
1

Journal of Physics A: Mathematical and Theoretical

Diluted banded random matrices: scaling 
behavior of eigenfunction and spectral 
properties

J A Méndez-Bermúdez1,6 , Guilherme Ferraz de Arruda2,3, 
Francisco A Rodrigues2 and Yamir Moreno3,4,5

1 Instituto de Física, Benemérita Universidad Autónoma de Puebla, Apartado Postal 
J-48, Puebla 72570, Mexico
2 Departamento de Matemática Aplicada e Estatística, Instituto de Ciências  
Matemáticas e de Computação, Universidade de São Paulo–Campus de São Carlos, 
Caixa Postal 668, 13560-970 São Carlos, SP, Brazil
3 Institute for Biocomputation and Physics of Complex Systems (BIFI), University  
of Zaragoza, Zaragoza 50009, Spain
4 Department of Theoretical Physics, University of Zaragoza, Zaragoza 50009, Spain
5 Complex Networks and Systems Lagrange Lab, Institute for Scientific Interchange, 
Turin, Italy

E-mail: jmendezb@ifuap.buap.mx

Received 13 September 2017, revised 19 October 2017
Accepted for publication 20 October 2017
Published 16 November 2017

Abstract
We demonstrate that the normalized localization length β of the 
eigenfunctions of diluted (sparse) banded random matrices follows the 
scaling law β = x∗/(1 + x∗). The scaling parameter of the model is defined 
as x∗ ∝ (b2

eff/N)δ, where beff is the average number of non-zero elements 
per matrix row, N is the matrix size, and δ ∼ 1. Additionally, we show that 
x∗ also scales the spectral properties of the model (up to certain sparsity) 
characterized by the spacing distribution of eigenvalues.

Keywords: random matrix theory, scaling laws, wigner-banded random 
matrix model, localization length of eigenfunctions

(Some figures may appear in colour only in the online journal)

1. Introduction and outlook

Random matrix (RM) models serve to describe statistical properties of complex systems 
and related processes: From the original Gaussian ensembles of Wigner and Dyson [1, 2] 
(which reproduce the statistics of energy levels of complex nuclei, quantized chaotic systems, 
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disordered systems, random networks, etc) to very recent and more elaborated ensembles e.g. 
relevant to the problem of many-body localization [3].

Even at the early years of RM modeling, Wigner himself realized the need to refine the 
generic Gaussian ensembles in order to incorporate properties of realistic physical systems. In 
this respect he introduced the so-called Wigner-banded RM model [4, 5] (see also [2, 6–13]), 
a model including a bandwidth and an increasing diagonal. In particular the bandwidth, which 
quantifies the range of interactions, has been the main ingredient of other RM models pro-
posed to deal with explicit applications: As examples we can mention the power-law banded 
RM model [14, 15] (used to simulate the Anderson metal-insulator transition), the banded ran-
dom matrix (BRM) model [16–32] (introduced to emulate quasi-one-dimensional disordered 
wires), the embedded ensembles [33–35] (which take into account the many-body interactions 
in complex nuclei and many-body systems), system-specific banded Hamiltonian RM models 
[36, 37] (where the bandwidth of the Hamiltonian matrix can be obtained by means of semi-
classical arguments [7, 38]), among many others [2, 39–51].

On the other hand, there exist several works dealing with diluted RM models, see for exam-
ple [52–65]. However, we know just a few RM models including, in addition to sparsity, an 
effective bandwidth: i.e. the Wigner-banded RM model with sparsity [47, 48], diluted power-
law RM models [49, 50], and a diluted block-banded RM model [51].

Thus, motivated by the ample interest on banded RM models and the recent attention on 
diluted versions of them [49–51] in this paper we study scaling properties of a diluted ver-
sion of the BRM model. In particular we demonstrate that both eigenfunction and spectral 
properties scale with a parameter that relates the model attributes (matrix size, bandwidth, and 
sparsity) in a highly non-trivial way.

2. Model definition and statement of the problem

The BRM ensemble is defined as the set of N × N  real symmetric matrices whose entries are 
independent Gaussian random variables with zero mean and variance 1 + δi,j  if |i − j| < b and 
zero otherwise. Hence, the bandwidth b is the number of nonzero elements in the first matrix 
row which equals 1 for diagonal, 2 for tridiagonal, and N for matrices of the GOE. There are 
several numerical and theoretical studies available on this model, see for example [16–32]. In 
particular, outstandingly, it has been found [16–18, 21] that the eigenfunction properties of 
the BRM model, characterized by the scaled localization length β (see equation (6) below), 
are universal for the fixed ratio

X =
b2

N
. (1)

More specifically, it was numerically and theoretically shown that the scaling function

β =
ΓX

1 + ΓX
, (2)

with Γ ∼ 1, holds for the eigenfunctions of the BRM model, see also [22–25]. It is relevant to 
mention that scaling (2) was also shown to be valid, when the scaling parameter X is properly 
defined, for the kicked-rotator model [21, 66, 67] (a quantum-chaotic system characterized 
by a random-like banded Hamiltonian matrix), the one-dimensional Anderson model, and the 
Lloyd model [68].

