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In the case of tuberculosis (TB), the capabilities of epidemic models
to produce quantitatively robust forecasts are limited by multiple
hindrances. Among these, understanding the complex relationship
between disease epidemiology and populations’ age structure has
been highlighted as one of the most relevant. TB dynamics depends
on age in multiple ways, some of which are traditionally simplified
in the literature. That is the case of the heterogeneities in contact
intensity among different age strata that are common to all air-
borne diseases, but still typically neglected in the TB case. Further-
more, while demographic structures of many countries are rapidly
aging, demographic dynamics are pervasively ignored when mod-
eling TB spreading. In this work, we present a TB transmission
model that incorporates country-specific demographic prospects
and empirical contact data around a data-driven description of TB
dynamics. Using our model, we find that the inclusion of demo-
graphic dynamics is followed by an increase in the burden lev-
els predicted for the next decades in the areas of the world that
are most hit by the disease today. Similarly, we show that consid-
ering realistic patterns of contacts among individuals in different
age strata reshapes the transmission patterns reproduced by the
models, a result with potential implications for the design of age-
focused epidemiological interventions.
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The control of tuberculosis (TB) has been one of the largest
endeavors of public health authorities ever since the bac-

terium that causes it—Mycobacterium tuberculosis—was discov-
ered (1). Recently, the development of global strategies for diag-
nosis and treatment optimization has led to TB burden decay
worldwide (2), to the point that the End TB Strategy has allowed
the scientific community to think that its eradication before 2050
is possible (3, 4). Nonetheless, such a goal is still far away, and TB
remains a major public health problem (5–7), being responsible
for 1.7 million deaths worldwide in 2016 (4). These dramatic data
evidence the need for new epidemiological measures and phar-
macological resources (8). In the task of forecasting the potential
impacts of such new interventions, epidemiological models of TB
transmission constitute a fundamental resource to assist decision
making by public health agents (9).

Among the various limitations that TB modeling has to face
in this context, achieving a proper description of the multiple
ways whereby TB dynamics couple with populations’ age struc-
ture has been identified as one of the most critical (5, 10). For
example, patients’ age is strongly correlated to the type of dis-
ease that they tend to develop more often, as well as to the
probability of developing active TB immediately after infection
[usually called “fast progression” (8)]. This way, while a larger

fraction of children younger than 15 y of age develop noninfec-
tious forms of extrapulmonary TB with respect to adults [25% vs.
10% (8, 11, 12)], the risk of fast progression is larger in infants
(50% in the first year of life), then decays (20–30% for ages
1–2 y, 5% for 2–5 y, and 2% for 5–10 y), and increases again in
adults (10–20% for individuals older than 10 y) (13). Addition-
ally, transmission routes of TB, being a paradigmatic airborne
disease, are expected to show significant variations in intensity
across age (14, 15). The empirical characterization of these con-
tact structures constitutes an intense focus of research in data-
driven epidemiology of airborne diseases (16), and their influ-
ence on the transmission dynamics of diseases like influenza has
been recently explored with relevant implications (17, 18).

Thus, if subjects’ age modifies the disease-associated risks at
the level of single individuals, it is likely that changes in the
demographic age structure at the population level will impact TB
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burden projections. This is mainly due to the slow dynamics that
are characteristic of TB, which forces modelers to describe the
evolution of the disease during long periods of time, typically
spanning several decades. These timescales are rather incom-
patible with the assumption of constant demographic structures,
at least presently, since worldwide human populations are pre-
sumed to age from the current median of 30 y old to 37 y
old in 2050 (19). And yet, achieving a sensible description of
TB transmission able to capture the effects of time-evolving
demographic structures remains an elusive goal in TB model-
ing. Demographic dynamics are traditionally neglected in TB
transmission models, the same way that contact structures are as-
sumed to be homogeneous across age groups (8, 20, 21).

In this work, we incorporate empirical data on demographic
dynamics and contact patterns into classical formulations of
TB spreading models, thus unlocking less biased descriptions
of the spreading dynamics of the disease. To this end, we
present a TB spreading model (Fig. 1A) whereby we provide
a data-driven description of TB transmission that presents two
main differences with respect to previous approaches. First,
our model incorporates demographic forecasts by the United
Nations (UN) population division (19) (Fig. 1B) to describe
the coupling between demographic evolution and TB dynamics.
Second, the model integrates region-wise empirical data about
age-dependent mixing patterns adapted from survey-based stud-
ies conducted in Africa and Asia (22–26) (Fig. 1C), instead of

assuming that all of the individuals in a population interact
homogeneously, as traditionally considered in the literature (8,
20, 21).

Upon model calibration in some of the countries most affected
by the disease in 2015 and subsequent simulation of TB trans-
mission dynamics up to 2050 (Fig. 1D), we scrutinize the impli-
cations derived from integrating these pieces of empirical data
within our model and discuss their impact on the forecasts pro-
duced, at the level of both aggregated incidence and mortality
rates and their distributions across age strata. Specifically, we
quantify the effects of populations’ aging on predicted incidence
rates until 2050, as well as the impact on the age distribution of
the disease burden that emanates from introducing empiric con-
tact data into the models. Furthermore, we quantify the sensitiv-
ity of these effects to the different model inputs and assess their
statistical significance and robustness under a series of alterna-
tive modeling scenarios.

Results
Baseline Forecasts of TB Incidence and Mortality. To illustrate the
ability of our method to reproduce current epidemic trends in
different scenarios, the model was applied to describe the TB
epidemics in India, Indonesia, Nigeria, and Ethiopia (Fig. 2).
These countries, which accumulated as much as ∼40% of the
total TB burden worldwide in 2015, were selected because of
their different temporal evolution trends, current and projected

A
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C

Fig. 1. Model description. (A) Natural history scheme of the TB spreading model. D, (untreated) disease; F, failed recovery; L, latent; R, recovered; S, suscep-
tible; T, (treated) disease. Types of TB considered: np, nonpulmonary; p+, pulmonary smear positive; p–, pulmonary smear negative. Treatment outcomes:
F, treatment failure; RD, default (abandon of treatment); RN, natural recovery; RS, successful treatment. (B) Scheme of the coupling between TB dynamics
and demographic evolution. The transmission model summarized in A describes the evolution of the disease in each age group, including the removal of
individuals due to TB mortality (curved arrows). The evolution of the total volume of each age stratum is corrected (bidirectional arrows: TB-unrelated pop-
ulation variations) to make the demographic pyramid evolve according UN prospects. (C) Empirical contact patterns used for African and Asian countries.
(D) Data flow scheme. Epidemiological parameters, contact matrices, and demographic prospects are used to calibrate the model, with the goal of repro-
ducing observed TB incidence and mortality trends during the period 2000–2015. As a result of model calibration, scaled infectiousness, diagnosis rates,
and initial conditions of the system in 2000 are inferred. These elements are then used (along with epidemiological parameters, contacts, and demographic
data) to extend model forecasts up to 2050. For further details regarding model formulation and calibration, the reader is referred to SI Appendix.
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Fig. 2. Population structure at 2000 and 2050 (projection) and annual inci-
dence and mortality rates predicted by our model in 2000–2050 for Ethiopia,
Nigeria, India, and Indonesia. Colored areas represent 95% confidence inter-
vals. The contribution to overall uncertainty that stems from each of the
four types of input data is disclosed. (Contributions are cumulative.)

demographic profiles, and geographic locations. Remarkably,
our model does not predict, in general, a sustained decrease in
TB burden for the decades to come in these cases, whose inci-
dence rates (per million habitants and year) range between 1,246
(524–2,124, 95% CI) (Ethiopia) and 3,669 (2,348–5,247, 95% CI)
(Indonesia), in 2050. Additionally, we extended these analyses
to the top 12 countries suffering from the highest absolute TB
burden levels in 2015, producing satisfactory fits in all cases (SI
Appendix, Fig. S1 and Table S1).

During simulations, our model produced TB detection ratios
(TB cases diagnosed divided by new incident cases) that strongly
correlate to the notification rates across countries reported by
WHO (27) (SI Appendix, Fig. S2; Pearson correlation r = 0.96,
P = 4.3E-6). Model-based case detection ratios are systemati-
cally larger than notification rates, which is an expected result,
congruent with the fact that a fraction of all diagnosed cases is
not reported to the WHO surveying system.

Regarding confidence intervals, colored areas in Fig. 1 quan-
tify the contributions to global uncertainty that stem from
the different types of input data processed by the model.

These include epidemiological parameters (purple), demo-
graphic data (orange), contact patterns (green), and, most
importantly, WHO-burden estimations (blue). Complementar-
ily, in SI Appendix, Fig. S3, the individual contribution of each
epidemiological parameter is further disclosed in an exhaus-
tive sensitivity analysis. Of all of the different individual sources
of uncertainty that could impact the model’s forecasts, current
WHO estimates for TB burden levels are the only ones that
introduce more than a 15% deviation with respect to central esti-
mates [the uncertainties in total number of TB cases projected in
2000–2050 that are propagated from WHO data span from 36%
(Ethiopia, lower limit) to 92% (Nigeria, upper limit) with respect
to central expectations].

Effects of Populations Aging on Aggregated TB Forecasts. As can be
deduced from the demographic pyramids in SI Appendix, Fig. S1,
all countries analyzed in this work are experiencing population
aging to some extent, consistent with the overall trend that is
forecasted for global human populations during the same period
(19). The four countries selected in Fig. 2 lie at different points of
the demographic transition by the beginning of the period under
analysis (year 2000) and are expected to evolve at different paces
into more or less aged populations by 2050.

To isolate the influence of populations aging on model
outcomes, we compared our model with a simplified version
where demographic evolution is neglected as done in previous
approaches (8, 20, 21) (reduced model 1). In this reduced model
the demographic structures are taken from their initial config-
uration in 2000 and remain static until 2050. Our results show
that the demographic evolution leads to a systematic and sig-
nificant increase in the predicted incidence rates, which is vari-
able in size across countries [Fig. 3A: relative increase in inci-
dence in 2050: full vs. reduced model 1: India, 39.6% (13.9–63.6,
95% CI); Indonesia, 23.4% (7.9–36.5, 95% CI); Ethiopia, 56.0%
(29.2–62.1, 95% CI); Nigeria, 34.5% (9.1–42.9, 95% CI); see also
SI Appendix, Figs. S1 and S4 and Table S2 for equivalent results
in other countries]. Furthermore, the relative variation between
incidence forecasts obtained from the full and the reduced model
by 2050 significantly correlates with the intensity of the aging
shift, as given by the change in the fraction of adults (age >15 y)
in 2000–2050 (Fig. 3B, Pearson correlation r = 0.66, P = 0.02).
This is indeed a natural consequence, since adults are burdened
with higher incidence rates than children, and thus, populations’
aging implies a relative increase of the demographic strata that
is most affected by the disease (adults), in detriment of children,
among whom TB incidence is lower (Fig. 3C).

Next, we built a series of synthetic demographic evolutions
to simulate different scenarios (Fig. 3D). To this end, we used
three pivotal examples extracted from actual cases of popula-
tions featuring young, triangular demographic pyramids (Fig. 3D,
stage i, extracted from Ethiopia in 2000) and aged, inverted pyra-
mids (stage v, extracted from China, 2050), as well as interme-
diate situations (stage iii, extracted from Indonesia, 2000, and
stages ii and iv, built upon linear interpolation). Making use of
these pivotal populations, we built synthetic transitions among
them occurring in the period 2000–2050, which we then inte-
grate in our TB model, in the four countries analyzed, instead
of their own real demographic projections. As we can see in
Fig. 3D, population aging appears associated with increased inci-
dence rates, while eventual transitions toward younger popula-
tions would cause incidence forecasts to decline faster.

To further validate the general character of these results,
we performed a series of robustness tests in scenarios that
go beyond the assumptions made in our modeling framework.
These include comparing full and reduced model 1 under the
assumption of highly biased input data (i.e., burden data depart-
ing significantly from WHO uncertainty estimates; SI Appendix,
Fig. S5), swapping contact structures across continents (SI
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Fig. 3. Effects of demographic dynamics on model forecasts. (A) Incidence rates from 2000–2050 obtained from the full model (red) and reduced model
1 (constant demography, blue). Relative variation in incidence in 2050: full vs. reduced model 1: India, 39.6% (13.9–63.6, 95% CI); Indonesia, 23.4% (7.9–
36.6, 95% CI); Ethiopia, 56.0% (29.2–62.1, 95% CI); Nigeria, 34.5% (9.1–42.9, 95% CI). (B) Relative variation of aggregated incidence at 2050 for the top 12
countries with highest absolute TB burden in 2015 vs. variation in the fraction of adults in the population during the period 2000–2050. In all countries
but Tanzania and The Philippines, in gray, the variations in incidence are significant at a nominal P = 0.05. (C) Age-specific average incidence rate of
TB vs. variation of age-strata population density in 2000–2050. Older individuals are, at the same time, those affected by higher TB incidence rates and
those whose presence in the population is increasing as a result of populations’ aging. (D) Incidence projections for synthetic scenarios of demographic
evolution, including transition toward younger populations (iii–i and iii–ii), static populations (iii remaining constant), and realistic transitions representing
populations’ aging (from iii to iv and from iii to v). Pivotal demographic structures corresponding to stages i, iii, and v are taken from actual examples
(Ethiopia in 2000, Indonesia in 2000, and China in 2050) and normalized to a common total population to rule out hypothetical system volume effects.
Stages ii and iv are obtained upon linear interpolation. In each panel, the demographic evolution of each country is substituted by these synthetic scenarios:
demographic transitions that go from stage iii in 2000 to different ending points in 2050. Colors in incidence series correspond to those in the arrows below,
indicating the respective demographic transitions. Model calibration is repeated in each case.

Appendix, Fig. S6), and interrupting the time evolution of the
fitted parameters after 2015 (Materials and Methods and SI
Appendix, Fig. S7) as well as dispensing with the independent cal-
ibration of the reduced model to rule out the possibility of these
differences arising from technical artifacts during model calibra-
tion (SI Appendix, Fig. S8). Remarkably, under all these alterna-
tive scenarios, the comparison between full and reduced model
remains valid.

Collectively, our results show that ignoring the populations
aging within TB spreading models generates forecasts of aggre-
gated burden that are systematically and significantly lower than
those obtained when this ingredient is taken into account.

Effects of Aging on Age-Specific Burden Levels. Next, we interro-
gated whether the effect of aging on TB burden estimates is only
due to a relative increase of the age strata more hit by the dis-
ease (i.e., adults) or whether, in turn, significant increases in the
incidence rates within age groups can be identified.

In Fig. 4, we show, for one example per continent—India and
Ethiopia—the infection matrices between age groups described
by each model and their difference. The entry (a, a ′) of these
matrices represents the predicted number of infections (in 2050)
from age-group a (infection source) to a ′ (infection target) per
year per million people in group a ′. For both countries, the dif-
ferences between full and reduced model 1 point to a system-
atic underestimation of the number of infection events caused
by adults as a consequence of ignoring demographic dynam-
ics, as well as an overestimation—only appreciable in India—of
infections caused by children during the period under analysis.
Furthermore, once contagions are aggregated across infection
sources within each target age group (Fig. 4, age-specific infec-
tion rates histograms, built as column-wise marginal sums of the
infection matrices), significant differences between age-specific
infection rates arise in both countries, mainly in adult age strata,
where the full model predicts systematically larger incidence
levels than the reduced model 1.
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Fig. 4. Age-to-age infection rate matrices (number of infections from age
group a to age group a′ per year per million people in target age-group
a′) and age-specific infection and incidence rates forecasted in 2050 for
India and Ethiopia (number of contagions or new active TB cases, respec-
tively) per year and million individuals in a given age group. (Left col-
umn) The forecasts derive from the full model. (Center column) The fore-
casts derive from reduced model 1 (constant demography). (Right column)
The difference (full model minus reduced model 1) of these three observ-
ables: infection matrices, age-specific infection rates, and age-specific inci-
dence rates. Differences in incidence and infection rates are shown in
gray when they are not statistically significant. Neglecting demographic
dynamics appears associated to an underestimation of infections caused
by adults in both countries and an overestimation of infections from chil-
dren, mostly in India (infection matrices). At the level of infection/incidence
rates (histograms), the full model produces larger age-specific infection
and incidence rates than the reduced version, more intensely among
adults.

This ultimately translates into an increase in age-specific inci-
dence rates of active TB cases (Fig. 4, age-specific incidence his-
tograms), which can be easily interpreted by attending to the
larger probabilities of developing the most infectious forms of
pulmonary TB that adults experience with respect to children
(8). Adults, whose proportion increases in the system as a result
of considering populations’ aging, constitute not only the part

of the demographic pyramid most hit by the disease, but also
the one that contributes the most to overall spreading. There-
fore, including populations’ aging on model dynamics causes an
increase not just in the aggregated burden levels across all age
groups, but also within age strata.

Effect of Contact Pattern Heterogeneities. After discussing the
impact that demographic dynamics have on model outcomes, we
inspected what the effects are of including contact patterns in
the TB model forecasts, either at the level of aggregated rates
or within age-specific strata. To do so, we built a second reduced
model where the empirical contact matrices estimated from sur-
vey studies conducted in Africa and Asia (22–26) are substituted
by the classical hypothesis of contacts homogeneity (reduced
model 2; see Materials and Methods and SI Appendix, section 2.3
for further details).

In Fig. 5, we represent the infection matrices that derive from
the full and the reduced model 2 for India and Ethiopia in
2050. Clearly, empirical contact patterns reshape the distribution
of contagions among age groups, giving a larger importance to
assortative infections that take place among individuals of sim-
ilar ages—specifically between adolescents and young adults—
while penalizing infections from children to adults or vice versa.
As a result, in this case, the infection and incidence rates of TB
among children are higher in the reduced model, while the full
model predicts more infection and disease burden among adults,
with slight variations between the two countries that are due to
the different contact data used in each case in the full model. In
all of the countries analyzed, the opposite directions of the dif-
ferences between the full and the reduced model that are found
in children vs. adults tend to compensate each other. This results
in similar global incidence rates produced by both models (SI
Appendix, Fig. S9).

Once we showed that empirical contact patterns adapted from
both African and Asian studies produce results that depart sig-
nificantly from those obtained assuming homogeneous mixing,
we interrogated whether the differences between the contact
matrices used in both continents (Fig. 1C, for example) are
significant enough to translate into differences in TB burden
forecasts. To do this we conducted an additional test in one
country—Ethiopia—in which we evaluated the differences in the
TB burden distribution across ages that emanate from using
contact data adapted from African, Asian, and, as a control,
European studies. The results of this analysis are presented in
SI Appendix, Fig. S10, and evidence that the different contact
structures used in this work, derived from different empirical
studies, introduce significant differences in the distribution of
TB incidence. This emphasizes the importance of the estima-
tion of high-quality, country-specific data about contact patterns
for the production of robust epidemic forecasts in age-structured
models.

