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Abstract … Many epidemic processes in networks spread by stochastic contacts among their
connected vertices. There are two limiting cases widely analyzed in the physics literature, the
so-called contact process (CP) where the contagion is expanded at a certain rate from an infected
vertex to one neighbor at a time, and the reactive process (RP) in whi ch an infected individual
e�ectively contacts all its neighbors to expand the epidemics. Howe ver, a more realistic scenario
is obtained from the interpolation between these two cases, considering a certain number of
stochastic contacts per unit time. Here we propose a discrete-time formulation of the problem
of contact-based epidemic spreading. We resolve a family of models, parameterized by the number
of stochastic contact trials per unit time, that range from the CP to the R P. In contrast to the
common heterogeneous mean-“eld approach, we focus on the probability of infection of individual
nodes. Using this formulation, we can construct the whole phase diagram of the di� erent infection
models and determine their critical properties.

Copyright c� EPLA, 2010

The problem of modeling how diseases spread among
individuals has been intensively studied for many years
[1…4]. The development of mathematical models to guide
our understanding of the disease dynamics has allowed to
address important issues such as immunization and vacci-
nation policies [2,5,6]. Physicist•s approaches to problems
in epidemiology involve statistical physics, the theory of
phase transitions and critical phenomena [7], which have
been extremely helpful to grasp the macroscopic behav-
ior of epidemic outbreaks [8…16]. The main arti“ce of
this success has been the mean-“eld (MF) approxima-
tion, where local homogeneities of the ensemble are used
to average the system, reducing degrees of freedom.

The study of complex networks [17…19] has provided
new grounds to the understanding of contagion dynam-
ics. Particularly important in nature are scale-free (SF)

(a) E-mail: alexandre.arenas@urv.cat

networks, whose degree distribution follows a power law
P(k) � kŠ � for the number of connections,k, an individual
has. SF networks include patterns of sexual contacts [20],
the Internet [21], as well as other social, technological
and biological networks [22]. The critical properties of
an epidemic outbreak in SF networks can be addressed
using the heterogeneous MF (HMF) prescription [8…15].
It consists of coarse-grained vertices within degree classes
and considers that all nodes in a degree class have the same
dynamical properties; the approach also assumes that ”uc-
tuations can be neglected. Speci“cally, if � is the rate
(probability per unit time) at which the disease spreads,
it follows that the epidemic threshold in uncorrelated SF
networks is given [8] by � c = � k� / � k2� , leading to � c � 0
as N � � when 2< � � 3.

MF approaches are extremely useful to assess the
critical properties of epidemic models, however they are
not designed to give information about the probability
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of individual nodes but about classes of nodes. Then,
questions concerning the probability that a given node be
infected are not well posed in this framework. To obtain
more details at the individual level of description, one
has to rely on Monte Carlo (MC) simulations, which have
also been used to validate the results obtained using MF
methods. Restricting the scope of epidemiological models
to those based in two states [1,3,4] „susceptible (S) and
infected (I)„, the current theory concentrates on two
speci“c situations, the contact process [23…28] (CP) and
the reactive process [29…31] (RP). A CP stands for a
dynamical process that involves an individual stochastic
contagion per infected node per unit time, while in the
RP there are as many stochastic contagions per unit time
as neighbors a node has. This latter process underlies the
abstraction of the susceptible-infected-susceptible (SIS)
model [1,3,4]. However, in real situations, the number of
stochastic contacts per unit time is surely a variable of the
problem itself [15].

In this work, we introduce a theoretical framework for
contact-based spreading of diseases in complex networks.
Our formulation is based on probabilistic discrete-time
Markov chains, generalizes existing HMF approaches and
applies to weighted and unweighted complex networks.
Within this context, in addition to capturing the global
dynamics of the di�erent contact models and its associ-
ated critical behavior, it is now possible to quantify the
microscopic dynamics at the individual level by comput-
ing the probability that any node is infected in the asymp-
totic regime. MC simulations corroborate that the formal-
ism introduced here reproduces correctly thewhole phase
diagram for model and real-world networks. Moreover, we
capitalize on the new approach to address how the spread-
ing dynamics depends on the number of contacts actually
used by a node to propagate the disease.

Contact-based epidemic spreading models. … Let
us consider a network made up ofN nodes, whose
connections are represented by the entries{ aij } of an
N -by-N adjacency matrix A . Additionally, in the most
general case in which the network is weighted, we denote
by { � ij } the weights of the connections between nodes,
being wi =

�
j wij the total strength [32] of node i . The

above quantities completely de“ne the structure of the
underlying graph. As for the dynamics, we consider a
discrete two-state (S and I) contact-based process. Each
node of the network represents an individual (or a place, a
city or airport for example) and each edge is a connection
along which the infection spreads. At each time step, an
infected node makes a number� of trials to transmit the
disease to its neighbors with probability � per unit time.
This forms a Markov chain where the probability of a
node being infected depends only on the last time step.
After some transient time, the previous dynamics sets the
system into a stationary state in which the average density
of infected individuals, � , de“nes the prevalence of the
disease.