We define the diluted BRM (dBRM) model by including sparsity, characterized by the 
parameter α, in the BRM model as follows: Starting with the BRM model we randomly set 
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off-diagonal matrix elements to zero such that the sparsity is defined as the fraction of the 
N(b − 1)/2 independent non-vanishing off-diagonal matrix elements. According to this defi-
nition, a diagonal random matrix is obtained for α = 0, whereas the BRM model is recovered 
when α = 1.

Therefore, inspired by scaling studies of the BRM model [16–18, 21–23, 26, 28, 30], here 
we propose the study of eigenfunction and spectral properties of the dBRM model as a func-
tion of the parameter

x =
b2

eff
N

, beff ≡ αb, (3)

where the effective bandwidth of the dBRM model beff is, in analogy to the bandwidth b of the 
BRM model, the average number of nonzero elements per matrix row.

3. Eigenfunction properties

A commonly accepted tool to characterize quantitatively the complexity of the eigenfunctions 
of random matrices (and of Hamiltonians corresponding to disordered and quantized chaotic 
systems) is the information or Shannon entropy S. This measures provides the number of 
principal components of an eigenfunction in a given basis. The Shannon entropy, which for 
the eigenfunction Ψm is given as

S = −
N∑

n=1

(Ψm
n )

2 ln(Ψm
n )

2, (4)

allows to compute the so called entropic eigenfunction localization length, see e.g. [67],

ℓN = N exp [− (SGOE − ⟨S⟩)] , (5)

where SGOE ≈ ln(N/2.07), which is used here as a reference, is the entropy of a random eigen-
function with Gaussian distributed amplitudes (i.e. an eigenfunction of the GOE). With this 
definition for S when α = 0 or b = 1, since the eigenfunctions of the dBRM model have only 
one non-vanishing component with magnitude equal to one, ⟨S⟩ = 0 and ℓN ≈ 2.07. On the 
other hand, when α = 1 and b = N  we recover the GOE and ⟨S⟩ = SGOE; so, the fully chaotic 
eigenfunctions extend over the N available basis states and ℓN ≈ N .

Here, as well as in BRM model studies, we look for the scaling properties of the eigenfunc-
tions of the dBRM model through the scaled localization length

β =
ℓN

N
, (6)

which can take values in the range (0, 1].
In the following we use exact numerical diagonalization to obtain the eigenfunctions Ψm 

(m = 1 . . .N) of large ensembles of dBRMs characterized by the parameters N, b, and α. We 
perform the average ⟨S⟩ taking half of the eigenfunctions, around the band center, of each 
random matrix. Each average is computed with 5 × 105 data values.

In figure 1(a) we present β as a function of x, see equation (3), for ensembles of matrices 
characterized by the sparsity α. We observe that the curves of β versus x have a functional form 
similar to that for the BRM model (corresponding to α = 1). In addition, in figure 1(b) the 
logarithm of β/(1 − β) as a function of ln(x) is presented. The quantity β/(1 − β) was useful 
in the study of the scaling properties of the BRM model [16, 22] because β/(1 − β) = γx, 
which is equivalent to scaling (2), implies that a plot of ln[β/(1 − β)] versus ln(x) is a straight 
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line with unit slope. Even though, this statement is valid for the BRM model in a wide range of 
parameters (i.e. for ln[β/(1 − β)] < 2) it does not apply to the dBRM model; see figure 1(b). 
In fact, from this figure we observe that plots of ln[β/(1 − β)] versus ln(x) are straight lines 
(in a wide range of x) with a slope that depends on the sparsity α. Consequently, we propose 
the scaling law

β

1 − β
= γxδ , (7)

where both γ and δ depend on α. Indeed, equation  (7) describes well our data, mainly in 
the range ln[β/(1 − β)] = [−2, 2], as can be seen in the inset of figure 1(b) where we show 
the numerical data for α = 0.6, 0.8 and 1 and include fittings with equation (7). We stress 
that the range ln[β/(1 − β)] = [−2, 2] corresponds to a reasonable large range of β values, 
β ≈ [0.12, 0.88], whose bounds are indicated with horizontal dot-dashed lines in figure 1(a). 
Also, we notice that the power δ, obtained from the fittings of the data using equation (7), 
is very close to unity for all the sparsity values we consider here (see the upper inset of 
figure 1(b)).