Finally, we tested whether significant differences regarding
age-specific distributions of incident cases can also be observed
between the full and the reduced model 2 in a series of alter-
native modeling scenarios. The results of these tests (analogous
to those presented in SI Appendix, Figs. S5–S8 for the effects of
demographic dynamics) are shown in SI Appendix, Fig. S11, and
indicate that the effects of empirical contact patterns on TB bur-
den distributions are robustly significant under a wide spectrum
of alternative situations.

Summarizing this part, and despite the reduced effect ob-
served on aggregated rates, we showed that including empirical
contact structures on TB model dynamics reshapes the transmis-
sion patterns among age groups and generates significant differ-
ences in age-specific infection and incidence rates. Additionally,
we showed that considering different matrices estimated from
studies conducted in different geographical areas significantly
impacts the projected burden distributions.
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Fig. 5. Age-to-age infection rate matrices and age-specific infection and incidence rates forecasted in 2050 for India and Ethiopia, from the full model (Left
column) and reduced model 2 (Center column), with the difference (full model minus reduced model 2) (Right column) shown in each case. Differences
in incidence and infection rates are shown in gray when they are not statistically significant; otherwise they have the color associated to the model for
which the rate is higher. When empirical contact patterns are introduced in the model, we observe an increased density of infections close to the diagonal
(i.e., contagions taking place between individuals of similar age) and fewer infections taking place from children to adults or vice versa. At the level of
infection/incidence rates, this translates into an underestimation of burden among adults (and an overestimation among children) associated to assuming
contacts homogeneity in the reduced model.

Discussion
The model presented here was specifically designed to provide
a suitable description of TB transmission dynamics in situations
where demography is evolving at the same time that the epi-
demics unfold. Importantly, we showed that considering current
populations’ aging trends in TB transmission models is followed
by a systematic increase in burden forecasts. This worrisome
result can be understood in terms of the known mechanisms
whereby age affects the transmission dynamics of the disease.
In TB, adults are affected by higher age-specific burden lev-
els than children, and, at the same time, they are more effi-
cient spreaders, given their increased tendency to develop infec-
tious forms of pulmonary TB (8). As a consequence, considering
populations’ aging translates into higher burden forecasts, sim-
ply by increasing the fraction of older individuals with respect
to children.

These results suggest that the decay in TB burden levels that
has been observed in most countries during recent decades might
be harder to sustain than previously anticipated. Under this view,
the socioeconomic and public health improvements that made
possible the recent decline of TB worldwide would need to be
intensified in many countries if the goal of TB eradication is to
be pursued before 2050, at the same time that global aging of the
human populations unfolds.

Furthermore, our model incorporates a data-driven descrip-
tion of the dependency of TB transmission routes with age,
which, we have showed, exerts a significant influence on the fore-
casted age distribution of the disease burden, by reshaping infec-
tion routes. These results will impact the evaluation and com-
parison of novel epidemiological interventions, mostly if they are
conceived to target specific age strata. That is the case of new
preventive vaccines aimed at substituting or improving Bacillus
Calmette–Guérin and their application through age-focused vac-
cination campaigns. In this context, previous works have con-
cluded that a quick immunization of young adults through vac-
cination campaigns focused on adolescents is expected to pro-
duce a faster decline in TB incidence than an alternative strategy
based on newborns’ vaccination (21). Our results would further

reinforce this hypothesis, to the extent that empirical contact pat-
terns are followed by a relative increase of TB among adults with
respect to children. It must be noted, though, that in the deci-
sion of what is the optimal age group to target in a hypothetical
immunization campaign for a new vaccine, at least two additional
aspects have to be considered, namely, whether the new vaccine
is conceived to boost or substitute Bacillus Calmette–Guérin and
whether previous exposure to environmental antigens is expected
to compromise vaccine performance [via “blocking” (28, 29)].
Bacillus Calmette–Guérin substitutes and/or vaccines susceptible
to lose immunogenicity due to exposure to mycobacterial anti-
gens of individuals before vaccination might not be eligible for
adolescent immunization anyway.

Despite all the improvements introduced in this work, our
approach is not exempt from the strong limitations that affect
all TB transmission models operating at this level of resolution.
The outcomes of our model depend on a series of epidemiolog-
ical parameters and initial burden estimates that are subject to
strong sources of uncertainty. Even though we have registered
these uncertainties and propagated them to the final model out-
comes, future improvements and reassessment of these pieces
of input data are generally expected to impact the quantita-
tive outcomes of the model and to further delimitate the uncer-
tainty ranges here reported. As a first example, International
Health authorities insist on the importance of implementing
systematic surveys of TB prevalence in many countries, as a
means toward more accurate TB burden evaluations. Accord-
ingly, they revise and update their burden estimates on a regu-
lar basis, as new data become available, which obviously impacts
model calibration and results. Furthermore, the demand for epi-
demiological studies aimed at obtaining updated estimates of
key epidemiological parameters in current epidemiological set-
tings has been identified as a primary need for the develop-
ment of more reliable TB models (30). Similarly, we have seen
here the importance of obtaining data on contact patterns spe-
cific for each setting, by showing that different contact struc-
tures inferred from studies conducted in different parts of the
world yield significantly different distributions of TB burden
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across age (SI Appendix, Fig. S10). Importantly, the interpre-
tation of these burden distributions of TB across age is hin-
dered by the limited quality of the data available regarding TB
distribution across age, which makes adventurous any compari-
son between model and data. For example, current WHO data
structure splits TB incidence into only two major age groups
(0–14 y vs. 15+ y), with alleged, heavy underreporting biases
among children.

All these considerations, taken together, evidence the need
of further studies, spanning from the implementation of system-
atic surveys that could unlock more accurate burden estimations
(either aggregated or, very importantly, age specific) to the rees-
timation of key epidemiological parameters and contact patterns
in specific epidemic settings.

Despite those limitations, in this work we have shown that
abandoning the simplifications of constant demography and
homogeneous contacts shared by previous models of TB trans-
mission is not just technically feasible, but has significant effects
on model outcomes. Remarkably, TB is not the only disease
where long characteristic timescales and strong age dependen-
cies concur (31, 32), which, despite the specific details of the
transmission dynamics of each case, implies that similar correc-
tions to what we have proposed here for the case of TB might
be pertinent to correct bias of current epidemic models of other
diseases too.

Materials and Methods
TB Natural History. The description of the natural history of the disease that
we use in our model (Fig. 1A) is largely based on previous works by Dye
and colleagues (8, 20), with fewer variations to make it compatible with the
structure of data reported by WHO regarding disease type and treatment
outcomes (27). Specifically, we deal with a compartmental, age-structured
model based on ordinary differential equations, which was implemented
in the programing language C through a fourth-order Runge–Kutta algo-
rithm (time step = 1 d). The model presents two different latency paths to
disease—fast and slow—and six different situations of disease, depending
on its etiology (nonpulmonary, pulmonary smear negative, or pulmonary
smear positive, characterized by an increasing infectiousness) and on treat-
ment status. After disease, we explicitly consider the main treatment out-
comes included in WHO data schemes: treatment completion, default, fail-
ure, and death, as well as natural recovery. The natural history model and
transitions between the different states, including exogenous reinfections,
endogenous reactivations, mother–child transmission, and smear progres-
sion (i.e., the transition from smear negative to positive during an episode
of active TB) (7, 8, 13, 20, 27, 33, 34), are thoroughly detailed in SI Appendix,
Fig. S12.

Age Structure and Demographic Evolution. The transmission dynamics
defined by the natural history described above are executed in parallel in
n = 15 age groups of a span of 5 y each, except for the last one, which
contains all individuals older than 70 y (omitted from Figs. 3 and 4 to facil-
itate visual reading of the scales). The internal transitions between disease
states within age groups are then complemented by transitions between
age groups representing individuals’ aging (Fig. 1B). That defines, per each
age group, an a priori evolution term Ṅo(a, t) that describes the uncorrected
time derivative of the population in age group a, at time t. Then, to make
our demographic structures reproduce the curves reported by the UN Pop-
ulation Division, these empirical data series are fitted to smooth polyno-
mials that are then derived to obtain ṄUN(a, t). Finally, a correction term
∆N(a, t) = ṄUN(a, t)− Ṅo(a, t) is added to the uncorrected evolution in such
a way that the final time derivative of the demographic structure, defined as
Ṅ(a, t) = Ṅo(a, t) + ∆N(a, t), verifies Ṅ(a, t) = ṄUN(a, t) by construction. This,
along with the initialization of the population structures according to the
UN data, ensures that the evolution of the demography reproduces the UN
prospects for all countries and time points. The correction term ∆N(a, t) rep-
resents the population variations that occur for causes foreign to TB: new
births, introduced as susceptible individuals in the first age group, except for
the fraction that undergoes perinatal infection (SI Appendix, section 2.1.10),
as well as TB-unrelated deaths and migrations, which are distributed, for
the rest of the age groups, among the different disease states proportion-
ally to their respective volumes (see SI Appendix, section 2.5 for further
details).

Countries Analyzed. The analyses presented in this paper were performed
in India, Indonesia, Nigeria, and Ethiopia, four countries that were selected
for their assorted geographic contexts, populations’ aging prospects, and
TB burden trends. In SI Appendix, section 1.1, we also analyzed 8 more
countries—Pakistan, South Africa, Bangladesh, Democratic Republic of
Congo, Myanmar, Tanzania, China, and The Philippines (SI Appendix, Fig.
S1)—thus covering the 12 countries affected by the highest levels of TB in
the world, measured in total numbers of incident cases.

Empirical Contact Patterns. Empirical data of age-dependent contact pat-
terns have been adapted from statistical surveys conducted in different
countries in Africa, Asia, and, as a control, Europe. In each case, contact
matrices from studies conducted in different countries of the same con-
tinent [Kenya (22), Zimbabwe (23), and Uganda (24) in Africa; China (25)
and Japan (26) in Asia; and Belgium, Germany, Finland, Great Britain, Italy,
Luxembourg, The Netherlands, and Poland in Europe (14)] have been pro-
cessed according to the following steps.

First, contact matrices from each study ξs(a, a′) are corrected to preserve
symmetry (i.e., to make the total number of contacts between age-groups a
and a′ compatible with survey responses from both groups, conditioned by
the demographic structure of the population of each study) and normalized
to a common scale. Then, matrices corresponding to studies made on the
same continent are averaged, weighted according to the number of partic-
ipants in each study. As a result, we obtain one matrix per region ξreg(a, a′),
which also guarantees that the reports of the contact frequency between a
and a′ are compatible, generating the same number of total contacts, given
the demography of the region (i.e., the union of the countries being aver-
aged at the time of the studies):

Nreg(a)ξreg(a, a′) = Nreg(a′)ξreg(a′, a). [1]

Second, to be able to use these averages in specific settings with different
demography, we interpret the matrices ξreg(a, a′) as the product of two nui-
sance factors: the fraction of individuals in a′ that exist in the population,
Nreg (a′ )

Nreg
, and an auxiliary matrix πreg(a, a′):

ξ
norm
reg =πreg(a, a′)

Nreg(a′)

Nreg
. [2]

Under this interpretation, the auxiliary matrices πreg(a, a′) capture the
“intrinsic” intensity of contacts between groups a and a′, once the effect
of the demography has been removed, except for a common scale factor.

Next, the matrices πreg(a, a′) of each region, as inferred from Eq. 2, are
adapted to the specific demography of the countries analyzed in this work.
Contacts derived from studies conducted in Asia are applied in India and
Indonesia, while contacts proceeding from the African studies are applied
in Nigeria and Ethiopia. (European contacts are used only as a control in SI
Appendix.) This yields the country-specific matrices

ξ̃c(a, a′, t) =πreg(a, a′)
Nc(a′, t)

Nc(t)
[3]

which allow us to incorporate the influence of the evolving demography on
the contact structure of our model automatically. Finally, ξ̃c(a, a′, t) is nor-
malized dynamically at each time step to obtain the final contact matrices
used in our model, denoted as ξc(a, a′, t). These matrices represent, at any
time, the contact frequency that an individual of age a has with individuals
of age a′, relative to the overall frequency of contacts that any individual
has with anyone else in the system (see SI Appendix, sections 2.2 and 2.3 and
Fig. S13 for further details).

Data Flux and Model Calibration. The flux of data is summarized in Fig. 1C.
The model makes use of four different types of inputs, including (i) each
of the 19 literature-based epidemiological parameters (7, 8, 13, 20, 33, 34)
(SI Appendix, Table S14); (ii) TB burden and treatment outcome proportions
[reported at the WHO TB database (27), accessed on November 16, 2016
(SI Appendix, Table S15)]; (iii) contact patterns [estimated from different
survey studies conducted in Africa (22–24) and Asia (25, 26)]; and (iv) demo-
graphic prospects reported in the UN Population Division database (accessed
on November 16, 2016).

All these input data are integrated at the step of model calibration,
whose goal is to reproduce the time series of aggregated incidence and
mortality reported by the WHO for each country in the period 2000–2015.
To achieve this goal, the initial conditions of the system and the values of
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the only two parameters that do not proceed from bibliographic sources (the
scaled infectiousness and the diagnosis rate) are estimated for each country.
This procedure is completed using the Levemberg–Marquard optimization
algorithm implemented in the C library levmar (SI Appendix, section 2.8 and
Fig. S14). These two fitted parameters, which define a scale for the number of
secondary infections caused by each infectious agent, as well as for the num-
ber of cases diagnosed per unit time in each country (SI Appendix, Fig. S15),
are allowed to vary in time, as in previous works (20), to illustrate socioeco-
nomic improvements that might impact the ability of public health systems to
better control the disease and restrain its transmission. Finally, the estimates
of the initial conditions and the fitted parameters are integrated with the
rest of the inputs to produce model forecasts up to 2050.

Uncertainty and Sensitivity Analysis. The uncertainty of each independent
source of input data was propagated to model forecasts. The contribution to
overall uncertainty assigned to each type of input (epidemiological param-
eters, WHO estimates of TB burden and treatment outcomes, contact pat-
terns, and demographic prospects) was calculated by repeating model cal-
ibration and forecast steps in a series of alternative scenarios where each
uncertainty source is shifted sequentially from its expected value to its con-
fidence interval limits. Finally, the deviations from the central estimate that
correspond to these alternative scenarios are aggregated assuming mutual
independence and linearly weighted to generate the final confidence inter-
vals shown in Fig. 2 for aggregated burden projections and in Figs. 4 and
5 for incidence and infection rates within age group. In SI Appendix, sec-
tion 1.3 and Fig. S3, the individual contribution of all single sources of

uncertainty on aggregated incidence and mortality is disclosed, with red
(blue) bars representing changes in burden rates associated to an increase
(decrease) of the parameters/uncertainty sources from the central values. An
important feature of this method is that it allows us to test how sensitive
our forecasts are to inputs’ uncertainty upon model recalibration, instead of
testing the intrinsic sensitivity of the dynamics of the noncalibrated model
to each input (see SI Appendix, section 4, for further details).

Further Specifications. For further model details, including definitions of
model states, explicit enunciation of model differential equations, param-
eter values, and uncertainties, the reader is referred to SI Appendix,
sections 2–4.
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1 Auxiliar results

1.1 Fit and forecast for the top 12 countries with highest absolute TB burden
In the main text we have performed the majority of our analyses in India, Indonesia, Nigeria and Ethiopia,
which were selected for their different initial age-structures, TB burden trends and demographic shifts. In figure
S1, we extend our analysis to the 12 countries affected by the highest absolute TB burden levels in 2015.

As seen in the figure, our model is able to reproduce satisfactorily the observed trends in 2000-2015 in all
cases. In table S1 we show the different values of the fitting rest H for these countries. In all of them, except
China and Philippines, the rest represents the residual sum of squares normalized by the input data uncertainty
of each measure. In the last two examples, where confidence interval limits coincide with central estimates in
some cases, we normalized the squared residuals by the average incidence and mortality rates, respectively (see
section 2.8 for further details).

For a better understanding of the quality of the fit we also show the average relative difference between the
data points and the outcomes obtained with our model once fitted during the fitting window. However, notice
that this is not the magnitude that we optimize during our calibration process, it only gives an interpretation
of the agreement with the data.

Country H Relative Error (%)
India 0.247 1.44

Indonesia 0.0241 0.86
Nigeria 0.0749 1.32
Pakistan 1.02 10.52

South Africa 0.790 4.95
Bangladesh 0.201 3.65

Dem. Rep. Congo 0.213 2.17
Ethiopia 0.671 3.93
Myanmar 1.14 5.87
Tanzania 2.13 7.62
China∗ 0.053 3.98

Philippines∗ 0.19 6.94

Table S1: Values of the rest H and relative error for the fit (averaged in the fitting window) for the countries
fitted in this work. For the ten first countries, the rest is defined as the sum of the squared deviations between
model and data, normalized by the uncertainty of input data in each case (see equation 52). In China and
Philippines (∗, see equation 55) the normalization factors are set up as the average incidence and mortality
during the training period, thus their H values are not in the same scale of the rest of the countries. Further
details are provided in section 2.8

From Figure S1 we see that, in general, incidence and mortality forecasts from the reduced model 1 are
systematically lower than those obtained when the demography’s dynamics is accounted for. These differences
are explored in more detail in section 1.4
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Figure S1: Demographic pyramids in 2000 and 2050, and incidence and mortality projections (2000-2050) for
the 12 countries with the largest number of incident cases in 2015. Red lines correspond to the projections
derived from our full model, and the different colored areas correspond to the uncertainties that stem from the
different input data sources. Blue lines correspond to the predictions made when demography is considered to
be constant (reduced model 1).
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1.2 Case Notifications
The Case Notification Ratio (CNR), i.e., the fraction of all incident cases that a particular Health System
detects and notifies to the WHO-surveillance systems each year, is a fundamental magnitude in the surveillance
and control of TB. As a means of validating our model and its calibration procedure, we interrogated whether
CNR values reported by the WHO in each country correlate to model-based Treatment coverage ratios, (defined
as the fraction of incident cases per year that get diagnosed) despite the fact that these magnitudes are not
considered or compared during the calibration step. In figure S2 we represent the results of this comparison
in 2015, where we see that model-based treatment coverage fractions are strikingly correlated to CNR values
reported by WHO across countries (Pearson correlation excluding Indonesia: r = 0.96, p = 4.3e − 6), which
reinforces the validity of our model.