We next look at the probability that any given node
i is infected at the stationary state. We denote by
r ij the probability that a node i is in contact with a
node j , de“ning a matrix R . These entries represent the
probabilities that existing links in the network are used to
transmit the infection. If i and j are not connected, then
r ij = 0. Besides, µ stands for the rate at which infected
nodes are recovered and get back to the susceptible class;
and “nally, pi (t) is the probability that a node i is infected
at time t. With these de“nitions, the discrete-time version
of the evolution of the probability of infection of any node
i reads

pi (t + 1) = (1 Š qi (t))(1 Š pi (t)) + (1 Š µ)pi (t)

+ µ(1 Š qi (t))pi (t), (1)

where qi (t) is the probability of node i not being infected
by any neighbor

qi (t) =
N�

j =1

(1 Š �r ji pj (t)) . (2)

The “rst term on the right-hand side of eq. (1) is the
probability that node i is susceptible (1Š pi (t)) and is
infected (1Š qi (t)) by at least a neighbor. The second
term stands for the probability that node i is infected
at time t and does not recover, and “nally the last
term takes into account the probability that an infected
node recovers (µpi (t)) but is re-infected by at least
a neighbor (1Š qi (t)). Within this formulation, we are
assuming the most general situation in which recovery
and infection occur on the same time scales, allowing then
reinfection of individuals during a discrete time window
(for instance, one MC step). This formulation generalizes
previous approximations where reinfections cannot occur.

The formulation so far relies on the assumption that the
probabilities of being infected pi are independent random
variables. This hypothesis turns out to be valid in the
vast majority of complex networks because the inherent
topological disorder makes dynamical correlations not
persistent. The dynamical system (1), (2) corresponds to
a family of possible models, parameterized by the explicit
form of the contact probabilities r ij . Without loss of
generality, it is instructive to think of these probabilities
as the transition probabilities of random walkers on the
network. The general case is represented by� i random
walkers leaving nodei at each time step:

r ij = 1 Š
�

1Š
wij

wi

� � i

. (3)

The CP corresponds to a model dynamics of one contact
per unit time, � i = 1, � i in eq. (3) thus r ij = wij /w i (see
footnote 1). In the RP all neighbors are contacted, which

1Strictly speaking, when � = 1, our model is not exactly the
standard CP, since there reinfections are not considered. Howeve r,
we will refer to it as a CP since only one neighbor is contacted a t
each time step and the critical points of both variants are the sa me.
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Fig. 1: (Colour on-line) Average fraction of infected individuals,
� , as a function of the spreading rate � for N = 10 4 . The
symbols correspond to MC simulations of the SIS model on
top of random scale-free networks with � = 2 .7 (error bars are
smaller than the size of the symbol) and the lines stand for the
analytical solutions of our formalism (with � = � ). We also
represent in the inset a scatter plot for the probability that a
node i (i = 1 , . . . , N ) is infected using results of MC simulations
(the y-axis) and the solutions ( x-axis) of eq. (4). Both results
have been obtained for µ = 1, the inset is for � = 0 .1.

corresponds, in this description, to set the limit � i � � ,
� i resulting on r ij = aij regardless of whether the network
is weighted or not. Other prescriptions for � i conform
the spectrum of models that can be obtained using this
uni“ed framework. The phase diagram of every model is
simply obtained solving the system formed by eq. (1) for
i = 1 , . . . , N at the stationary state

pi = (1 Š qi ) + (1 Š µ)pi qi . (4)

This equation has always the trivial solution pi = 0,
� i = 1 , . . . , N . Other non-trivial solutions are re”ected
as non zero “xed points of eq. (4) and can be easily
computed numerically by iteration. The macroscopic order
parameter is given by the expected infection density� ,
computed as

� =
1
N

N�

i =1

pi . (5)

Numerical results. … To show the validity of the
approach here discussed, we have performed MC simu-
lations on di�erent SF networks for RP. Figure 1 shows a
comparison of the phase diagram of the system obtained
by MC simulations, with the numerical solution of eq. (4).
To model the epidemic dynamics on the described topolo-
gies we incorporate a SIS model in which, at each time
step, each node can be susceptible or infected. In our simu-
lations time is discretized in time steps and each simula-
tion starts with a fraction � 0 of randomly chosen infected
individuals ( � 0 = 0 .05 in our simulations). At each time
step an infected nodei infects with the same probability
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Fig. 2: (Colour on-line) Density of infected individuals � as a
function of � for di�erent values of � in the air transportation
network [33]. We have set µ = 1 and � is calculated according
to eq. (5) once the pi •s are obtained.