Therefore, from the analysis of the data in figure 1, we are able to write down a universal 
scaling function for the scaled localization length β of the dBRM model as

β

1 − β
= x∗, x∗ ≡ γxδ . (8)

To validate equation (8) in figure 2(a) we present again the data for ln[β/(1 − β)] shown in 
figure 1(b) but now as a function of ln(x∗). We do observe that curves for different values of 
α fall on top of equation (8) for a wide range of the variable x∗. Moreover, the collapse of the 
numerical data on top of equation  (8) is excellent in the range ln[β/(1 − β)] = [−2, 2] for 
α ! 0.5, as shown in the inset of figure 2(a).

Finally, we rewrite equation (8) into the equivalent, but explicit, scaling function for β:

Figure 1. (a) Scaled localization length β as a function of x = b2
eff/N  [see equation (3)] 

for ensembles of diluted banded random matrices characterized by the sparsity α. 
Horizontal dot-dashed lines at β ≈ 0.12 and 0.88 are shown as a reference, see the 
text. (b) Logarithm of β/(1 − β) as a function of ln(x). Upper inset: power δ, from  
the fittings of the data with equation (7), as a function of α. Lower inset: enlargement 
in the range ln[β/(1 − β)] = [−2, 2] including data for α = 0.6, 0.8, and 1. Lines are 
fittings of the data with equation (7).
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β =
x∗

1 + x∗
. (9)

In figure 2(b) we confirm the validity of equation (9). We would like to emphasize that the 
universal scaling given in equation (9) extends outsize the range β ≈ [0.12, 0.88], for which 
equation (7) was shown to be valid, see the main panel of figure 2(b). Furthermore, the col-
lapse of the numerical data on top of equation (9) is remarkably good for α ! 0.5, as shown 
in the inset of figure 2(b).

4. Spectral properties

Now we analyze the spectral properties of the dBRM model. To this end we choose P(s), the 
nearest neighbor energy-level spacing distribution. For α = 0 or b = 1, i.e. when the dBRM 
model produces diagonal matrices, P(s) follows the exponential distribution P(s) = exp(−s); 
better known in RM theory as Poisson distribution or the spacing rule for random levels [1]. 
In the opposite limit, for α = 1 and b = N , i.e. when the dBRM reproduces the GOE, P(s) 
closely follows the Wigner–Dyson distribution [1]: P(s) = (π/2)s exp(−πs2/4). Then, for 
values of α and b in the intervals (0, 1) and (1, N), respectively, the shape of the P(s) of 
the dBRM model is expected to be in-between Poisson and Wigner–Dyson distributions. 
Moreover, a transition from Poisson to Wigner–Dyson distributions in the shape of P(s) is 
expected in the following two cases: (i) By increasing α from zero to one for fixed b, with 
1 ≪ b ! N; and (ii) by increasing b from one to N for fixed α, with 0 < α ! 1. These two 
scenarios are reported in figures 3(a) and (b), respectively.

Here, in order to characterize the P(s) for our RM model we use the phenomenological 
expression known as Izrailev’s distribution [26, 69]:

P(s) = B1zβ̃(1 + B2β̃z) f (β̃) exp

[
−1

4
β̃z2 −

(
1 − β̃

2

)
z

]
, (10)

Figure 2. (a) Logarithm of β/(1 − β) as a function of ln(x∗) [see equation (8)]. Inset: 
enlargement in the range ln[β/(1 − β)] = [−2, 2] including curves for α ∈ [0.5, 1] in 
steps of 0.05. Dashed lines in main panel and inset are equation (8). (b) β as a function 
of x∗. Inset: data for α ∈ [0.5, 1] in steps of 0.05. Dashed lines in main panel and inset 
are equation (9).
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where z = πs/2, f (β̃) = β̃−12β̃(1 − β̃/2)− 0.16874, and the parameters B1,2 are deter-
mined by the normalization conditions 

∫∞
0 P(s)ds =

∫∞
0 sP(s)ds = 1. We call β̃  the spectral 

parameter. Since Izrailev’s distribution has been shown to be useful to characterize the P(s) 
of the BRM model [26], we expect it can properly describe the P(s) of the dBRM model. 
Indeed, in figure 3 we already show that histograms of P(s) in the transition from Poisson 
to Wigner–Dyson are well fitted by equation (10), making β̃  a good quantity to characterize 
such transition.

Thus, we construct histograms of P(s) for a large number of combinations of the param-
eters of the dBRM model (α, b, N) and by fitting them with equation  (10) we extract sys-
tematically the corresponding values of β̃ . We always construct P(s) from half of the total 
unfolded [1] spacings sm = (Em+1 − Em)/∆ around the band center, where the density of 
states is approximately constant. Here, Em is the mth eigenvalue and ∆ the mean level spacing. 
Each histogram is constructed with 5 × 105 spacings.