Importantly, we find that treatment coverage is slightly higher than the CNR in every country, which can
be interpreted in terms of under-reporting of diagnosed cases. The CNR and model-based Treatment Coverage
ratios are closely related, but not fully equivalent, since a fraction of the total TB cases that a country detects
and treats each year goes undetected to the WHO surveillance systems, despite TB notification being mandatory
in most of the countries analyzed. An exception is found in Indonesia, not included in the figure, where our
model predicts a Treatment coverage that is much higher than the CNR (Treatment coverage: 81.5% (CI:
78.3-83.7), CNR: 33% (CI: 23-50)). Precisely in Indonesia, previous studies have pointed out the presence of
significant levels of TB under-reporting to the WHO surveillance systems1, partly related to the fact that in
this country the notification of TB cases is not mandatory.
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1.3 Sensitivity analysis
In figure 2 of the main text, as in figure S1, the contribution to overall uncertainty of each type of input data
is disclosed: epidemiological parameters (purple), contact matrices (green), demographic prospects (orange)
and WHO burden estimates (blue). In figure S3, the contribution of the uncertainty derived from each single
epidemiological parameter is further shown.
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1.4 Relative Differences between Full Model and Reduced Model 1
In Figure S1 we have compared the incidence and mortality rates predicted by the full model, (i.e., considering
demographic changes), and the reduced model 1 (for which the demographic pyramid is considered constant
in time). It still remains pendant to stablish whether the difference between forecasts from the full and the
reduced model are statistically significant or if, instead, their uncertainty may be larger than its magnitude. To
shed light on this question, in figure S4 we represent, for the twelve countries analyzed, the time evolution of the
relative differences between the incidence rates that each model produces. Along with the central estimates for
these relative differences, we represent their correspondent uncertainty intervals, obtained as detailed in section
4.1.
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Figure S4: Relative differences of the incidence rate between the full model and the reduced model 1 in the 12
countries considered.

As we can see in Figure S4, differences between the full model and the reduced model 1 become significant
in most countries, often right after the end of the fitting window (2015). In Table S2 we register the relative
difference between the incidence rates in 2050 as derived from each model, alongside the corresponding 95% con-
fidence intervals and the significance levels. By 2050, differences between models become statistically significant
(at 99% significance level) for all countries except two: Philippines and Tanzania.
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Country Relative Difference (%) Signifcance level
India 39.6 (13.9-63.6) ∗∗

Indonesia 23.4 (7.9-36.5) ∗∗
China 41.9 (14.7-81.1) ∗∗
Nigeria 34.5 (9.1-42.9) ∗∗
Pakistan 61.0 (36.4-71.8) ∗ ∗ ∗

South Africa 33.7 (13.5-40.8) ∗ ∗ ∗
Bangladesh 62.5 (51.1-71.4) ∗ ∗ ∗
Philippines 16.8 (-15.5-74.4) −

Dem. Rep. Congo 37.3 (16.0-47.5) ∗ ∗ ∗
Ethiopia 56.0 (29.2-62.1) ∗ ∗ ∗
Myanmar 50.3 (39.5-69.5) ∗ ∗ ∗
Tanzania 7.4 (-34.1-108.0) −

Table S2: Relative difference in the incidence rate in 2050 between full and reduced model 1 for the 12 countries
with more TB cases in 2015. Significance levels: −: not significant, ∗:95%, ∗∗:99%, ∗ ∗ ∗:99.9%.

1.5 Robustness tests: effect of demographic evolution
During the next section we will study how the main result of the work (i.e., the higher TB burden predicted as a
consequence of considering demography evolution in the model), is robust under a series of alternative modeling
scenarios.

Different burden levels

All the forecasts produced in this work are based on estimates of incidence and mortality reported by the World
Health Organization. These estimates are based on a combination of epidemiological observations and empiric
criteria that are known to be affected by high levels of uncertainty, as reflected by the large confidence intervals
that these data present in many countries, which has been taken into account and incorporated to our model
forecasts. However, the broad nature of these estimates often leads to re-evaluation of methods and values
reported by the WHO in their periodic TB reports, with the result that, in some cases, the burden estimates
vary beyond the range of uncertainty initially assumed as a result of these methodological updates. For example,
the burden estimates that we use for India turned out to be underestimated in previous publications2.

Taking it into account, the question of whether the effects of demographic evolution are robust under wide
variations in the input burden data constitutes a valid concern. To show that those effects are indeed robust
under a wide range of initial burden levels, in figure S5 we have repeated the simulations for the full and reduced
model 1 under alternative scenarios where initial burden levels have been doubled/halved. Checking the relative
difference between models in the incidence rate at 2050 (table S3), we see that it remains statistically significant
(p<0.05) in every case. Thus, even if the data of incidence and mortality are not extremely reliable, and could
be proven to be biased in the future, the need to improve current models and incorporate the evolution of
demography hold as a general conclusion valid for a wide range of initial burden levels.

Country Bias Relative Difference (%) Significance level

Ethiopia Double 52.6 (25.6-59.2) ∗ ∗ ∗
Half 57.9 (31.3-63.8) ∗ ∗ ∗

Nigeria Double 31.1 (9.9-39.1) ∗∗
Half 37.3 (12.8-63.4) ∗∗

India Double 39.0 (13.4-61.2) ∗∗
Half 40.2 (6.5-61.0) ∗

Indonesia Double 21.1 (6.6-33.8) ∗∗
Half 27.9 (11.2-41.8) ∗ ∗ ∗

Table S3: Relative differences for incidence rates in 2050 between full and reduced model 1, as obtained from
biased TB burden estimations (WHO estimates doubled/halved with respect to reported values). Significance
levels: −: not significant, ∗:95%, ∗∗:99%, ∗ ∗ ∗:99.9%.
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Figure S5: Incidence rate forecasts from full (red) and reduced model 1 (blue) under biased input burden
estimates (WHO estimates doubled/halved with respect to reported values).

Different Contact Patterns

During this work, we have implemented two different contact matrices: one adapted from statistical surveys
conducted in Africa, and another one from Asian studies. This supposes an arguable improvement with respect
to the assumption of contacts homogeneity, and even with respect to using the same contact structure in all
countries. However, the available bibliography on empiric contact patterns is still reduced, and we are far away
from an ideal situation where empiric data of comparable quality standards is at hand at a country-specific
level. In this sense, the question of whether the effects of demography evolution might be dependent or not of
the specific contact structure that we use in each country is pertinent, and should be explicitly addressed.

To this end, in figure S6, we show epidemic forecasts derived from the full and the reduced model 1, under
scenarios where the contact structure of each country has been substituted by the other matrices considered
across the paper, including a contact matrix built from the European Polymod study.

Once again, we have obtained the same result: considering the evolution of demography leads to higher
burden prospects, independently of the contact pattern used in our simulations. In table S4 we show the
relative differences between models in the incidence rate in 2050 and the associated significance levels.

Contacts Country Relative difference (%) Significance level

African

Ethiopia 56 (29-62) ∗ ∗ ∗
Nigeria 35 (9-43) ∗∗
India 26 (3-53) ∗

Indonesia 15 (5-24) ∗∗

Asian

Ethiopia 65 (56-76) ∗ ∗ ∗
Nigeria 47 (33-64) ∗ ∗ ∗
India 40 (14-64) ∗∗

Indonesia 23 (8-37) ∗∗

European

Ethiopia 67 (57-77) ∗∗
Nigeria 57 (41-75) ∗ ∗ ∗
India 42 (14-61) ∗∗

Indonesia 28 (12-47) ∗ ∗ ∗

Table S4: Relative differences for incidence rates in 2050 between full and reduced model 1, evaluated using
different contact matrices. Significance levels: −: not significant, ∗:95%, ∗∗:99%, ∗ ∗ ∗:99.9%.
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Figure S6: Incidence Rates forecasted from full (red) vs reduced model 1 (blue), for three different contact
patterns (African, Asian and European).

Different evolution of fitted parameters

The model forecasts presented in this work are produced under the hypothesis that, after the training period
(2000-2015), the time evolution of scaled infectiousness and diagnoses rates will still be governed by the sigmoid
curves described by equations 50 and 51. However, if the pace of variation of these parameters slows down in
future years from our expected trends, the TB burden rates will increase from the forecasts reported. To explore
the behavior of the model in that situation, and re-evaluate the difference between full and reduced model 1,
we have repeated the comparison in alternative scenarios where the pace of variation in the fitted parameters
is slowed down from 2015 a 50% and a 100% from its expected trend.

Country Variation rate reduction Relative difference (%) Significance level

Ethiopia 50% 56.3 (28.9-62.6) ∗ ∗ ∗
100% 57.1 (28.1-64.2) ∗ ∗ ∗

Nigeria 50% 32.5 (10.0-41.1) ∗∗
100% 30.0 (10.6-38.7) ∗∗

India 50% 45.5 (27.5-62.7) ∗ ∗ ∗
100% 51.7 (37.4-64.1) ∗ ∗ ∗

Indonesia 50% 31.3 (16.8-43.6) ∗ ∗ ∗
100% 37.3 (23.6-49.0) ∗ ∗ ∗

Table S5: Relative differences for incidence rates in 2050 between full and reduced model 1, evaluated applying
different reductions on the variation rate of the fitted parameters after 2015. Significance levels: −: not
significant, ∗:95%, ∗∗:99%, ∗ ∗ ∗:99.9%.

The underestimation of TB burden that stems from ignoring demographic evolution is also robust against
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variations in the time-evolution of fitted parameters after 2015. In table S5 we show the relative difference of
the incidence rates in 2050, and we check again that these differences are significant for all alternative scenarios.
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Figure S7: Incidence Rates obtained from the full and the reduced model 1, for 2 alternative scenarios where
variation rates of the fitted parameters is reduced a 50% and a 100% from their expected behaviour from 2015
on.

Effect of Demographic Evolution without re-fitting parameters

Comparisons between the full and -for example- the reduced model 1 across the text are performed upon
independent calibration of each model, to ensure that both reproduce the initial burden trends independently.
However, this procedure does not guarantee that the differences between models arise from the demographic
dynamics itself, since they might be a consequence of the different parameters and initial conditions that are
estimated in each case. To rule out this possibility, we present here a series of simulations where we use the
values for fitted parameters and initial conditions that were estimated upon calibration of the full model, also
in the reduced model 1.

In Figure S8 and Table S6, we see that the reduced model 1 still reproduces significantly lower burden
projections than the full model even though it is not calibrated to reproduce the data before 2015. Note that
the difference with respect to the full model is in many cases amplified.
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Figure S8: Incidence rate series produced by the full model (red), the reduced model 1 (blue, continuous), and
a non-calibrated version of the reduced model 1 which makes use of the same parameters and initial conditions
fitted for the full model (blue, dashed line).

Country Relative Difference in incidence (2050) (%) Signifcance level
Ethiopia 59.7 (31.7-65.5) ∗ ∗ ∗
Nigeria 23.7 (7.4-33.0) ∗∗
India 68.6 (59.4-75.7) ∗ ∗ ∗

Indonesia 50.8 (37.8 - 61.3) ∗ ∗ ∗

Table S6: Relative difference in the incidence rate in 2050 between full and reduced model 1 in Ethiopia,
Nigeria, India and Indonesia, when the reduced model 2 is executed using the same initial conditions and fitted
parameters inferred upon full model calibration (red minus dashed blue lines in figure S8). Significance levels:
−: not significant, ∗:95%, ∗∗:99%, ∗ ∗ ∗:99.9%.

1.6 Effect of Contact Patterns at the aggregated level
In the main text we have shown that the assumption of homogeneous mixing overestimates the burden of TB
in children, and underestimates it among adults. These opposite effects largely cancel each other, which makes
the total effect to shrink when considering the aggregated burden across ages. In figure S9 we represent the
forecasts of incidence and mortality for the models with heterogeneous and homogeneous mixing patterns (full
vs. reduced model 2).
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Figure S9: Predictions of incidence and mortality rates for full (red) versus reduced model 2 (violet) in Ethiopia,
Nigeria, India and Indonesia

As detailed in Table S7, the usage of empiric contact patterns translates into slightly larger burden rates
(relative differences around 10% between the full and the reduced model 2 in 2050). These modest differences
are still significant in Ethiopia, India and Indonesia, despite their relatively small values when compared to the
magnitude of forecasts’ uncertainty. This is not an anomalous behavior, since outcomes from the full and the
reduced model are strongly dependent variables, and the uncertainty is propagated to them in a paired fashion
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(i.e., the same sources of uncertainty affect both models simultaneously), which is considered when comparing
results from model pairs. This allows us to detect significance differences between model behaviors of lower
effect sizes than the characteristic uncertainty of each independent model alone.

Country Relative Difference in incidence (2050) (%) Significance level
Ethiopia 11.1 (7.8-16.6) ∗ ∗ ∗
Nigeria 10.5 (-136-11.7) −
India 11.1 (2.0-16.6) ∗

Indonesia 9.1 (2.6 - 15.1) ∗∗

Table S7: Relative difference in the incidence rate in 2050 between full and reduced model 2 in Ethiopia, Nigeria,
India and Indonesia. Significance levels: −: not significant, ∗:95%, ∗∗:99%, ∗ ∗ ∗:99.9%.

1.7 Effect of Contact Patterns on TB burden distribution across age
In the main text we have discussed how the usage of empiric contact patterns (in opposition to the assumption
of homogeneous mixing) can change the distribution of TB burden among the different age groups. Regarding
this result, it is relevant to note that the contact structures tested in Asian and African countries differ, and
thus, a subsequent question is whether or not these empiric data can be interchanged without further effects on
TB burden distributions.
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Figure S10: (A): Matrix of infection rates, and age-specific rates of infection and incidence (averaged during
the period 2000-2050) corresponding to the use of different contact patterns (African, Asian and European) in
Ethiopia. (B): Pairwise differences. Non-significant differences in infection and incidence rates are represented
in grey, otherwise they are coloured as the predominant contact pattern.
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To answer this question in one particular example, we have chosen one of the countries analyzed, and
generated forecasts based on simulations performed using contacts derived from African surveys data (i.e. the
default), as well as Asian, and European contact structures. The results of these tests, where the average
incidence rate during the period (2000-2050) is reported for each case, are represented in figure S10. In the
figure, upon pair-wise comparison between the forecasts associated to each contact matrix, we see that African
contacts lead to higher burden among the eldest age-groups, while the European contact patterns tend to induce
more infections and TB cases among younger individuals and the matrix used in Asian countries represents an
intermediate situation.

1.8 Robustness tests: effects of contact patterns
We also checked the robustness of considering contacts heterogeneity on the age distribution of TB burden in a
wide spectrum of different modeling scenarios, as we did for the evolution of demography through section 1.5.
In figure S11 we show the age distribution of incidence in 2050 for Ethiopia in 6 scenarios: (A) the base scenario,
(B) the case where the reduced model is not recalibrated; (C) a scenario where TB burden data is doubled,
(D) a scenario where TB burden data is halved; (E) a scenario where time evolution of fitted parameters is
reduced a 50% from 2015, and (F) a scenario where these variation rates are totally arrested from 2015 on. In
all these different settings, the assumption of homogeneous mixing between age groups implies the emergence
of significant differences between age-specific incidence rates with respect to the hypothesis of homogeneous
mixing.
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Figure S11: Age specific incidence rates (2050, Ethiopia), for the complete model, the reduced model 2 and the
difference between them for different scenarios (same as in section 1.5). Non-significant differences in infection
and incidence rates are represented in grey, otherwise they are colored as the predominant model.
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2 Model description: technical details

2.1 Natural history of the disease
Our model of Tuberculosis (TB) spreading is essentially based on previous models by C. Dye and colleagues,3,4
on which new ingredients –heterogeneous contact patterns5 and an explicit coupling of the demographical
evolution and the disease dynamics– have been incorporated. The natural history scheme has also been refined
so as to render it more suited to the definitions by the World Health Organization (WHO), mostly in what
regards to treatment outcomes.

Summarizing, we deal with an ordinary differential-equations based, age structured model of TB in which we
consider a class of unexposed individuals –susceptible–, two different latency paths to disease –fast and slow–
and six different kinds of disease, depending on its aetiology: -non pulmonary, pulmonary (smear positive)
and pulmonary (smear negative)–, and depending on whether it is untreated or treated. After the disease
phase, we explicitly consider the main treatment outcomes contemplated by the WHO data schemes: treatment
completion (or success), default, failure and death.2,6

The model is structured in 15 age groups, 14 of them covering 5 years of age up to 70 years old, and a last
group including all individuals older than 70 years old. When specifying the population of a certain state at a
specific age-group and time we will use the notation X(a, t), where X is the concrete state (see list of disease
states in table S13), t represents the time, and a ∈ [0, 14] is the index representing any of the fifteen age groups.

In the following, we detail the natural history ingredients and transitions between states that we have
considered to build up our model; whose natural history is schematized in figure 1A of the main text and
reproduced here in Figure S12 in more detail.

F
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Deaths by tuberculosis

Natural recovery

SUSCEPTIBLE

LATENT

DISEASE

DISEASE 
UNDER
TREATMENT

TREATMENT 
OUTCOMES

TREATMENT 
FAILURE

PULMONARY DISEASE SMEAR+ PULMONARY DISEASE SMEAR- NON PULMONARY DISEASE 

Figure S12: Natural history of the disease: S: susceptible. L: latent. D: (untreated) disease, T (treated) disease,
R recovered, F: failed recovery . Types of TB considered: p+: Pulmonary Smear-Positive, p-: Pulmonary
Smear-Negative, np: Non-pulmonary. Sub-types of recovery: N: Natural, S: Successful, D: Default (abandon of
treatment). A detailed description of each state is provided through section 2.1.

2.1.1 Primary Tuberculosis infection

We call primary the infection of an individual who was not previously exposed to the bacterium: i.e. individuals
of class S. If we denote the force of infection λ(a, t) as the probability per unit time of any unexposed individual
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of age group a of being infected, then the total number of susceptible individuals getting infected per unit time
will be approximated by λ(a, t)S(a, t). We will address the explicit form of λ(a, t) in section 2.2.

Of these newly infected individuals, a fraction p(a) ∈ [0, 1] will experience a quick development of the disease
after a short course latency period –fast latency Lf in what follows– characterized by the inability of the host’s
immune system to restrain mycobacterial growth. In the rest of cases, newly infected individuals’ immune
system succeeds at containing bacterial proliferation so establishing a host-pathogen dynamic equilibrium that
is characterized by an asymptomatic latency state –slow latency Ls in what follows– that can last for the rest of
the host’s life, or be broken even decades after the infection, typically after an episode of immunosuppression.
In conclusion, the primary infection is described as follows:

• Primary infection (to fast latency): transition from S(a, t) to Lf (a, t):
p(a)λ(a, t)S(a, t) individuals/unit time.

• Primary infection (to slow latency): transition from S(a, t) to Ls(a, t):
(1− p(a))λ(a, t)S(a, t) individuals/unit time.