� all its neighbors and recovers at a rateµ. The simulation
runs until a stationary state for the density of susceptible
individuals, � (t) is reached. The agreement between both
curves is matchless. Moreover, the formalism also captures
the microscopic dynamics as given by thepi •s, see the inset
of “g. 1.

In “g. 2 we analyze our formalism on top of the airports
network data set, composed of passenger ”ights operating
in the time period November 1, 2000, to October 31,
2001 compiled by OAG Worldwide (Downers Grove, IL)
and analyzed previously by Prof. Amaral•s group [33].
It consists of 3618 nodes (airports) and 14142 links,
we used the weighted network in our analysis. Airports
corresponding to a metropolitan area have been collapsed
into one node in the original database. We show the
density of infected individuals � as a function of � for
di�erent values of � . The critical points as well as the
shape of the � Š � phase diagrams greatly change at
varying the number of stochastic contacts (� ). For small
values of � the disease prevalence is moderate, even for
large values of the spreading rate� . In contrast, when the
number of trials is of order 103 the situation is akin to a
RP.

Finally, we compare the results of the formalism for
di�erent random scale-free networks satisfyingP(k) � kŠ �

generated using the con“guration model. Figure 3 shows
the phase diagram for µ = 1 and several values of the
exponent � , both below and above � = 3. The system
size has been “xed toN = 104 nodes. The dotted lines
represent the results obtained using the analytical approx-
imation while symbols stand for MC simulations. As can
be seen, the agreement between both methods is remark-
able, even for values of� < 2.5 where structural changes
are extremely relevant [34]. The same agreement between
MC results and the analytical solutions is obtained if
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Fig. 3: (Colour on-line) Phase diagram for the SIS model
(� = � ) in a random scale free network for di�erent � •s. The
networks are made up of N = 10 4 nodes andµ = 1. MC results
are averages over 102 realizations. Dashed lines corresponds to
the theoretical prediction and symbols to MC results.

one instead “xes the degree distribution exponent� and
explores the dependency with the system size. This is
what is shown in “g. 4, where we have depicted the phase
diagram for networks with � = 2 .7 for several system sizes
ranging from N = 500 to N = 105. Except for N = 500,
where MC results have a large standard deviation close to
the critical point, the agreement is again excellent in the
whole range of� values.

Epidemic threshold. … Let us now assume the exis-
tence of a critical point � c for “xed values of µ and � i such
that � = 0 if � < � c and � > 0 when � > � c. The calcula-
tion of this critical point is performed by considering that
when � � � c, the probabilities pi � � i , where 0� � i 	 1,
and then after substitution in eq. (2) one gets

qi � 1Š �
N�

j =1

r ji � j . (6)

Inserting eq. (6) in eq. (4), and neglecting second-order
terms in � we get

N�

j =1

�
r ji Š

µ
�

� ji

�
� j = 0 , � i = 1 , . . . , N, (7)

where � ij stands for the Kronecker delta. The system (7)
has non trivial solutions if and only if µ/� is an eigenvalue
of the matrix R . Since we are looking for the onset of the
epidemic, the lowest value of� satisfying (7) is

� c =
µ

� max
, (8)

where � max is the largest eigenvalue of the matrix R .
Equation (8) de“nes the epidemic threshold of the disease
spreading process.
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Fig. 4: (Colour on-line) Phase diagram for the SIS model
(� = � ) in a random scale free network for di�erent system
sizes as indicated. The networks have a power law degree
distribution with an exponent � = 2 .7 and µ = 1. MC results
are averages over 102 realizations.

It is worth analyzing the two limiting cases of CP and
RP above. In the “rst case, one obtains the trivial result
that the only non-zero solution corresponds to � c = µ,
because the matrixR is a transition matrix whose maxi-
mum eigenvalue is always �max = 1. For the RP corre-
sponding to the SIS spreading process usually adopted [8],
the classical result for uncorrelated SF networks is recov-
ered because, in this case, the largest eigenvalue [35,36] is
� max = � k2� / � k� .