In figure 4(a) we present the spectral parameter β̃  as a function of the scaled localization 
length β for the dBRM model. As in figures 1 and 2, here we label different sparsities α with 
different colors (symbols). It is interesting to note that even though the relation between β̃  and 
β is not simple, e.g. linear as reported for other disordered systems [9, 67, 70–72], the curves 
β̃  versus β are independent of α once α > 0.4, see inset of figure 4(a). This allows us to guess 
that x∗ can also serve to scale the spectral parameter β̃ , at least for α > 0.4. Accordingly, 
in figure 4(b) we show that the curves of β̃  versus x∗ fall one on top of the other mainly for 
α > 0.4, see the inset of the figure.

From figure 4(b) we also observe that the curves β̃  versus x∗ are above equation (9), that we 
include as dashed lines, except for very small values of x∗ where they coincide. This fact has 

Figure 3. Nearest-neighbor energy level spacing distribution P(s) for ensembles of 
diluted banded random matrices. N = 1000 in all cases. In (a) b = 212 while α takes 
values from 0.001– 0.1. In (b) α = 0.7 while b takes values from 3–52. Blue and red 
full lines correspond to Poisson and Wigner–Dyson distribution functions, respectively. 
Dashed lines are fittings of the histograms with Izrailev’s distribution of equation (10), 
where the fitted values of β̃  are (a) β̃ = 0.0795 (0.077, 0.081) (for α = 0.005), 
β̃ = 0.407 (0.401, 0.413) (for α = 0.0075), β̃ = 0.689 (0.683, 0.696) (for α = 0.01); 
and (b) β̃ = 0.032 (0.031, 0.033) (for b = 5), β̃ = 0.221 (0.218, 0.224) (for b = 13), 
β̃ = 0.655 (0.643, 0.662) (for b = 26), where the 95% confidence bounds are given in 
parenthesis.
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already been reported for the BRM model in [21]. This also means that the spectral properties 
of the dBRM model approach the GOE limit faster than the eigenfunction properties.

5. Conclusions

In this paper, by using extensive numerical simulations, we demonstrate that the normalized 
localization length β of the eigenfunctions of a diluted banded random matrix (dBRM) model 
scales with the parameter x∗(N, b,α) = γ(α)[(bα)2/N]δ(α) as x∗/(1 + x∗), where (N, b,α) 
are the model parameters (matrix size, bandwidth, and sparsity, respectively) and γ and δ are 
scaling parameters. In addition, by plotting the spectral parameter β̃  (the repulsion param-
eter of Izrailev’s distribution) as a function of β we realized that, for moderate sparsity (i.e. 
α > 0.4), x∗(N, b,α) also scales the spectral properties of the dBRM model.

While general diluted RM models have direct applications to random networks (i.e. the 
adjacency matrices of complex networks are, in general, diluted random matrices), the dBRM 
model may be used to model multilayer random networks since the bandwidth b and the spar-
sity α can be associated, respectively, to the size and connectivity of the subnetworks compos-
ing a multilayer, see e.g. [51].

Finally, we want to recall that the scaling (2), valid for the BRM model (and other dis-
ordered systems [66, 68]), was rewritten in a more elegant way as a relation between properly-
defined inverse lengths [22, 22]

1
d(N, W)

=
1

d(∞, W)
+

1
d(N, 0)

, (11)

were d(N, W) ≡ exp[⟨S(N, W)⟩] and W represents b for the BRM model or the localization 
length for the one-dimensional Anderson model and Lloyd’s model. Here, in the case of the 
dBRM model, scaling (9) can also be written in the ‘model independent’ form (11) as

1
d(N, b,α)

=
1

d(∞, b,α)
+

1
d(N, N, 1)

, (12)

Figure 4. (a) Spectral parameter β̃  (see equation  (10)) as a function of the scaled 
localization length β for ensembles of diluted banded random matrices characterized 
by the sparsity α. Inset: ln β̃  versus lnβ for α ∈ [0.5, 1] in steps of 0.05. Dashed lines 
in main panel and inset are the identity. (b) Repulsion parameter β̃  as a function of x∗. 
Inset: data for α ∈ [0.5, 1] in steps of 0.05. Dashed lines in main panel and inset are 
equation (9).
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with d(N, b,α) ≡ exp[⟨S(N, b,α)⟩] and d(N, N, 1) = exp[SGOE(N)] (the reference entropy).
We hope our results may motivate a theoretical approach to the dBRM model.
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