It is worth remarking that, within our modeling framework, individuals in latency classes do not have TB
disease: they do not develop any disease symptom and they are not infectious at all. Besides, as we will describe
in the following sections, they can suffer ulterior re-infections.

Most of the disease parameters that regulate the fluxes of the Natural History are taken from different
bibliographic sources. Most of them are taken directly from the works by Dye et al.3 and Abu-Raddad et al.4,
that form the base of this work. A list with the values of the different disease parameters can be found in section
3. However, the values of p(a) used in this model deserve further explanation.

The risk of fast progression to disease after infection is highly variable, and strongly depends on the age of
the individual. In the most recent and complete work on this matter, by Marais et al.7, a complex outlook
regarding this parameter is reported, according to which fast-progression risk is higher in newborns, then
decreases in children and increases again during adolescence. This pattern, which is largely accepted in the
current literature8,9,10,11,12, is summarized in Table S8.

Age Risk of disease(%) p(a)

<1 year 50± 10
p(0) = 0.1870 (0.1474− 0.2333)1-2 years 18.50± 5.22

2-5 years 5.5
5-10 years 2.25± 0.25 p(1) = 0.0225± 0.0025
>10 years 15± 5 p(a) = 0.15± 0.05 ∀a > 1

Table S8: p(a) values obtained for our model after adapting the values on the risk of developing disease after
infection from Marais et al.7

The values of Table S8 have been obtained from Marais et al.7 after summing up pulmonary and non-
pulmonary disease risks, and propagating their uncertainties assuming independence. We assign these values as
the parameters p(a). For the case of a = 0, which corresponds to ages from 0 to 5 years, we have three different
values. We construct p(0) as a weighted average:

p(0) = α<1p<1 + α1−2p1−2 + α2−5p2−5 (1)

The actual values of αi would depend on the demographic pyramid up to 5 years of age. However that
information is not available with the precision required here. Therefore we assume two extreme scenarios: a
rectangular pyramid, and a triangular pyramid in which the population of newborns (less than 1 year) doubles
that of 4 years old. The former will give us the lower estimate while the latter provides the upper estimate, and
the center value is estimated as the average, yielding the final value of p(0) = 0.1870 (0.1474− 0.2333).

2.1.2 Progression from latency to (untreated) disease

Either from fast or slow latency, infected individuals can fall sick, progressing to one of the three different
active forms of the disease. In the first of these forms, the non-pulmonary disease Dnp, the pathogen can grow
in disparate parts of the host body, including the nervous system, bones, kidneys and other organs foreign to
lungs. The main characteristic of this kind of TB is that, since the bacilli can not reach the respiratory tract,
the individuals are considered, for the purposes of our model, unable to transmit the disease. However, if the
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pathogens proliferate in the lungs, they can eventually reach the upper respiratory tract making its host able
to transmit the disease. According to the presence of viable bacilli in the sputum, we have the other variants of
TB: pulmonary disease, smear negative Dp−, or pulmonary disease smear positive Dp+; being the latter more
infectious than the former.

This scheme allows six different transitions from the two latency classes to the three untreated TB disease
classes:

• Progression from Lf (a, t) to Dnp(a, t): ωfρnp(a)Lf (a, t) individuals/unit time.

• Progression from Lf (a, t) to Dp−(a, t): ωf (1− ρp+(a)− ρnp(a))Lf (a, t) individuals/unit time.

• Progression from Lf (a, t) to Dp+(a, t): ωfρp+(a)Lf (a, t) individuals/unit time.

• Progression from Ls(a, t) to Dnp(a, t): ωsρnp(a)Ls(a, t) individuals/unit time.

• Progression from Ls(a, t) to Dp−(a, t): ωs (1− ρp+(a)− ρnp(a))Ls(a, t) individuals/unit time.

• Progression from Ls(a, t) to Dp+(a, t): ωsρp+(a)Ls(a, t) individuals/unit time.

where ωf and ωs represent the rates at which fast and slow progression occur, and ρp+(a),ρp−(a) and ρnp(a)
represent the probability to develop each of the three different forms of TB previously described: pulmonary
smear-positive, pulmonary smear-negative and non-pulmonary, respectively. We are using the closure relation
ρp+(a) + ρp−(a) + ρnp(a) = 1, so we have only two independent parameters –i.e., ρp+(a) and ρnp(a)–. These
three probabilities, as the fast progression probability, are age-dependent –children are known to develop more
often non-pulmonary forms of TB–.13

2.1.3 Tuberculosis related deaths

Individuals in D states suffer the effects of the disease in three ways: 1) they develop disease symptoms; 2)
they –except the individuals in Dnp– infect other individuals and 3) some of them die because of the disease.
In the model, we consider that each of the three kinds of disease has a specific mortality rate, so deaths of D
individuals are modeled by introducing three independent fluxes:

• Deaths of untreated non pulmonary disease: µnpDnp(a, t) individuals/unit time.

• Deaths of untreated smear negative pulmonary disease:
µp−Dp−(a, t) individuals/unit time.

• Deaths of untreated smear positive pulmonary disease:
µp+Dp+(a, t) individuals/unit time.

where µnp, µp− and µp+ are the TB-related death rates of Dnp, Dp− and Dp+ individuals, respectively.
Finally, individuals who were treated in the past that did not respond to treatment will ultimately die of

the disease, at the larger rate µp+ regardless of their initial type of disease. Class F is introduced in section
2.1.5 regarding treatment outcomes.

• Deaths of failed recovery individuals: µp+F (a, t) individuals/unit time.

2.1.4 TB diagnosis and treatment

In our model, we consider that an individual belongs to D classes until she receives her diagnosis, moment in
which she joins the corresponding treated TB class T . This corresponds to the following set of three transitions:

• Diagnosis of non pulmonar TB: transition from Dnp(a, t) to Tnp(a, t):
ηd(t)Dnp(a, t) individuals/unit time

• Diagnosis of smear negative pulmonar TB: transition from Dp−(a, t) to Tp−(a, t):
ηd(t)Dp−(a, t) individuals/unit time

• Diagnosis of smear positive pulmonar TB: transition from Dp+(a, t) to Tp+(a, t):
d(t)Dp+(a, t) individuals/unit time
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Thus, te diagnosis rate d(t) defines the pace at which undetected individuals in D classes get diagnosed.
These diagnosis rates are country specific, as they depend, among other factors, on the capabilities of Public
Health systems. Furthermore, the average time needed for TB diagnosis is known to vary depending on the type
of disease, partly because the diagnosis criteria used in each type are different too. In our model η represents
the variation for the diagnosis rate that is observed for the detection and diagnosis of non smear positive types
of disease.

Our estimations for the parameter η are based upon the case detection ratios χ for each type of disease
(Dp+, Dp− and Dnp) reported by Abu-Raddad and colleagues.4 The case detection ratio is commonly defined
as the ratio of the number of notified cases of TB to the number of incident TB cases in a given year. In
Abu-Raddad et al.4, estimations for the case detection ratios are provided for each type of disease and WHO
region: χp+, χp− and χnp; and it turns out that according to that source χnp ' χp− in all regions. Therefore,
if we compare the case detection ratios of non smear positive and smear positive types of the disease we can
obtain an estimation for the parameter η for each region:

η =
χp−
χp+

(
' χnp
χp+

)
(2)

The errors have been estimated by considering a 15% as the typical uncertainty of both χp+ and χp−, as was
done in Abu-Raddad et al.4 for several parameters of the Natural History. We obtain the Confidence Interval
for η by propagating errors.

In the table S9 the values of η calculated are listed for the different regions defined by the WHO.

Regions χp+ χp− η

AFRH 0.51 0.43 0.843 (0.664-1.022)
EMR 0.45 0.53 1.178 (0.928-1.428)
SEAR 0.64 0.51 0.797 (0.628-0.966)
WPR 0.78 0.50 0.641 (0.505-0.777)

Table S9: Values of χp+ and χp− considered in Abu-Raddad et al.4 and the values of η for each region. In
this work we have studied 5 countries from the AFRH region (Nigeria, South Africa, Democratic Republic of
the Congo, Ethiopia and Tanzania), 1 from EMR (Pakistan), 4 from SEAR (India, Indonesia, Bangladesh and
Myanmar) and 2 from WPR (China and Philippines).

In this work we have studied 5 countries from the AFRH region (Nigeria, South Africa, Democratic Republic
of the Congo, Ethiopia and Tanzania), 1 from EMR (Pakistan), 4 from SEAR (India, Indonesia, Bangladesh
and Myanmar) and 2 from WPR (China and Philippines).

The diagnosis rate is allowed to vary in time, as it has been done in other previous models (see section 2.8
for details).

2.1.5 Treatment outcomes

Right after diagnosis, and supposing that antibiotic treatments are available immediately, sick individuals start
their treatment. In terms of our model, individuals under current treatment lie into Tnp, Tp− or Tp+, depending
on the type of disease they receive treatment to be cured from. During their stage at T classes, either by the
effect of treatment or by the common isolation measures that use to follow a TB diagnosis, individuals are not
considered to be able to spread the disease.

Typical antibiotic series last six months; let Ψ be the rate associated to the inverse of that treatment time.
Once the treatment is completed, different results are possible, and the WHO classifies these treatment outcomes
into four main groups:

• Success: the treatment has been completed and bacilli are not present in the sputum.

• Default: the treatment has been abandoned before completion.

• Death.

• Failure: bacilli persist -or appear- in the sputum at the end of the treatment (month five or later).
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Therefore, let us denote as fp+S , fp+D , fp+F and fp+µ , the fraction of pulmonary, smear positive TB sick
individuals who finish their treatments belonging respectively to success, default, failure and death groups, as
they are available in the WHO database.6 We will have the closure relationship fp+S +fp+D +fp+F +fp+µ = 1 that
allows us to substitute fp+S = 1− (fp+D +fp+F +fp+µ ) so as to work just with these three fractions of unsuccessful
treatment outcomes. For pulmonary smear negative and non pulmonary TB cases, the WHO database does
not differentiate the fractions of treatment outcomes,6 and so we have fp−S , fp−D , fp−F and fp−µ standing for the
fraction of individuals undertaking each outcome both from pulmonary smear negative and from non pulmonary
classes of TB. Again, we have the closure relationship fp−S + fp−D + fp−F + fp−µ = 1 that yields the substitution
fp−S = 1− (fp−D + fp−F + fpµ). The values of the fractions of non successful outcomes have been averaged during
the fitting time window and their values are provided in table S15, where confidence intervals correspond to
two typical deviations of a multinomial distribution.

Therefore, we can enumerate all the possible treatment outcomes from all the different kinds of patients to
get:

• Early treatment abandon (default) of smear positive TB: transition from Tp+(a, t) to Rp+D(a, t):
Ψfp+D Tp+(a, t) individuals/unit time.

• Failed treatment completion of smear positive TB: transition from Tp+(a, t) to F (a, t):
Ψfp+F Tp+(a, t) individuals/unit time.

• Death during treatment of smear positive TB:
Ψfp+µ Tp+(a, t) individuals/unit time.

• Successful treatment completion of smear positive TB: transition from Tp+(a, t) to Rp+S(a, t):
Ψ(1− fp+D − fp+F − fp+µ )Tp+(a, t) individuals/unit time.

• Early treatment abandon (default) of smear negative TB: transition from Tp−(a, t) to Rp−D(a, t):
Ψfp−D Tp−(a, t) individuals/unit time.

• Failed treatment completion of smear negative TB: transition from Tp−(a, t) to F (a, t):
Ψfp−F Tp−(a, t) individuals/unit time.

• Death during treatment of smear negative TB:
Ψfp−µ Tp−(a, t) individuals/unit time.

• Successful treatment completion of smear negative TB: transition from Tp−(a, t) to Rp−S(a, t):
Ψ(1− fp−D − fp−F − fp−µ )Tp−(a, t) individuals/unit time.

• Early treatment abandon (default) of non pulmonary TB: transition from Tnp(a, t) to RnpD(a, t):
Ψfp−D Tnp(a, t) individuals/unit time.

• Failed treatment completion of non pulmonary TB: transition from Tnp(a, t) to F (a, t):
Ψfp−F Tnp(a, t) individuals/unit time.

• Death during treatment of non pulmonary TB:
Ψfp−µ Tnp(a, t) individuals/unit time.

• Successful treatment completion of non pulmonary TB: transition from Tnp(a, t) to RnpS(a, t):
Ψ(1− fp−D − fp−F − fp−µ )Tnp(a, t) individuals/unit time.

where the different Rxy variables stand for the groups of individuals that have completed their treatment for
disease of type x (pulmonary smear positive p+ or negative, p−, or non-pulmonary np) with an outcome denoted
by y (Success, S, default D and fail F ). We have also used the subindex µ when naming the fraction of deaths
that occurs during treatment, but this outcome does not have a recovery class associated –these individuals die
and leave the system–.

2.1.6 Natural recovery

In certain occasions, natural recovery from TB is possible without medical intervention or treatment.4 This
is modeled by introducing three new classes of naturally recovered individuals in the first branch: RnpN (a, t),
Rp−N (a, t) and Rp+N (a, t). Undiagnosed and sick individuals of each type of TB join these new classes after
natural recovery as follows:
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• Natural recovery of non pulmonary TB: transition from Dnp(a, t) to RnpN (a, t):
νDnp(a, t) individuals/unit time.

• Natural recovery of smear negative pulmonary TB: transition from Dp−(a, t) to Rp−N (a, t):
νDp−(a, t) individuals/unit time.

• Natural recovery of smear positive pulmonary TB: transition from Dp+(a, t) to Rp+N (a, t):
νDp+(a, t) individuals/unit time.

where ν is the rate of natural recovery.

2.1.7 Endogenous reactivations after treatment or natural recovery

Nonetheless, naturally recovered individuals may experience an endogenous reactivation of the disease, since
generally speaking disease recovery does not suppose the total elimination of the bacilli from the host organism.14
If we denote by rN the endogenous relapse rate of naturally recovered individuals we have:

• Endogenous reactivation of non pulmonary TB after natural recovery: transition from RnpN (a, t) to
Dnp(a, t): rNRnpN (a, t) individuals/unit time.

• Endogenous reactivation of smear negative TB after natural recovery: transition from Rp−N (a, t) to
Dp−(a, t): rNRp−N (a, t) individuals/unit time.

• Endogenous reactivation of smear positive TB after natural recovery: transition from Rp+N (a, t) to
Dp+(a, t): rNRp+N (a, t) individuals/unit time.

Furthermore, endogenous relapse is also possible after antibiotic treatment. Once the treatment has finished
the probabilities of experiencing an endogenous reactivation of the disease are related to the treatment outcome
of the initial disease episode.

Individuals who have experienced a failed treatment –F (a, t) class–, regardless of the type of TB that they
originally had, are considered as infectious as smear positive untreated individuals (because they present bacilli
in the sputum at the end of the treatment) and their mortality risk due to TB is also the same of a smear
positive untreated individual.

Within our modeling framework, ulterior re-diagnosis, re-infections or re-treatments for F (a, t) individuals
are not considered, and so, once an individual joins this class, her dynamics does not depend any more on the
type of disease she previously had. However, the fact that these individuals die at a high rate (µp+) prevents
this compartment of highly infectious individuals to become a dead-end in the disease dynamics and becomes
a hidden driver of our results: in our simulations, the weight of this class among the totality of infectious
individuals never surpasses 10%.

Recovered individuals after successful completion of treatment are considered functionally cured –i.e. they
neither present a specific mortality risk due to TB nor they are infectious. However, they may undergo ulterior
endogenous reactivations of the disease, caused by the proliferation of the same bacilli of the original episode, if
these were not completely eliminated from the host organism. In that case, we have the following transitions:

• Endogenous reactivation of non pulmonary TB after successful treatment: transition from RnpS(a, t) to
Dnp(a, t): rSRnpS(a, t) individuals/unit time.

• Endogenous reactivation of smear negative TB after successful treatment: transition from Rp−S(a, t) to
Dp−(a, t): rSRp−S(a, t) individuals/unit time.

• Endogenous reactivation of smear positive TB after successful treatment: transition from Rp+S(a, t) to
Dp+(a, t): rSRp+S(a, t) individuals/unit time.

where rS is the endogenous relapse rate after successful treatment completion. In what regards its estimation,
there exist many epidemiological studies based on the surveillance of cohorts of TB patients after treatment
completion during defined follow-up periods, which are aimed at determining the relapse rates, as well as the
main risk factors associated to its increment.

In the exhaustive meta-analysis by Korenromp and colleagues,14 an ensemble of such studies is considered.
In that work, it is reported that, in all the works re-analized, an average of 4.2% (3.1−5.3 c.i.) of HIV uninfected
subjects have a TB relapse episode during the follow-up period of the study, of which, 77% (63 − 91 C.I.) is
due to endogenous reactivation. This means that the fraction of population that do not develop a relapse is the
96.77% (95.73− 97.80).
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Another relevant result of the meta-analysis is the finding that the risk for TB relapse after treatment
decreases with time. This can be seen from the fact that the relapse rates calculated in the different studies
considered tend to be lower as the follow-up period of the trials is higher. This would imply that most patients
that experiment a relapse after treatment, do it within the first years after the initial episode.

This second result motivates the assumption that the risk of developing a relapse during the follow-up period
of an epidemic surveillance study (100 − 96.77 = 3.23% of the population) can be associated to the total risk
of developing such relapse during the entire life of an individual. Hence, our task is to calculate an annual
risk of relapse such that, when applied over the whole period of life expectancy of a recovered individual, it
yields the same 3.23% of relapse cases. To this end, we estimate that the average life expectancy of individuals
within classes R is equal to 35 years, estimation that follows from assuming, as a first order approximation,
that infection and further recovery are events that occur uniformly in all ages.

Therefore, and since we are assuming that the relapse rate is constant in age and time, we have an exponential
decay describing the relapse of RxS individuals (Rp+S , Rp−S or RnpS) of the form: RxS(t) ∼ e−rSt. Thus, after
a period t = 35 years assimilable to the average life expectancy of an individual that has already entered into
class R, from an initial fraction of RxS = 1, there remains RxS(t = 35) ∼ e−rS35 = 0.9677. This calculation
yields the actual value of rS used in this work, rS = 9.4 · 10−4 1/year (6.4 · 10−4 − 1.3 · 10−3). The confidence
interval of rS has been obtained after the propagation of the fraction of not relapsing population as the main
source of uncertainty.

Finally, recovered individuals after treatment default are considered partially infectious, although it is as-
sumed that they do not have an explicit mortality risk due to TB. However, their endogenous relapse risk is
higher, which can be modeled by introducing a parameter rD > rS as follows:

• Endogenous reactivation of non pulmonary TB after treatment default: transition from RnpD(a, t) to
Dnp(a, t): rDRnpD(a, t) individuals/unit time.

