers considered in this minireview offer several important
considerations on the state of Twitter research into social
phenomena. What was once the arena of solely political scientists
and sociologists, political action and social phenomena have
now become research topics for computer scientists and social
physicists. New disciplines have much to offer social research, as
indicated in the methodology review of our sample papers; yet,
these methodologies are often divorced from underlying social
theory. Thus far, Twitter studies offer primarily observational—
not explanatory—analyses.

What does account for this bias away from social theory?
Some possible explanations are readily apparent. Twitter research
is new, and computational social science is an emerging
field; thus far both have tended to prioritize methodological
innovation over incorporation or analysis of preexisting social
theories. This tendency has surely been exacerbated by the
relatively narrow range of disciplines contributing to the
field: despite its name, the field has drawn from computer

scientists, mathematicians, and physicists far more than social
scientists. Perhaps interdisciplinary collaboration may present
a solution as the field continues to develop; see Beguerisse-
Díaz et al. [41] for a recent example. The tendency to
disregard social theory also likely has its origins in the structure
of technical journals. A high premium on space and their
technical audience simply do not permit lengthy discussion of
theory.

Greater dialog between theory and methods, as well as a
holistic use of all available methodologies, is needed for data
science to truly offer insight into our social world, both on Twitter
and off it.
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