• Endogenous reactivation of smear negative TB after treatment default: transition from Rp−D(a, t) to
Dp−(a, t): rDRp−D(a, t) individuals/unit time.

• Endogenous reactivation of smear positive TB after treatment default: transition from Rp+D(a, t) to
Dp+(a, t): rDRp+D(a, t) individuals/unit time.

rD stands for the endogenous relapse rate after treatment default, which has been calculated as the product of
rS and the relative risk factor for endogenous relapse related to treatment non-compliance, 4.02 (1.79-9.01 c.i.),
taken from Picon et al.15, which yields the final value of rD = 3.8 · 10−3 1/year (1.4 · 10−3 − 8.6 · 10−3).

2.1.8 Exogenous reinfection of infected individuals

Individuals belonging to classes Ls and R have been previously exposed to TB bacilli, although they are not
sick while remaining within those classes. In addition, their rates of progression to disease due to eventual
endogenous reactivations are slower than the rate ωf of fast progression to disease from Lf . For these reasons,
an eventual exogenous re-infection of an individual in classes Ls or R may cause a faster transition to disease,
if fast progression takes place, than endogenous reactivation. This can be modeled by introducing the following
transitions:

• Exogenous re-infection of Ls(a, t) individuals yielding fast progression: from Ls(a, t) to Lf (a, t):
p(a)qλ(a, t)Ls(a, t) individuals/unit time.

• Exogenous re-infection of RnpN (a, t) individuals yielding fast progression: from RnpN (a, t) to Lf (a, t):
p(a)qλ(a, t)RnpN (a, t) individuals/unit time.

• Exogenous re-infection of Rp−N (a, t) individuals yielding fast progression: from Rp−N (a, t) to Lf (a, t):
p(a)qλ(a, t)Rp−N (a, t) individuals/unit time.

• Exogenous re-infection of Rp+N (a, t) individuals yielding fast progression: from Rp+N (a, t) to Lf (a, t):
p(a)qλ(a, t)Rp+N (a, t) individuals/unit time.

• Exogenous re-infection of RnpS(a, t) individuals yielding fast progression: from RnpS(a, t) to Lf (a, t):
p(a)qλ(a, t)RnpS(a, t) individuals/unit time.

• Exogenous re-infection of Rp−S(a, t) individuals yielding fast progression: from Rp−S(a, t) to Lf (a, t):
p(a)qλ(a, t)Rp−S(a, t) individuals/unit time.
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• Exogenous re-infection of Rp+S(a, t) individuals yielding fast progression: from Rp+S(a, t) to Lf (a, t):
p(a)qλ(a, t)Rp+S(a, t) individuals/unit time.

• Exogenous re-infection of RnpD(a, t) individuals yielding fast progression: from RnpD(a, t) to Lf (a, t):
p(a)qλ(a, t)RnpD(a, t) individuals/unit time.

• Exogenous re-infection of Rp−D(a, t) individuals yielding fast progression: from Rp−D(a, t) to Lf (a, t):
p(a)qλ(a, t)Rp−D(a, t) individuals/unit time.

• Exogenous re-infection of Rp+D(a, t) individuals yielding fast progression: from Rp+D(a, t) to Lf (a, t):
p(a)qλ(a, t)Rp+D(a, t) individuals/unit time.

where q stands for the variation factor of the infection risk of individuals who have been infected in a previous
episode.

On the other hand, if fast progression after the secondary infection does not take place, even if the initial
state of the individual is one of the possible R states, the rule is that no transition must be considered from these
states to Ls, because an endogenous reactivation from those initial states to disease is always more likely than
from Ls, as either rN , rS or rD are greater than the rate of transition from slow latency to disease ωs. However,
we will count these potential transitions when accounting for the total number of infections that occurred in
our system.

In summary, re-infection has no effect on our model unless it is followed by fast progression. Nevertheless,
we note that the nature of TB infection could be more complicated regarding the influence of repeated exposure:
For instance, in Lee et al.16 it is described how the progression to TB disease increases with the number of
exposures.

2.1.9 Smear progression

In certain cases, it is documented that patients of smear negative pulmonary TB progress to smear positive
,3 even after being treated. In order to describe this phenomenon, we introduce the smear progression by
considering the following two transitions:

• Smear progression of untreated individuals: transition from Dp−(a, t) to Dp+(a, t):
θDp−(a, t) individuals/unit time.

• Smear progression of individuals under treatment: transition from Tp−(a, t) to Tp+(a, t):
θTp−(a, t) individuals/unit time.

where θ stands for the smear progression rate.

2.1.10 Mother-child infection transmission

We model the possibility of mother-child transmission right after birth (peri-natal infection). While most of the
newborns that enter the system at each time step ∆N (a = 0, t) (see section 2.5 to see how we estimate it) will
enter the system as susceptiible, a fraction of them will do it directly to the latency classes. This reflects the
known fact that a fraction mc of sick women who are pregnant transmits the disease to the children within the
first weeks of their lives17. The density of infected newborns depends then on the fraction of mothers who have
the disease and are able to transmit it at time step t, which leads to the question of what is the relative risk
of transmitting the pathogen to the offspring for women in each of the infectious classes included in our model.
In this work we considered that the total number of newborn infections is proportional to md(t):

md(t) =

∑a=7
a=3Dp+(a, t) +Dp−(a, t) +Dnp(a, t) +Rp+D(a, t) +Rp−D(a, t) +RnpD(a, t) + F (a, t)∑a=7

a=3N(a, t)
(3)

that represents the fraction of infected individuals present in the age groups a ∈ [3, 7] associated to women
fertility (between 15 and 40 years old), regardless of their relative infectiousnesses. Therefore, this yields
following the distribution of the ∆N (a = 0, t) newborns among S and L classes:

• Birth of S(0, t) individuals (susceptible newborns): (1−mcmd(t))∆N (a = 0, t)

• Birth of Lf (0, t) individuals (infected after birth who develops fast progression): mcmd(t)p(0)∆N (a = 0, t)

• Birth of Ls(0, t) individuals (infected after birth who develops slow progression):
mcmd(t)(1− p(0))∆N (a = 0, t)
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2.2 Force of infection
The force of infection λ(a, t) is, as it has been said before in section 2.1.1, the rate at which infection occurs at
time step t for a susceptible individual in age-group a. This magnitude is calculated according to the following
expression:

λ(a, t) = β(t)
∑
a′

ξc(a, a
′, t)Υ(a′, t) (4)

being Υ(a′, t) the weighted density of all the infectious individuals within age-group a′ at time step t:

Υ(a′, t) =
1

N(a′, t)
(Dp+(a′, t) + F (a′, t) + φp−Dp−(a′, t) + φDRp+D(a′, t) + φp−φDRp−D) (5)

where N(a, t) is the total population of age a, φp− ∈ [0, 1] is the coefficient of infectiousness reduction of smear
negative sick individuals with respect to smear positive ones, and φD ∈ [0, 1] the infectiousness reduction of
individuals who have defaulted the treatment, (Rp+D individuals with respect to smear positive, undiagnosed
individuals Dp+). Diagnosed patients of smear negative TB who failed their treatment, have an infectiousness
reduction that is the product of the two terms φp−φD.

On the other hand, ξc(a, a′, t) represents the relative contact frequency that an individual of age a has with
individuals of age a′ at time t, with respect to the overall average of contacts that an individual has per unit
time with anyone else, which implies that the following average:

< kc >=

∑
a,a′ ξc(a, a

′, t)Nc(a, t)

Nc(t)
(6)

is equal to 1 in any time t and country c (see section 2.3 to see how ξc(a, a
′, t) is built to fulfill this property).

Considering this normalization property of the contact matrix ξc(a, a′, t), the scaled infectiousness β(t) provides
a global scale for the overall frequency of contacts per unit time that are actually occurring in the system, as
well as for how likely an infection is to occur upon one of those contacts. Formally, this can be interpreted
considering that β is the product of two indistinguishable nuisance parameters: the average connectivity of the
network of contacts (i.e. the average number of epidemiologically relevant interactions that any individual has
per unit time) and the "intrinsic" infectiousness, (i.e. the probability of a contagion to occur upon one of those
contacts, if established between an infectious and a susceptible individual). Next, in section 2.3, we explain how
we obtain the contact matrix ξc(a, a′, t).

2.3 Contact patterns
It has been previously shown that abandoning the hypothesis of homogeneous age-mixing in favor of data-
driven approaches based on empiric data5,18 improves the descriptive capabilities of epidemiological models of
influenza-like diseases.19,20 Similarly, in a study by Guzzetta and collaborators,21 the importance of considering
heterogeneous contacts in the modeling of TB was assessed in the context of Individual Based Modeling (IBM).
Despite these first attempts, in mathematical TB modeling at the level of broad populations (i.e. countries or
international macro-regions) the assumption of homogeneous mixing across age-strata still constitutes one of
the most pervasive simplifying hypothesis.

In this work, we abandon this hypothesis and make use of country-wise contact matrices among different
age groups, denoted as ξc(a, a′, t). The matrix elements ξc(a, a′, t) represent the relative contact frequency that
an individual of age a has with individuals of age a′ at time t, with respect to the overall average of contacts
that an individual has per unit time with anyone else. For the computation of the contact matrices used in
our model, we have collected different survey studies from several countries: Kenya22, Zimbabwe23, Uganda24,
China25, Japan26 and Europe (8 countries)5. With the first three studies we build a contact matrix that
will be adapted to be used in African countries (Nigeria, South Africa, Democratic Republic of the Congo,
Ethiopia and Tanzania), while the next two are used to build an Asian Contact Matrix (to be adapted to
India, Indonesia, China, Pakistan, Bangladesh, Philippines and Myanmar). Finally, the surveys performed in
the Polymod project, that corresponds to 8 European countries will be aggregated into an European Contact
Matrix that we will use to check the robustness of our results against different contact structures (used only in
the SI Appendix, sections 1.5 and 1.7).

The temporal dependence of the contact matrices ξc(a, a′, t), which will be explained in detail, comes from
considering that contact structures among age-groups are conditioned not only by cultural and socio-economic
differences between countries, but also by the underlying demographies of the populations under analysis. As a
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consequence, we hypothesize that, if the demography of a population changes over time, the contact structure
among different age-strata will change too. In this section, we explain in detail the approach that we follow to
formalize our description of contact patterns within our model, around the aforementioned premises.

As a first pre-processing step, contact matrices reported in each study are adapted to the age-structure of
15 age groups used in this article. After this process we obtain a contact matrix for each study, that we will
call ξs(a, a′), where s is an index for the particular study.

The matrices ξs(a, a′) originally represent the number of contacts per unit time that an individual in age-
group a reports, in average, towards individuals in age group a′, during a survey. This means that ξs(a, a′) is
not expected to be symmetrical due to the different number of people in each age group: they would be expected
to be symmetrical only for a perfectly rectangular demographic pyramid where each age group has exactly the
same population. However, they should ideally fulfill the following relationship:

ξs(a, a
′)Ns(a) ' ξs(a′, a)Ns(a

′) (7)

where Ns(a) is the population of age a in the setting s (i.e. the specific country at the moment the survey
took place). This means that the number of contacts per unit time between a and a′, inferred from the reports
from both age groups in the survey should not differ substantially. Obviously, these two quantities are not
expected to be exactly the same, since the reports from both age groups cannot be, in general, expected to
concur exactly. Thus, the next step in the computation of the contact matrices consists of correcting ξs(a, a′)
in order to recover the mentioned symmetry exactly:

ξsim.
s (a, a′) =

1

Ns(a)

ξc(a, a
′)Ns(a)ns(a) + ξs(a

′, a)Ns(a
′)ns(a

′)

ns(a) + ns(a′)
(8)

where ns(a) is the number of participants of age a recruited for the study s, and Ns(a) the number of
individuals in that age group in the entire population. In other words, we estimate the total number of contacts
between age-groups a and a′ as an average of the number of contacts that emanates from the reports of both age
groups, weighted according to the number of participants in each group; and correct the entries of the matrix
ξsim.
s (a, a′) and ξsim.

s (a′, a) so they agree around that number of total contacts.
After this process, we have a set of matrices ξsim.

s (a, a′) for each study that are compatible with the symmetry
ξsim.
s (a, a′)Ns(a) = ξsim.

s (a′, a)Ns(a
′), which describe the number of contacts that an individual of age a has with

people of age a′ during a certain unit of time defined in the particular study. However, those matrices are difficult
to compare across studies, since the definition of “contact” being used in each of them differs. To deal with
this limitation, we normalize these matrices, so the mean degree of the matrix, defined as the average number
of contacts per unit time of an individual, regardless of her age or that of her contacts, equals 1 (and so, they
reflect the relative intensity of contacts between age groups a and a′ rather than their absolute frequency):

ξsim.,norm.
s (a, a′) =

ξsims (a, a′)

< ksim
s >

(9)

where < ksim
s > is the mean degree of ξsim.

s (a, a′):

< ksim
s >=

∑
a,a′ ξ

sim
s (a, a′)Ns(a)∑
aNs(a)

(10)

Once we have the normalized and “symmetry-compatible” matrices for each study, we perform a weighted
sum per continent (using number of participants in each study as weights) to obtain the correspondent regional
matrices, that we will call ξreg(a, a′) (for Africa, Asia and Europe, respectively, see figure S13A). We then use
the dispersion between studies to define the uncertainty associated to the contact patterns (which we will be
propagating to the final matrices and finally, to model outcomes).

The set of continent-wise matrices ξreg(a, a′) only fulfill the symmetry of contacts in the setting of reference
where they have been obtained, defined as the union of the countries being averaged in each case. In order to
adapt these matrices to each of the 12 countries where we apply our model, we need to adapt them to their
particular demographic pyramids and to their temporal evolution trends.

To obtain this correction, we interpret the matrices ξreg(a, a′) as the product of two nuisance factors: the
fraction of individuals in a′ that exist in the population: Nreg(a′)

Nreg
, and an auxiliary matrix πreg(a, a′). Under

this view, the matrix πreg(a, a′), denoted as intrinsic connectivity matrix (figure S13B), represents the contact
structure of each region (Africa, Asia and Europe), once the effect of the demographic structures of the places
where the initial studies were performed has been removed. πreg(a, a′) is obtained as follows:
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πreg(a, a
′) = ξreg(a, a

′)
Nreg

Nreg(a′)
(11)

where Nreg =
∑
aNreg(a). Finally, these intrinsic matrices πreg(a, a′) from which the influence of the popula-

tions where the studies were performed have been removed are transformed according to the demography to be
described:

ξ̃c(a, a
′, t) = πreg(a, a

′)
Nc(a

′, t)

Nc(t)
(12)

which would constitute a first approximation to the evolution of the contact structure of any country c at
any time t. However, one of the features of this matrix is that, by construction, and depending on the time
evolution of the demographic structure being considered, as defined by Nc(a′, t) in each age-group, it can present,
in general, an average contact intensity that changes across time as a consequence of the demographic evolution.
In this sense, although it is debatable whether the average connectedness of a population as a whole should
depend or not on the demographic changes that it is experiencing, we have decided to rule out this possibility by
normalizing these matrices at each time-step (figure S13 C). By doing so, we ensure that the matrices have an
average connectivity equal to 1 at every moment, meaning that their entry (a, a′) always represent the relative
frequency at which individuals of age-group a contact those in age-group a′, compared to the overall contact
frequency of any individual of the system with anyone else:

ξc(a, a
′, t) =

ξ̃c(a, a
′, t)

< k̃c(t) >
=

πreg(a, a
′)Nc(a

′, t)Nc(t)∑
a,a′ πreg(a, a

′)Nc(a′, t)Nc(a, t)
(13)

The reasons supporting this final choice are two-fold.
On the one hand, the main objective that we pursue in this work regarding contact patterns is to quantify the

influence that they exert on model forecasts, by comparing the outcomes of our model to a case where contacts
are considered to be homogeneous. Since, in the latter case, the mean contact intensity is trivially constant
over time, to use heterogeneous contact matrices that share this same property constitutes a conservative choice
that makes the comparison between the full and the reduced model easier to interpret.

On the other hand, this procedure implies that the average contact intensity in both cases is not just time-
invariant, but equal to 1 in both cases. This makes the scaled infectiousness parameter β(t) to be comparable
between the full and the reduced model, thus providing an overall scale for the average capability of an infected
individual to propagate the disease in both cases.

Under this formulation, the relative ratio between the contact intensities of a group a towards two different
groups a′ and a′′ is represented by the fraction ξc(a, a′, t)/ξc(a, a′′, t), which measures how likely are individuals
of age a to interact with people of age a′ in comparison to age a′′. The temporal evolution of this ratio only
depends on the relative volumes of the target age groups as time goes by, as specified in the following equation:

ξc(a, a
′, t1)

ξc(a, a′′, t1)
/
ξc(a, a

′, t0)

ξc(a, a′′, t0)
=
N(a′, t1)

N(a′′, t1)
/
N(a′, t0)

N(a′′, t0)
(14)

In the figure S13, we summarize this process, showing the contact patterns obtained at each step, normalized
to a common scale in each region. As it can be observed, the corrections explained above designed to capture
the influence of the different demographic structures across countries and time introduce slight variations when
compared to the differences observed between the three geographical areas.

Regarding the reduced model 2, the hypothesis, much simpler, consists of assuming that the probability for
two individuals to interact is the same, which means that the contact frequency that an individual in group a
has with people in group a′ only depends on the frequency of the target group in the population:

ξRM2
c (a, a′, t) = N(a′, t)/N(t) (15)

in such a way that the average number of contacts that an individual of any age has per unit time is always
and everywhere equal to 1. Thus, the general contact intensity is modulated by β(t) in the same way as in the
full model.

In the tables S10,S11 and S12, we specify the values of the πreg(a, a′) matrices for the three macro-regions
considered (Africa, Asia and Europe). Notice that these are not directly the contact patterns considered, but
they have to be corrected by the demography of the individual setting (equations 12 and 13).
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Figure S13: Empiric contact patterns in evolving demographies, as number of contacts that an individual in age-
group a (x-axis) has with individuals in age group a′ (y-axis) (A) Region-wise contact matrices ξreg(a, a′) derived
from weighted averages from studies completed in each continent. (B) Intrinsic contact matrices πreg(a, a′),
capturing the different contact intensities among age-groups once the effects of demographic variability have
been removed. (Normalized, in order to display 〈k〉 = 1 in the figure to facilitate comparison to the rest of the
matrices) (C): Country-wise, time dependent contact matrices used in this study for the four countries analyzed
in the main text ξc(a, a′, t), obtained after adapting the intrinsic contact matrices πreg(a, a′) to the specific
demographic setup of each country at each time. European contacts are showed when applied to Ethiopia and
India, to illustrate that our approach can be used to test the effect of alien contact structures obtained in any
setting (these are only used in the SI Appendix, for the analyses presented in figures S6 and S10)
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0-5 5-10 10-15 15-20 20-25 25-30 30-35 35-40 40-45 45-50 50-55 55-60 60-65 65-70 +70
0-5 1.25 1.50 1.33 1.01 0.93 1.02 1.04 0.93 0.92 0.90 1.03 1.15 1.22 1.15 0.82
5-10 1.50 4.47 4.01 2.08 1.24 1.28 1.33 1.45 1.50 1.67 1.71 1.54 1.72 1.77 1.37
10-15 1.33 4.01 5.94 3.18 1.77 1.33 1.42 1.79 1.83 1.95 1.97 1.77 1.97 2.72 2.26
15-20 1.01 2.08 3.18 5.53 2.84 1.74 1.77 2.20 2.23 2.41 2.45 2.32 2.49 2.90 2.40
20-25 0.93 1.24 1.77 2.84 2.89 1.95 1.88 2.16 2.24 2.53 2.74 2.58 2.83 3.09 2.47
25-30 1.02 1.28 1.33 1.74 1.95 2.31 2.16 2.16 2.27 2.27 2.38 2.20 2.44 2.59 1.85
30-35 1.04 1.33 1.42 1.77 1.88 2.16 2.13 2.25 2.35 2.28 2.35 2.18 2.48 2.48 1.65
35-40 0.93 1.45 1.79 2.20 2.16 2.16 2.25 2.77 2.88 3.01 3.02 2.62 2.87 2.89 1.98
40-45 0.92 1.50 1.83 2.23 2.24 2.27 2.35 2.88 3.14 3.34 3.20 2.70 2.94 3.07 2.20
45-50 0.90 1.67 1.95 2.41 2.53 2.27 2.28 3.01 3.34 4.04 3.86 3.22 3.51 3.80 2.95
50-55 1.03 1.71 1.97 2.45 2.74 2.38 2.35 3.02 3.20 3.86 3.96 3.42 3.76 3.92 3.17
55-60 1.15 1.54 1.78 2.32 2.58 2.20 2.18 2.62 2.70 3.22 3.42 3.82 4.26 3.76 3.07
60-65 1.22 1.72 1.97 2.49 2.83 2.44 2.48 2.87 2.94 3.51 3.76 4.26 4.89 4.33 3.77
65-70 1.15 1.77 2.72 2.90 3.09 2.59 2.48 2.89 3.07 3.80 3.92 3.76 4.33 5.06 4.64
+70 0.82 1.37 2.26 2.40 2.47 1.85 1.65 1.98 2.20 2.95 3.17 3.07 3.77 4.64 3.55

Table S10: Matrix πreg(a, a′) corresponding to Africa

0-5 5-10 10-15 15-20 20-25 25-30 30-35 35-40 40-45 45-50 50-55 55-60 60-65 65-70 +70
0-5 13.89 0.87 0.34 0.31 1.41 1.19 1.88 1.99 1.11 1.18 0.94 0.90 0.97 0.70 0.90
5-10 0.87 13.36 4.60 4.17 0.75 0.62 1.23 1.31 1.35 1.44 0.78 0.76 0.68 0.50 0.50
10-15 0.34 4.60 25.52 5.70 0.77 0.68 1.07 1.09 1.61 1.72 0.90 0.90 0.80 0.59 0.64
15-20 0.31 4.17 5.70 13.23 1.08 1.04 0.90 0.89 1.24 1.32 1.25 1.29 0.86 0.65 1.41
20-25 1.41 0.75 0.77 1.08 3.26 3.18 2.17 2.19 2.20 2.30 2.65 2.67 2.36 1.81 2.13
25-30 1.19 0.62 0.68 1.04 3.18 2.49 1.52 1.63 1.78 1.90 2.14 2.01 1.76 1.29 1.40
30-35 1.88 1.23 1.07 0.90 2.17 1.52 1.92 2.14 1.98 2.13 1.74 1.56 1.46 0.98 0.88
35-40 1.99 1.31 1.09 0.89 2.19 1.63 2.14 2.31 2.06 2.20 1.82 1.67 1.56 1.05 0.98
40-45 1.11 1.35 1.61 1.24 2.20 1.78 1.98 2.06 2.52 2.70 2.16 2.07 1.77 1.25 1.53
45-50 1.18 1.44 1.72 1.32 2.30 1.90 2.13 2.20 2.70 2.87 2.30 2.23 1.88 1.38 1.69
50-55 0.94 0.78 0.90 1.25 2.65 2.14 1.74 1.82 2.16 2.30 2.99 2.87 2.29 1.82 3.04
55-60 0.90 0.76 0.90 1.29 2.67 2.01 1.56 1.67 2.07 2.23 2.87 2.68 2.09 1.61 2.57
60-65 0.97 0.68 0.80 0.86 2.36 1.76 1.46 1.56 1.77 1.88 2.29 2.09 5.99 5.60 3.13
65-70 0.70 0.50 0.59 0.65 1.81 1.29 0.98 1.05 1.25 1.38 1.82 1.61 5.60 6.07 3.48
+70 0.90 0.50 0.64 1.41 2.13 1.40 0.88 0.98 1.53 1.69 3.04 2.57 3.13 3.48 6.16

Table S11: Matrix πreg(a, a′) corresponding to Asia

0-5 5-10 10-15 15-20 20-25 25-30 30-35 35-40 40-45 45-50 50-55 55-60 60-65 65-70 +70
0-5 13.85 7.09 2.32 1.29 1.56 3.18 4.64 3.66 2.26 1.62 1.71 1.54 1.94 1.12 0.65
5-10 7.09 32.05 5.93 1.86 0.98 2.14 3.42 4.35 3.30 1.65 1.57 1.27 1.50 1.03 0.73
10-15 2.32 5.93 39.26 6.06 1.08 0.75 1.67 3.02 4.12 2.48 1.38 0.81 0.88 0.81 0.99
15-20 1.29 1.86 6.06 32.18 4.67 1.47 0.91 1.42 2.78 3.23 1.60 0.94 0.51 0.43 0.73
20-25 1.56 0.98 1.08 4.67 9.04 3.78 1.84 1.07 1.31 1.79 1.58 0.97 0.51 0.33 0.36
25-30 3.18 2.14 0.75 1.47 3.78 5.44 2.59 1.41 1.14 1.38 1.80 1.33 0.98 0.42 0.41
30-35 4.64 3.42 1.67 0.91 1.84 2.59 3.64 2.51 1.60 1.46 1.26 1.30 1.28 0.56 0.40
35-40 3.66 4.35 3.02 1.42 1.07 1.41 2.51 3.74 2.16 1.43 1.12 0.96 1.17 0.81 0.55
40-45 2.26 3.30 4.12 2.78 1.31 1.14 1.60 2.16 3.35 2.46 1.52 0.93 1.15 0.77 0.74
45-50 1.62 1.65 2.48 3.23 1.79 1.38 1.46 1.43 2.46 3.13 2.10 1.30 0.86 0.59 0.90
50-55 1.71 1.57 1.38 1.60 1.58 1.80 1.26 1.12 1.52 2.10 3.22 2.26 1.29 0.63 0.81
55-60 1.54 1.27 0.81 0.94 0.97 1.33 1.30 0.96 0.93 1.30 2.26 3.46 2.00 0.99 0.65
60-65 1.94 1.50 0.88 0.51 0.51 0.98 1.28 1.17 1.15 0.86 1.29 2.00 3.67 1.85 1.04
65-70 1.12 1.03 0.81 0.43 0.33 0.42 0.56 0.81 0.77 0.59 0.63 0.99 1.85 1.84 1.13
+70 0.65 0.73 0.99 0.73 0.36 0.41 0.40 0.55 0.74 0.90 0.81 0.65 1.04 1.13 1.20

Table S12: Matrix πreg(a, a′) corresponding to Europe

2.4 Aging
The model considers 15 different age groups. Each of these groups comprises an age interval of ∆t = 5 years,
except the last one that corresponds to individuals older that 70 years old. The relevance of such an age
structured description of the system comes from the fact that some of the most relevant dynamical parameters
take distinct values for each age group. To account for the aging of individuals as time goes by -and thus the
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evolution of their age a- we introduce on the system of equations the following aging transitions, that stands
for the promotion of individuals within whatever dynamical class of the model X(a, t) to the next age class
X(a+ 1, t).

• Aging of individuals belonging to class X(a, t), transition from X(a, t) to X(a+ 1, t): X(a, t)/∆t individ-
uals/unit time.

Obviously, each class X(a, t) receives people from X(a − 1, t) and sends out people to X(a + 1, t), except
X(0, t), that only receives newborns and X(14, t), for which no further aging occurs.

2.5 Demographic evolution
Once all the transitions among the different dynamical states of the system have been described, as well as the
aging fluxes, it is necessary to provide a global description of the evolution of the demographic structure, given
by the evolution of the set of variables N(a, t), which are defined as the total number of individuals within age
group a in the population, no matter their states regarding TB dynamics:

N(a, t) = S(a, t) + Lf (a, t) + Ls(a, t) +Dp+(a, t) +Dp−(a, t) +Dnp(a, t) + F (a, t) (16)
+Tp+(a, t) + Tp−(a, t) + Tnp(a, t) +Rp+N (a, t) +Rp−N (a, t) +RnpN (a, t)

+Rp+S(a, t) +Rp−S(a, t) +RnpS(a, t) +Rp+D(a, t) +Rp−D(a, t) +RnpD(a, t)

where the evolution of N(a, t) -in addition to aging and death by TB– is subject to other driving forces related
to aspects like vegetative variation of population –births and non-TB deaths– as well as migration. In order to
provide a description of the temporal evolution of the demographic structure, previous models have turned to
different simplifying hypotheses to describe the system.

One of them consists of forcing the system to preserve, at any time, the total number of individuals N (t):
N (t) =

∑
aN(a, t) by imposing that N (t) = N (t = 0)∀(t).4 A more sophisticated alternative, adopted in Dye

et al.3, is based on imposing that the system preserves the initial age structure of the population by making
that, in each age group: N(a, t) = N(a, t = to)∀(t). Our approach, however, is based on assuming that the
temporal evolution of the variables N(a, t) follows the predictions of the United Nations Population Division,
available at its on-line databases: N(a, t) = NUN (a, t).27 From figure 2 in the main text and figure S1, we can
see that population aging is a common feature in virtually all the countries under study.

In the following sub-sections, we detail these two different schemes (constant versus evolving demographies,
implemented in the reduced model 1 and the full model, respectively), whose influence on model forecasts are
analyzed in the paper.

Reduced model 1: Constant demographic structure

A first approach consists of imposing that the demographic structure of the population has to remain constant
during the dynamical process: i.e. N(a, t) = N(a, to)∀t. As mentioned earlier, this is what is done in some
previous works,3 where the dynamical states indicate densities rather than numbers of individuals. In this case,
the force of infection is calculated as an average of the densities of sick individuals in each age group, weighted
by the number of individuals within each age class of the demographic structure. In this way, Dye et al.3
provide a means for calculating infection and mortality rates that takes into account the initial demographic
structure of the population, and these rates can be eventually transformed into numbers by using data about
the evolution of the total population under consideration.

In order to provide an equivalent description in the context of our model –where states represent number of
individuals rather than densities–, we start by calculating the variation of population due to TB and aging in
each age group:

Ṅo(a, t) = ((1 − δ(a))N(a− 1, t) −N(a, t))/∆t (17)
−µp+(Dp+(a, t) + F (a, t)) − µp−Dp−(a, t) − µnpDnp(a, t)

−Ψfp+µ Tp+(a, t) − Ψfp−µ (Tp−(a, t) + Tnp(a, t))

being δ(a) the Dirac delta function. In order to preserve the number of individuals within each age group at
any moment, we simply introduce a term ∆N (a, t) that is intended to balance Ṅo(a, t) within each age group:
∆N (a, t) = −Ṅo(a, t), yielding:
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Ṅ(a, t) = Ṅo(a, t) + ∆N (a, t) = 0 ∀(a, t) (18)

The key question is how to distribute these correction terms ∆N (a, t) between the different dynamical states
X(a, t) within age-class a. These increments have to be distributed between X(a, t) dynamical states keeping
the relative volume of these states within the age group so as not to introduce external, undesired biases on
states’ densities. If we call ∆X(a, t) the fraction of ∆N (a, t) that is introduced in state X(a, t), we have:

∆X(a, t) = ∆N (a, t)
X(a, t)

N(a, t)
(19)

and obviously:

∆N (a, t) =
∑
X

∆X(a, t) (20)

This scheme has the advantage, with respect to consider (as in Abu-Raddad et al.4), that N (t) = N (t =
0)∀(t), that, at least, the structure of the population is controlled. However, as in that case, population growth
is not explicitly considered, and further information about population volume is required so as to scale rates
into numbers, as done in Dye et al.3 Additionally, the main problem with this approach comes from the fact
that no variation of the age structure of the population can be considered by proceeding this way, which might
introduce significant biases from current demographic forecasts, specially when studying populations subjected
to strong processes of demographic aging.

Full model: Evolving demography according to an external constraint

Starting from the last scheme for modeling the demographic evolution, it is easy to obtain a final approach
that explicitly considers not only the influence of the age structure into the spreading, but also the population
growth and the variation of the age structure itself. To this end, it is necessary to know the actual –or projected–
evolution of the demographic structure of the population during the period under analysis. In our case, we are
modeling TB dynamics from 2000 to 2050, and the official annual projections for the population per age group
of any country are available, up to 2100, at the UN population division database.27 Thus, from the UN database
we obtain the actual annual population series expected by the UN for the populations at each age group, which
can be trivially fitted to a continuous function NUN (a, t), from which we can derive an analytical derivative
ṄUN (a, t) at any moment. For the purpose of this work, a polynomial of degree 10 is more than enough for
building the continuous function NUN (a, t) from the annual data series from UN Database during the period
under study.27

So, if we recover the variation of population due to TB and aging in each age group Ṅo(a, t), derived from
equation 17, we can also introduce a term ∆N (a, t), aimed, this time, not at balancing Ṅo(a, t), but at forcing
the total temporal evolution of N(a, t) to follow precisely the function NUN (a, t). This is achieved by defining,
at each time step:

∆N (a, t) = ṄUN (a, t)− Ṅo(a, t) (21)

and introducing those ∆N (a, t) terms into the system dynamics, thus having: Ṅ(a, t) = Ṅo(a, t) + ∆N (a, t) =
ṄUN (a, t). Finally, provided that the initial conditions have been properly set, N(a, t = 0) = NUN (a, t = 0) ∀a,
this yields the desired behavior for the demographic structure, i.e., N(a, t) = NUN (a, t) ∀(a, t).

Again, the ∆N (a, t) forcing terms have to be introduced into the different dynamical states within the same
age class preserving their proportions, at least in the age groups a > 0:

∆X(a, t) = ∆N (a, t)
X(a, t)

N(a, t)
∀a > 0 (22)

and, under this assumption, the terms ∆N (a, t) for a > 0, represent the variations of volume of the age group a
due to causes other than TB infection and individuals aging. This would include all deaths not caused by TB,
and migration, assuming that these factors affect all the dynamical classes regardless of their state with respect
to TB infection.

The assumption that migration occurs independently of the disease state is arguable, and, in principle, is
hard to anticipate whether TB patients (or latent TB carriers) are more or less prune to migrate than susceptible
individuals. However, without specific data that could motivate an informed alternative, we decided to take as
the null hypothesis that all individuals are equally prune to migrate regardless of their TB status. Nonetheless,
migratory fluxes do not represent the major cause of population variation in any of the twelve countries studied,
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where the migratory balance (immigrants-emigrants) supposes less than 25% of the vegetative growth (less than
10% in 8 over 12 countries, all but South Africa, China, Myanmar and Bangladesh) during the period under
study. Thus, if the actual reality is more complex than our assumptions, and migrants and not migrants do
present different TB prevalence levels, the effects of these differences should be bound by the reduced role of
migration in the total variation of the populations under study.

The situation is different for the first age class a = 0. In the first age group, the birth of new individuals is
the main cause of population variation. For these reasons, and once observed that ∆N (a = 0, t) > 0 ∀t in all
countries under consideration, for simplicity ∆N (a = 0, t) is directly associated to the number of newborns and
introduced in the S, Ls and Lf states, as described in section 2.1.10.

The uncertainty of UN demographic projections is also reported at UN Database,27 which allows us to recon-
struct the demographic structures at the extremes of the confidence interval (95%) N low

UN (a, t) and Nhigh
UN (a, t).

Therefore, its influence on the model forecasts is also measurable, as we will discuss in the section devoted to
uncertainty and sensitivity analysis (section 4).

2.6 Ordinary differential equations system
The following system of differential equations describes the evolution of the different dynamical states of the
model:

Ṡ(a, t) = −λ(a, t)S(a, t) − ((1 − δ(a− 14))S(a, t) − (1 − δ(a))S(a− 1, t))/τ (23)
+ δ(a)(1 −mcmd(t))∆N (a, t) + (1 − δ(a))∆N (a, t)S(a, t)/N(a, t)

L̇s(a, t) = (1 − p(a))λ(a, t)S(a, t) − p(a)qλ(a, t)Ls(a, t) − ωsLs(a, t) + δ(a)mcmd(t)(1 − p(0))∆N (a, t) (24)
− ((1 − δ(a− 14))Ls(a, t) − (1 − δ(a))Ls(a− 1, t))/τ + (1 − δ(a))∆N (a, t)Ls(a, t)/N(a, t)

L̇f (a, t) = p(a)λ(a, t)S(a, t) − ωfLf (a, t) + p(a)qλ(a, t)(Ls(a, t) +Rp+N (a, t) +Rp−N (a, t) +RnpN (a, t)) (25)
+ p(a)qλ(a, t)(Rp+S(a, t) +Rp−S(a, t) +RnpS(a, t) +Rp+D(a, t) +Rp−D(a, t) +RnpD(a, t))

− ((1 − δ(a− 14))Lf (a, t) − (1 − δ(a))Lf (a− 1, t))/τ + δ(a)mcmd(t)p(0)∆N (a, t)

+ (1 − δ(a))∆N (a, t)Lf (a, t)/N(a, t)

Ḋp+(a, t) = ωfρp+(a)Lf (a, t) + ωsρp+(a)Ls(a, t) − µp+Dp+(a, t) − d(t)Dp+(a, t) (26)
− νDp+(a, t) + rNRp+N (a, t) + rSRp+S(a, t) + rDRp+D(a, t) + θDp−(a, t)

− ((1 − δ(a− 14))Dp+(a, t) − (1 − δ(a))Dp+(a− 1, t))/τ + (1 − δ(a))∆N (a, t)Dp+(a, t)/N(a, t)

Ḋp−(a, t) = ωf (1 − ρp+(a) − ρnp(a))Lf (a, t) + ωs(1 − ρp+(a) − ρnp(a))Ls(a, t) − µp−Dp−(a, t) (27)
− ηd(t)Dp−(a, t) − νDp−(a, t) + rNRp−N (a, t) + rSRp−S(a, t) + rDRp−D(a, t) − θDp−(a, t)

− ((1 − δ(a− 14))Dp−(a, t) − (1 − δ(a))Dp−(a− 1, t))/τ + (1 − δ(a))∆N (a, t)Dp−(a, t)/N(a, t)

Ḋnp(a, t) = ωfρnp(a)Lf (a, t) + ωsρnp(a)Ls(a, t) − µnpDnp(a, t) − ηd(t)Dnp(a, t) (28)
− νDnp(a, t) + rNRnpN (a, t) + rSRnpS(a, t) + rDRnpD(a, t)

− ((1 − δ(a− 14))Dnp(a, t) − (1 − δ(a))Dnp(a− 1, t))/τ + (1 − δ(a))∆N (a, t)Dnp(a, t)/N(a, t)

Ṫp+(a, t) = d(t)Dp+(a, t) − ΨTp+(a, t) + θTp−(a, t) (29)
− ((1 − δ(a− 14))Tp+(a, t) − (1 − δ(a))Tp+(a− 1, t))/τ + (1 − δ(a))∆N (a, t)Tp+(a, t)/N(a, t)

Ṫp−(a, t) = ηd(t)Dp−(a, t) − ΨTp−(a, t) − θTp−(a, t) (30)
− ((1 − δ(a− 14))Tp−(a, t) − (1 − δ(a))Tp−(a− 1, t))/τ + (1 − δ(a))∆N (a, t)Tp−(a, t)/N(a, t)

Ṫnp(a, t) = ηd(t)Dnp(a, t) − ΨTnp(a, t) (31)
− ((1 − δ(a− 14))Tnp(a, t) − (1 − δ(a))Tnp(a− 1, t))/τ + (1 − δ(a))∆N (a, t)Tnp(a, t)/N(a, t)
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Ḟ (a, t) = Ψfp+F Tp+(a, t) + Ψfp−F (Tp−(a, t) + Tnp(a, t)) − µp+F (a, t) (32)
− ((1 − δ(a− 14))F (a, t) − (1 − δ(a))F (a− 1, t))/τ + (1 − δ(a))∆N (a, t)F (a, t)/N(a, t)

Ṙp+N (a, t) = νDp+(a, t) − rNRp+N (a, t) − p(a)qλ(a, t)Rp+N (a, t) (33)
− ((1 − δ(a− 14))Rp+N (a, t) − (1 − δ(a))Rp+N (a− 1, t))/τ + (1 − δ(a))∆N (a, t)Rp+N (a, t)/N(a, t)

Ṙp−N (a, t) = νDp−(a, t) − rNRp−N (a, t) − p(a)qλ(a, t)Rp−N (a, t) (34)
− ((1 − δ(a− 14))Rp−N (a, t) − (1 − δ(a))Rp−N (a− 1, t))/τ + (1 − δ(a))∆N (a, t)Rp−N (a, t)/N(a, t)

ṘnpN (a, t) = νDnp(a, t) − rNRnpN (a, t) − p(a)qλ(a, t)RnpN (a, t) (35)
− ((1 − δ(a− 14))RnpN (a, t) − (1 − δ(a))RnpN (a− 1, t))/τ + (1 − δ(a))∆N (a, t)RnpN (a, t)/N(a, t)

Ṙp+S(a, t) = Ψ(1 − fp+D − fp+F − fp+µ )Tp+(a, t) − rSRp+S(a, t) − p(a)qλ(a, t)Rp+S(a, t) (36)
− ((1 − δ(a− 14))Rp+S(a, t) − (1 − δ(a))Rp+S(a− 1, t))/τ + (1 − δ(a))∆N (a, t)Rp+S(a, t)/N(a, t)

Ṙp−S(a, t) = Ψ(1 − fp−D − fp−F − fp−µ )Tp−(a, t) − rSRp−S(a, t) − p(a)qλ(a, t)Rp−S(a, t) (37)
− ((1 − δ(a− 14))Rp−S(a, t) − (1 − δ(a))Rp−S(a− 1, t))/τ + (1 − δ(a))∆N (a, t)Rp−S(a, t)/N(a, t)

ṘnpS(a, t) = Ψ(1 − fp−D − fp−F − fp−µ )Tnp(a, t) − rSRnpS(a, t) − p(a)qλ(a, t)RnpS(a, t) (38)
− ((1 − δ(a− 14))RnpS(a, t) − (1 − δ(a))RnpS(a− 1, t))/τ + (1 − δ(a))∆N (a, t)RnpS(a, t)/N(a, t)

Ṙp+D(a, t) = Ψfp+D Tp+(a, t) − rDRp+D(a, t) − p(a)qλ(a, t)Rp+D(a, t) (39)
− ((1 − δ(a− 14))Rp+D(a, t) − (1 − δ(a))Rp+D(a− 1, t))/τ + (1 − δ(a))∆N (a, t)Rp+D(a, t)/N(a, t)

Ṙp−D(a, t) = Ψfp−D Tp−(a, t) − rDRp−D(a, t) − p(a)qλ(a, t)Rp−D(a, t) (40)
− ((1 − δ(a− 14))Rp−D(a, t) − (1 − δ(a))Rp−D(a− 1, t))/τ + (1 − δ(a))∆N (a, t)Rp−D(a, t)/N(a, t)

ṘnpD(a, t) = Ψfp−D Tnp(a, t) − rDRnpD(a, t) − p(a)qλ(a, t)RnpD(a, t) (41)
− ((1 − δ(a− 14))RnpD(a, t) − (1 − δ(a))RnpD(a− 1, t))/τ + (1 − δ(a))∆N (a, t)RnpD(a, t)/N(a, t)

where δ(a) stands for the Dirac delta function (δ(x = 0) = 1 and δ(x 6= 0) = 0). There are three quantities
that depend on time: the force of infection λ(a, t), the diagnosis rate d(t) and the correction terms ∆N (a, t),
standing for any demographic variation in the population due to causes foreign to TB and aging.

It is interesting to define two additional variables, fully dependent on the dynamical state of the system,
such as the accumulated number of TB incident cases in each age group, from the beginning of the period under
analysis I(a, t), and the accumulated number of TB deaths equally defined M(a, t). Their respective temporal
evolution reads as follows:

İ(a, t) = ωfLf (a, t) + ωsLs(a, t) + rN (Rp+N (a, t) +Rp−N (a, t) +RnpN (a, t)) (42)
+rS (Rp+S(a, t) +Rp−S(a, t) +RnpS(a, t)) + rD (Rp+D(a, t) +Rp−D(a, t) +RnpD(a, t))

Ṁ(a, t) = µp+(Dp+(a, t) + F (a, t)) + µp−Dp−(a, t) + µnpDnp(a, t) (43)
+Ψfp+µ Tp+(a, t) + Ψfp−µ (Tp−(a, t) + Tnp(a, t))

From these variables, once summed over all age groups, we explicitly get the incidence rate as the number
of new cases per year i(t), and the annual mortality rate as the total number of TB deaths per year m(t), both
normalized by 1000000 individuals:
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i(t) =
100000 ·

∑
a (I(a, t+ 1)− I(a, t))

(N (t+ 1) +N (t))/2
(44)

m(t) =
100000 ·

∑
a (M(a, t+ 1)−M(a, t))

(N (t+ 1) +N (t))/2
(45)

The sums of I(a, t) and M(a, t) over all ages at the end of the period under study provide the total number
of cases and deaths due to the disease during the whole period.

2.7 Initial conditions setup
Once we have detailed the forces driving the time evolution of our state variables, it remains to be clarified
how the initial conditions ~X(a, t = 0) for each possible state ~Xi are set. This problem is traditionally solved
just by considering that, at the beginning of the period analyzed, the system is at a stationary state that is
reached after fixing the temporal evolution of the time dependent parameters to their values at the beginning
of the period: d(t = 0) = d0 and β(t = 0) = β0, as well as the demographic boundary conditions N(a, t) =
N(a, 0), where N(a, t) represents the populations at each age group.3,4 We denote those stationary levels
as ~X∗(a, d0, β0, N(a, 0)), so we have Ẋ∗i = 0 ∀(i, t); provided that all the time-dependent parameters and
demographic forcing terms are frozen in their initial values at t = to. Accordingly, the stationary vector ~X∗ is
used to set up the initial conditions of the system: ~X(a, 0) = ~X∗.

In this work, we do not impose that the system must be at stationarity at t = 0. Instead, we calculate the
stationary values of all states ~X∗(a, d0, β0, ~N(a, 0)), and we set up an initial state that can correspond either to
higher or lower levels of disease prevalence. In order to map these possible variations on TB burden from the
stationary vector of states ~X∗, we distinguish the unexposed state, S(a, t), from the rest of the states joined by
individuals that have been infected with the bacillus at least once. Finally, we define a parameter ς ∈ [−1, 1],
such that, when ς < 0, the initial conditions correspond to a state with lower TB burden than that in the
stationary state:

X(a, t = 0) = (1 + ς)X∗(a, d0, β0, ~N(a, 0)) ∀(X 6= S) (46)

S(a, t = 0) = S∗(a, d0, β0, ~N(a, 0))

1− ς
∑
X 6=S

X∗(a, d0, β0, ~N(a, 0))

 (47)

Instead, if ς > 0, the initial conditions are set to higher burden levels from stationarity:

S(a, t = 0) = S∗(a, d0, β0, ~N(a, 0))(1− ς) (48)

X(a, t = 0) = X∗(a, d0, β0, ~N(a, 0))

(
1 +

ςS∗(a, d0, β0, ~N(a, 0))∑
X 6=S X

∗(a, d0, β0, ~N(a, 0))

)
(49)

Taking it to their extreme values, ς = −1 would mean that every individual is at the susceptible state
(pathogen-free situation) while ς = 1 would mean that all the population is infected with the bacterium. ς = 0
would imply that the initial conditions of the system are those from the stationary state. The previous definition
ensures that, at any moment, the sum of individuals in all the states provides the desired population volumes
regardless of how far, or in which sense ς shifts the initial condition from the stationary state defined by the
vector ~X∗.

2.8 Model calibration procedure
The calibration procedure of our model implies the estimation, for each country, of the initial conditions of the
system, parametrized through the ς coordinate, along with the diagnosis rate d(t) and the scaled infectiousness
β(t) that make the model reproduce the TB burden mortality and incidence rates reported by the WHO from
to = 2000 to tF = 2015. Both parameters d(t) and β(t) are fitted to half-sigmoid-like curves, as follows:

32



d(t) =


d0 + (dsup − d0)t(t+ 1

d1
)−1 if d1 > 0

d0 if d1 = 0
d0 − d0t(t− 1

d1
)−1 if d1 < 0

(50)

β(t) =


β0 + β0t

(
t+ 1

β1

)−1

β1 > 0

β0 β1 = 0

β0 − β0t
(
t− 1

β1

)−1

β1 < 0

(51)

Therefore, the diagnosis rate and the scaled infectiousness are, each of them, parameterized by two quantities
(d0, d1 and β0, β1). While d0 and β0 give the value of the diagnosis rate and scaled infectiousness at the beginning
of the temporal window (i.e. year 2000), d1 and β1 define their evolution, either increasing or decreasing with
time depending on the sign of d1 and β1. In case of a decreasing evolution, both the diagnosis rate and the scaled
infectiousness are bounded to be greater than zero, while in the case of increasing evolution the upper bounds
are 2 × β0 for the scaled infectiousness and dsup = 12.17y−1 for the diagnosis rate. This latter upper bound
corresponds to a minimum diagnosis period of one month. We consider this minimum delay as reasonable, since
the main symptom of TB is a continuous cough during three weeks, and, after that, there is a diagnostic process
which is estimated to last, assuming a conservative lower boundary, at least 10 days.28

We have chosen this parameterization of the temporal evolution of the diagnosis rate and the infectiousness
because, unlike previous approaches where the evolution of these parameters is assimilated to an exponential
curve,3,4 it provides a bounded growth for them, through a function that is still continuous and differentiable
but does not introduce more parameters.

The goal of the calibration procedure is to minimize the overall error H of the model outcome with respect
to the input burden measurements (aggregated incidence and mortality rates), calculated as follows:

H =

tF∑
t=to

((
i(t)− ī(t)

∆̄i(t)

)2

+

(
m(t)− m̄(t)

∆̄m(t)

)2
)

(52)

where ī(t) and m̄(t) stand for the annual incidence and mortality rates, corresponding to the national estimations
available at the WHO database for TB.6 These measurements of TB incidence and mortality have their cor-
respondent confidence intervals (̄ilow(t), īhigh(t)) and (m̄low(t), m̄high(t)), which are not necessarily symmetrical
with respect to the central values ī(t) and m̄(t). Using these confidence intervals, and taking into consideration
their asymmetry, the corresponding terms ∆̄i(t) ∆̄m(t) are constructed as follows:

∆̄i(t) =

{
ī(t)− īlow(t) if i(t) ≤ ī(t)
īhigh(t)− ī(t) if i(t) > ī(t)

(53)

∆̄m(t) =

{
m̄(t)− m̄low(t) if m(t) ≤ m̄(t)
m̄high(t)− m̄(t) if m(t) > m̄(t)

(54)

In the case of China and Philippines the very small uncertainty on mortality data (directly zero for some
particular years) prevents us of using the previous equation 52. In those cases we minimize the absolute distance
given by:

H =

tF∑
t=to

((
i(t)− ī(t)
〈̄i(t)〉

)2

+

(
m(t)− m̄(t)

〈m̄(t)〉

)2
)

(55)

where 〈̄i(t)〉 and 〈m̄(t)〉 correspond to the averages of incidence and mortality reported by the WHO for the
entire period in each country, respectively.

The conceptual scheme for the fitting of these parameters essentially consists in an iterative evaluation of
the model across the parameter space (ς, d0, β0, d1, β1), which is navigated according to a certain "routing"
that eventually guarantees the localization of a parameter set that yields an error H which constitutes a local
minimum of the objective functionH. In our case, we have used a Levenberg-Marquardt algorithm to solve these
multidimensional optimization problem, implemented, as for the rest of the model, in programming language
C.29 See figure S14 for a graphic summary of the procedure.
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First nested iteration (j=0)
Initial guess for...

(do, d1, bo, b1,z)(i=0, j=0)}initial conditions
diagnosis rate
infectiousness

Calculate initial stationary state
X* (do, bo, N(a,0))

Set up initial conditions
X (to)=f (X*, z)

Run dinamics & evaluate error of 
aggregated burden levels

X (t)=f (X (to), do, bo, d1, b1,N(a,t))
H=f (X (t), iWHO(t), mWHO(t))

Modify fitting parameters
(Levemberg-Marquardt) & iterate:

i’=i+1
(do, d1, bo, b1,z)(i’)

Is H small enough?

Model calibrated

YESNO

Figure S14: Schematic representation of the calibration algorithm.

3 Model states and parameters summary
In this section, we summarize all the dynamical states and parameters used in the model, along with their
values, definitions, confidence intervals and bibliographical sources.

3.1 Dynamic states

State Definition
S(a, t) Susceptible (not previously exposed to infection) individuals
Ls(a, t) Infected individuals (slow latency)
Lf (a, t) Infected individuals who will develop fast progression
Dp+(a, t) Untreated sick individuals: Smear positive pulmonar disease
Dp−(a, t) Untreated sick individuals: Smear negative pulmonar disease
Dnp(a, t) Untreated sick individuals: non pulmonar disease
Tp+(a, t) Sick individuals under treatment: Smear positive pulmonar disease
Tp−(a, t) Sick individuals under treatment: Smear negative pulmonar disease
Tnp(a, t) Sick individuals under treatment: non pulmonar disease
F (a, t) Patients who faultily finished their treatment.

Rp+S(a, t) Patients of smear positive pulmonary TB who successfully finished their treatment.
Rp+D(a, t) Patients of smear positive pulmonary TB who defaulted their treatment by two consecutive months

or more.
Rp+N (a, t) Patients of smear positive pulmonary TB that naturally recovered –without treatment– from the

disease.
Rp−S(a, t) Patients of smear negative pulmonary TB who successfully finished their treatment.
Rp−D(a, t) Patients of smear negative pulmonary TB who defaulted their treatment by two consecutive months

or more.
Rp−N (a, t) Patients of smear negative pulmonary TB that naturally recovered –without treatment– from the

disease.
RnpS(a, t) Patients of non pulmonary TB who successfully finished their treatment.
RnpD(a, t) Patients of non pulmonary TB who defaulted their treatment by two consecutive months or more.
RnpN (a, t) Patients of non pulmonary TB that naturally recovered –without treatment– from the disease.

Table S13: Description of the different dynamic states considered on the model

34



3.2 Literature-based epidemiological parameters

Meaning Parameter Value C.I. Reference Section

Probability of fast pro-
gression p(a)

(a = 0) 0.187 (0.1474,0.2333)
Marais et al.7, this
work

2.1.1(a = 1) 0.0225 (0.0200,0.0250)
(a > 1) 0.15 (0.10,0.20)

Rate of fast progression
(y−1)

ωf 0.900 (0.765,1.035) Abu-Raddad et al.4 2.1.2

Rate of slow progression
(y−1)

ωs 7.500×10−4 (6.375,8.625)×10−4 Abu-Raddad et al.4 2.1.2

Probability of developing
ρp+(a)

(a < 3) 0.100 (0.085,0.115)
Abu-Raddad et al.4 2.1.2

pulmonary smear-
positive disease

(a ≥ 3) 0.500 (0.425,0.575)

Probability of developing
ρnp(a)

(a < 3) 0.250 (0.2125,0.2875)
Abu-Raddad et al.4 2.1.2

non-pulmonary disease (a ≥ 3) 0.100 (0.085,0.115)
Mortality rate by pul-
monary smear positive
TB (y−1)

µp+ 0.250 (0.213,0.288) Abu-Raddad et al.4 2.1.3

Mortality rate by pul-
monary smear negative
TB (y−1)

µp− 0.100 (0.085,0.115) Abu-Raddad et al.4 2.1.3

Mortality rate by non-
pulmonary TB (y−1)

µnp 0.100 (0.085,0.115) Abu-Raddad et al.4 2.1.3

Reduction of infection
risk for previously in-
fected individuals

q 0.650 (0.553,748) Abu-Raddad et al.4 2.1.8

Treatment completion
rate (y−1)

Ψ 2.00 (1.70,2.30) Abu-Raddad et al.4 2.1.5

Smear progression rate
(y−1)

θ 0.015 (0.007,0.020) Dye et al.3 2.1.9

Relapse rate for indi-
viduals who successfully
completed treatment
(y−1)

rS 9.392×10−4 (6.364,12.450)×10−4 Korenromp et al.14,
this work

2.1.7

Relapse rate for individ-
uals who defaulted treat-
ment (y−1)

rD 3.774×10−3 (1.354,8.620)×10−3
Korenromp et al.14,
Picon et al.15,this
work

2.1.7

Relapse rate for natu-
rally recovered individu-
als (y−1)

rN 0.030 (0.020,0.040) Dye et al.3 2.1.7

Natural recovery rate
(y−1)

ν 0.100 (0.085,0.115) Dye et al.3 2.1.6

Infectiousness reduction
coefficient of Dp− with
respect to Dp+

φp− 0.250 (0.213,0.288) Abu-Raddad et al.4 2.2

Infectiousness reduction
coefficient of Rp+D with
respect to Dp+

φD 0.500 (0.250,0.750) Dye et al.3 2.2

Proportion of mothers
that infect their newborn
children

mc 0.15 (0.10,0.20) Pillay et al.17 2.1.10

Diagnosis rate reduction of
Dp− and Dnp with respect
to Dp+

η
Ethiopia, Nigeria: 0.843 (0.664,1.022) Abu-Raddad et al.4

, this work
2.1.4

India, Indonesia: 0.797 (0.628,0.966)

Table S14: Bibliography-based epidemiological parameters used in this study.
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In table S14 we represent the 19 epidemiological parameters used in our model, along with the eventual
dependencies each of them show (to age, geographic setting, or none), the bibliographic source and the section
of the appendix where the meaning of each parameter is explained.

3.3 Treatment outcomes probabilities
The probabilities of individuals to end their treatment according the four categories defined by the WHO
(success, default, failure or death), defined as:

• (fp+D , fp+F , fp+µ ): fraction of default, failure and death outcomes for smear positive pulmonary TB.6

• (fp−D , fp−F , fp−µ ): fraction of default, failure and death outcomes for smear negative pulmonary and non
pulmonary TB.6

have been obtained from the WHO Treatment Outcomes database for each country, and their values in
Ethiopia, Nigeria, India e Indonesia are presented in table S15:

Parameter Ethiopia Nigeria India Indonesia Reference Section
fp+D (%) 3.84 (3.74,3.94) 8.51 (8.36,8.66) 5.97 (5.95,6.00) 4.62 (4.58,4.66) WHO Database6 2.1.5
fp+F (%) 1.04 (0.99,1.10) 1.23 (1.16,1.29) 2.07 (2.05,2.08) 0.62 (0.61,0.64) WHO Database6 2.1.5
fp+µ (%) 3.97 (3.87,4.08) 5.64 (5.51,5.76) 4.48 (4.46,4.51) 2.31 (2.28,2.34) WHO Database6 2.1.5
fp−D (%) 3.28 (3.22,3.35) 6.58 (6.43,6.72) 6.11 (6.09,6.13) 7.18 (7.12,7.24) WHO Database6 2.1.5
fp−F (%) 0.12 (0.11,0.13) 0.24 (0.21,0.27) 0.42 (0.41,0.43) 0.27 (0.26,0.28) WHO Database6 2.1.5
fp−µ (%) 3.53 (3.46,3.59) 6.27 (6.13,6.41) 3.11 (3.09,3.13) 1.98 (1.94,2.01) WHO Database6 2.1.5

Table S15: Values of the treatment outcomes probabilities in Ethiopia, Nigeria, India and Indonesia.

3.4 Initial conditions and fitted parameters (Diagnosis rate, and scaled infectious-
ness)

Once all the mentioned parameters are fixed, we obtain the time-evolving parameterization of diagnosis rates
and infectiousness as the result of the calibration procedure explained in section 2.8, along with the initial
conditions of the system in each country. These temporal evolutions are derived from equations 50 and 51,
while the fitted values of the parameters (do, d1, βo, β1) are reported in table S16 for the 4 countries discussed
in the main text. Confidence Intervals are obtained through the procedure explained in section 4, as we do for
any other model outcome.

Country d0
(
y−1

)
d1 × 10−3

(
y−1

)
β0

(
y−1

)
β1 × 10−3

(
y−1

)
ς

Ethiopia 0.19 (0.15,0.25) 4.75 (3.94,5.64) 7.10 (4.57,10.90) 73.84 (20.62,103.83) 0.16 (0.16,0.25)
Nigeria 0.045 (0.003,0.088) 0.36 (0.30,0.43) 5.30 (3.36,8.03) 3.71 (-3.93,11.15) -0.29 (-0.53,-0.02)
India 0.51 (0.12,1.06) 2.98 (1.80,4.26) 10.12 (5.10,16.99) -1.20 (-12.01,9.19) -0.30 (-0.44,-0.15)

Indonesia 1.53 (1.31,1.80) -7.60 (-20.99,-0.42) 16.25 (10.82,25.59) -12.73 (-17.73,-8.97) 0.05 (0.04,0.07)

Table S16: Fitted parameters for different countries.

In figure S15 we represent the evolution of d(t) in these countries, which describes the average rate at which
sick individuals receive their diagnosis in each country and time. The scaled infectiousness β(t) has a less
immediate epidemiological interpretation, for it is only directly proportional to the number of infections R̃0,
that is caused, on average, by each infectious agent, which also depends on the distribution of individuals among
the different infectious classes and age groups. This magnitude (which reduces to the basic reproductive number
R0 when evaluated on a fully susceptible population) is also represented in figure S15.
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Figure S15: (A) Diagnosis rates for smear-positive individuals (in years−1). (B) Average number of secondary
infections per infectious agent R̃0. The red curve shows the result given by the central fit, while the shadowed
area represents the uncertainty obtained as described in section 4

3.5 Fitted parameters in the reduced models
In table S17, we present the fitted parameters for the two reduced models used across the main text in India,
Indonesia, Nigeria and Ethiopia, compared to the values from the full model (already reported in S16).

Country Model d0
(
y−1

)
d1 × 10−3

(
y−1

)
β0

(
y−1

)
β1 × 10−3

(
y−1

)
ς

Ethiopia
Complete Model 0.19 (0.15,0.25) 4.75 (3.94,5.64) 7.10 (4.57,10.90) 73.84 (20.62,103.83) 0.16 (0.16,0.25)

Constant Demography 0.22 (0.16,0.27) 4.40 (3.68,5.24) 7.22 (4.64,11.02) 70.97 (28.80,91.43) 0.21 (0.05,0.31)
Homogeneous Mixing 0.19 (0.15,0.25) 4.56 (3.80,5.36) 7.18 (5.12,10.73) 80.78 (36.04,110.66) 0.23 (0.09,0.34)

Nigeria
Complete Model 0.045 (0.003,0.088) 0.36 (0.30,0.43) 5.30 (3.36,8.03) 3.71 (-3.93,11.15) -0.29 (-0.53,-0.02)

Constant Demography 0.046 (0.004,0.090) 0.37 (0.31,0.43) 5.30 (3.35,8.04) 2.71 (-3.67,9.85) -0.27 (-0.52,-0.01)
Homogeneous Mixing 0.038 (0.003,0.080) 0.35 (0.14,0.40) 5.52 (3.81,8.15) 2.91 (0.33,10.50) -0.36 (-0.46,0.10)

India
Complete Model 0.51 (0.12,1.06) 2.98 (1.80,4.26) 10.12 (5.10,16.99) -1.20 (-12.01,9.19) -0.30 (-0.44,-0.15)

Constant Demography 0.51 (0.13,1.04) 2.66 (1.51,4.05) 10.07 (5.12,16.78) 6.16 (-0.39,12.97) -0.25 (-0.37,-0.10)
Homogeneous Mixing 0.51 (0.12,1.06) 2.94 (1.83,4.18) 9.12 (4.55,15.20) -1.04 (-11.38,11.52) -0.30 (-0.45,-0.15)

Indonesia
Complete Model 1.53 (1.31,1.80) -7.60 (-20.99,-0.42) 16.25 (10.82,25.59) -12.73 (-17.73,-8.97) 0.05 (0.04,0.07)

Constant Demography 1.53 (1.31,1.80) -8.71 (-22.14,-1.40) 16.14 (10.74,25.42) -7.51 (-11.74,-4.83) 0.08 (0.06,0.11)
Homogeneous Mixing 1.53 (1.31,1.80) -8.09 (-21.64,-0.84) 14.68 (9.63,23.38) -12.20 (-16.72,-9.07) 0.06 (0.05,0.08)

Table S17: Fitted parameters for different countries and models.

3.6 Data Sources summary
In this section we summarize the structure and origin of different pieces of data used in this work. A scheme
on how these data is included in our model can be found in Figure 1D of the main text.

• Annual rates of incidence and mortality from 2000 to 2015 for the different countries studied. WHO TB
burden estimates database.6 These data are used to calibrate, for each country independently, the scaled
infectiousness (β0, β1), diagnosis rate (d0,d1) and initial distance to stationarity ς.

• Treatment outcomes for the different countries. WHO TB treatment outcomes database.6 Used to extract
the parameters: fp+D , fp+F , fp+µ , fp−D , fp−F and fp−µ (fraction of individuals experimenting the different
possible treatment outcomes)

• Population of each age group and country from 2000 to 2050. UN population division database.27 From
this data we extract the demographic structures that our populations are forced to follow as explained in
section 2.5
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• Age contact patterns from different experimental settings.5,22,23,24,25,26 Used to construct the contact rates
between age groups (see sections 2.2 and 2.3).

• Different bibliographical sources,3,4,12,14,15 from which we extract values for 19 epidemiological parameters
(see table S14 ).

4 Model uncertainty and sensitivity analysis
All the input data sources mentioned in the previous section, and summarized in Figure 1D of the main text,
carry intrinsic uncertainties whose influence on both fitted parameters and forecasts has to be evaluated. To
this end, we have performed exhaustive uncertainty and sensitivity analyses that allow us to generate confidence
intervals for our model outcomes, produce significance estimates (i.e. p-values) as well as to evaluate the part
of this uncertainty that is propagated from each of the model inputs.

4.1 Uncertainty sources analysis
In our model, we consider four main different types of inputs, which are associated to independent uncertainty
sources for the sake of our sensitivity/uncertainty analysis:

• Parameters associated with the Natural History of the disease: a total amount of 19 parameters, listed in
table S14, each of them conservatively treated as totally independent uncertainty sources ui, i ∈ [1, 19].

• Burden and treatment outcomes estimations provided by WHO, listed in table S15. Based upon a number
of case notifications and treatment outcomes of finite cohorts surveilled in each country, the World Health
Organization provides estimations for incidence and mortality rates ī(t) and m̄(t) and for the treatment
outcome fractions (fp+D , fp+F , fp+µ ) , and (fp−D , fp−F , fp−µ ). For the purpose of our model, we have grouped
these estimations produced by the WHO TB division as mutually dependent (see figure 1D in the main
text), and considered them as one uncertainty source, labelled as u20.

• Demographic structures N(a, t): which are also considered as a single uncertainty source, labeled as u21.

• Contact matrix ξ(a, a′, t), whose uncertainty comes from the variability between studies, is the last single
uncertainty source u22.

By proceeding in this way, we have 22 uncertainty sources ui, i ∈ [1, 22] that are considered independent,
whose contributions to the uncertainty of a certain model outcome x is our goal to evaluate. Here, a model
outcome can be any possible magnitude that derives from our entire calibration-simulation procedure, as sum-
marized in figure 1D of the main text. This includes, among others, incidence and mortality rates evaluated at
any time (or averaged during the entire period), total accumulated number of incident cases or deaths, values
for the parameters fitted during the calibration step, and importantly, differences between the full and the re-
duced models, either absolute or relative, of any of these primary outcomes. Our entire model-based calibration
+ simulation procedure, summarized in figure 1D of the main text, can be expressed, for what regards the
estimation of any generic model outcome x, as a generic functional relationship x = f(~u), where ~u represents
the 22-dimensional vector of uncertainty sources (i.e., input data).

Altogether, the computation of model sensitivity to singular input uncertainty sources and its grouping into
overall model uncertainty can be summarized according to the following steps:

4.1.1 Estimation of singular sensitivities of model outcome x to individual variations in uncer-
tainty source ui. (Sensitivity analysis)

First, given a generic model outcome x, its sensitivity to a given uncertainty source u(i) with a 95% confidence
interval equal to (ulow

i ,uhigh
i ) is defined as its variation in response to a deviation in u(i) towards the lower limit

of its confidence interval:

dlow
i (x) = x(u1, ..., u

low
i , ..., u21)− x(~u) (56)

or towards the upper limit:

dhigh
i (x) = x(u1, ..., u

high
i , ..., u21)− x(~u) (57)
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Importantly, since the variation in ui that precedes the estimation of dlow
i (x) and dhigh

i (x) occurs before
model calibration, we are capturing, through this approach, the sensitivity of our entire procedure -calibration
included- to the uncertainty input ui, which implies that the signs of dlow

i (x) and dhigh
i (x) cannot be trivially

anticipated and can also coincide, as we see, in some cases, in figure S3. In that figure, we use red (blue) bars
to represent the variations in the total number of TB cases/deaths that the model produces in 2000-2050 as
a consequence of increasing (decreasing) the value of each uncertainty source to the upper (lower) limit of its
respective confidence intervals.

Furthermore, it is important to note that some uncertainty sources report several parameters (not just one)
whose confidence intervals plausibly carry strong correlations. That is the case of the age dependent parame-
ters, multi-dimensional demographic structures and contact matrices, as well as the WHO estimations, which
comprise several measurements of different nature (treatment outcomes fractions, mortalities and incidence
rates). In these cases, where single uncertainty sources ui consist of multi-dimensional correlated data, the
sensitivity terms dlow

i (x) and dhigh
i (x) are calculated upon variation of all the components of ui to the limits of

their confidence intervals as a block.

4.1.2 Grouping individual sensitivities according type of input data. Generation of confidence
intervals and significance levels (Uncertainty analysis)

Once the individual sensitivity of all the n=22 sources of uncertainty are computed following the approach
explained in the previous section, for the case of the 19 bibliographical parameters we separate positive versus
negative sensitivities (i.e. sensitivity instances where the shift in the uncertainty source translates into an
increase or a decrease in the model outcome), represented as red vs. blue bars in figure S3. Then, the square
root of the sum of the squares of each type (positive and negative sensitivities) are computed. Denoted as
∆(x)high

param and ∆(x)lowparam, respectively, these quantities can be formally defined as follows:

∆(x)high
param =

√√√√ 19∑
1

h(dlow
i (x)) · dlow

i (x)2 + h(dhigh
i (x)) · dhigh

i (x)2 (58)

∆(x)lowparam =

√√√√ 19∑
1

h(−dlow
i (x)) · dlow

i (x)2 + h(−dhigh
i (x)) · dhigh

i (x)2 (59)

where h stands for the Heaviside function (i.e. h(x) = 1 when x > 0 and 0 otherwise). The properties of
this function ensure that only positive di terms contribute to ∆(x)high

param (regardless of whether they come from
an increase dhigh

i or a decrease dlow
i in the uncertainty source), and, at the same time, that only negative di

terms contribute to ∆(x)lowparam.
In a similar way, we can isolate the contribution to the model uncertainty of the other uncertainty sources. For
the uncertainty coming from WHO reports on TB burden and treatment outcomes (uncertainty source i = 20),
we have:

∆(x)high
WHO =

√
h(dlow

20 (x)) · dlow
20 (x)2 + h(dhigh

20 (x)) · dhigh
20 (x)2 (60)

∆(x)lowWHO =

√
h(−dlow

20 (x)) · dlow
20 (x)2 + h(−dhigh

20 (x)) · dhigh
20 (x)2 (61)

For the demographic prospects (u21):

∆(x)high
demo =

√
h(dlow

21 (x)) · dlow
21 (x)2 + h(dhigh

21 (x)) · dhigh
21 (x)2 (62)

∆(x)lowdemo =

√
h(−dlow

21 (x)) · dlow
21 (x)2 + h(−dhigh

21 (x)) · dhigh
21 (x)2 (63)

And, finally, for the contact matrices (u22):
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∆(x)high
contacts =

√
h(dlow

22 (x)) · dlow
22 (x)2 + h(dhigh

22 (x)) · dhigh
22 (x)2 (64)

∆(x)lowcontacts =

√
h(−dlow

22 (x)) · dlow
22 (x)2 + h(−dhigh

22 (x)) · dhigh
22 (x)2 (65)

Throughout this work, coloured areas around curves, error bars or any Confidence Interval referred to an
outcome of our model is calculated by summing up all the contributions:

∆(x)low =
√

(∆(x)lowparam)2 + (∆(x)lowWHO)2 + (∆(x)lowdemo)2 + (∆(x)lowcontacts)
2 (66)

∆(x)high =

√
(∆(x)high

param)2 + (∆(x)high
WHO)2 + (∆(x)high

demo)2 + (∆(x)high
contacts)

2 (67)

In figure 2 of the main text, and figure S1 of this SI, in order to visualize the relative fraction of the total
uncertainty that is due to the different 4 main uncertainty sources, we linearly weight the uncertainty error bar
as follows:

• Bibliographic parameters contribution, purple area: (∆(x)low · ∆(x)lowparam∑
y ∆(x)lowy

,∆(x)high · ∆(x)high
param∑

y ∆(x)high
y

)

• WHO contribution, blue area: (∆(x)low · ∆(x)lowWHO∑
y ∆(x)lowy

,∆(x)high · ∆(x)high
WHO∑

y ∆(x)high
y

)

• Demography contribution, orange area: (∆(x)low · ∆(x)lowdemo∑
y ∆(x)lowy

,∆(x)high · ∆(x)high
demo∑

y ∆(x)high
y

)

• Contacts contribution, green area: (∆(x)low · ∆(x)lowcontacts∑
y ∆(x)lowy

,∆(x)high · ∆(x)high
contacts∑

y ∆(x)high
y

)

The global uncertainty ranges so obtained (x−∆(x)low, x+∆(x)high), being propagated from 95% confidence
intervals from the different uncertainty sources, are subsequently interpreted as 95% confidence intervals for
model outcome x. When this outcome is a difference between the full and the reduced models, its significance
level is estimated assuming that the outcome follows a normal distribution centered in x, with the confidence
interval width ∆(x)low (or ∆(x)high, should x be negative) defining the standard deviation (∆(x)low = 1.96σ).
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