Mesoscopic equations at the critical point. … Once
the general framework given by the dynamical system (1),
(2) has been proposed, it is instructive to approximate it
using the hypotheses underlying HMF. These hypotheses
consist of: i) coarse-graining the system in classes of node
by degree, assuming that the dynamical properties within
each class are the same, and ii) neglecting ”uctuations. To
obtain the mesoscopic description we consider the second
order approximation of eq. (4) and proceed as in the
previous section. Therefore,

qi � 1Š �
�

j

r ji � j + � 2
�

j<l

r ji r li � j � l . (9)

After substitution in (4) and reordering terms one gets

0 = Šµ� i + � (1 Š � i )
�

j

r ji � j + µ�� i

�

j

r ji � j

Š� 2
�

j<l

r ji r li � j � l , (10)

which are the equations governing the dynamics of the
contact-based epidemic spreading process at the micro-
scopic level. It is possible to write eq. (10) at the commonly
used mesoscopic (degree class) level for unweighted, undi-
rected heterogeneous networks. The interactions then
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takes place between classes of nodes. De“ning the aver-
age density of infected nodes with degreek as � k =

1
N k

�
k i = k pi , whereNk is the number of nodes with degree

k and the sum runs over the set of nodes of degreek, we
obtain the generalized HMF equation near criticality.

Homogeneous networks. For homogeneous un-
weighted undirected networks, � i = � and ki � � k� for all
nodes. Thus,� = 1

N

�
j � j = � and

0 = Šµ� + �� (1 Š � )
�

j

r ji + µ�� 2
�

j

r ji

Š� 2� 2
�

j<l

r ji r li . (11)

De“ning
R� (x) = 1 Š (1 Š x) � , (12)

the terms involving values of r ji are

r ji � aji R� (� k� Š 1), (13)
�

j

r ji � � k� R� (� k� Š 1), (14)

�

j<l

r ji r li �
1
2

� k� (� k� Š 1)R� (� k� Š 1)2. (15)

Now, eq. (11) becomes

0 = Šµ� + �� (1 Š � )� k� R� (� k� Š 1) + µ�� 2� k� R� (� k� Š 1)

Š� 2� 2 1
2

� k� (� k� Š 1)R� (� k� Š 1)2, (16)

which may be considered as the MF approximation of our
model for homogeneous networks.

If � = 1, then R1(� k� Š 1) = 1
� k � and eq. (16) becomes

0 = Šµ� + �� (1 Š � ) + µ�� 2 Š
�k� Š 1
2� k�

� 2� 2. (17)

If � � � , then R� (� k� Š 1) = 1 and eq. (16) reads

0 = Šµ� + �� (1 Š � )� k� + µ�� 2� k� Š
1
2

� 2� 2� k� (� k� Š 1).

(18)
In both cases, the “rst two terms correspond to the

standard CP and RP models (previously reported in
the literature) respectively, and the additional terms are
second-order contributions corresponding to reinfections
and multiple infections.

Heterogeneous networks. Now we will concentrate on
the class of heterogeneous unweighted undirected networks
completely speci“ed by their degree distribution P(k) and
by the conditional probability P(k� |k) that a node of
degreek is connected to a node of degreek� . Of course, the
normalization conditions

�
k P(k) = 1 and

�
k � P(k� |k) =

1 must be ful“lled. In this case, the average number of
links that goes from a node of degreek to nodes of degree
k� is kP (k� |k).

In these heterogeneous networks it is supposed that all
nodes of the same degree behave equally, thus� i = � j if
ki = kj , and the density � k of infected nodes of degreek
is given by � k = 1

N k

�
i � K � i = � j , � j 
 K , where Nk =

P(k)N is the expected number of nodes with degreek.
Here we have made use ofK to denote the set of nodes
with degree k. This notation allows to group the sums by
the degrees of the nodes, for instance

�

j

aji R� (kŠ 1
j )� j = k

�

k �

P(k� |k)R� (k� Š 1)� k � . (19)

After some algebra eq. (10) leads to the generalized HMF
equation

0 = Šµ� k + �k (1 Š � k )
�

k �

P(k� |k)R� (k� Š 1)� k �

+ µ�k� k

�

k �

P(k� |k)R� (k� Š 1)� k �

+
1
2

� 2k
�

k �

R� (k� Š 1)2P(k� |k)� 2
k �

Š
1
2

� 2k2

�
�

k �

R� (k� Š 1)P(k� |k)� k �

� 2

. (20)

If � = 1, then R1(kŠ 1) = 1
k and eq. (20) becomes

0 = Šµ� k + �k (1 Š � k )
�

k �

1
k� P(k� |k)� k �

+ µ�k� k

�

k �

1
k� P(k� |k)� k � +

1
2

� 2k
�

k �

1

k� 2
P(k� |k)� 2

k �

Š
1
2

� 2k2

�
�

k �

1
k� P(k� |k)� k �

� 2

. (21)

If � � � , then R� (kŠ 1) = 1 and eq. (20) reads

0 = Šµ� k + �k (1 Š � k )
�

k �

P(k� |k)� k �

+ µ�k� k

�

k �

P(k� |k)� k � +
1
2

� 2k
�

k �

P(k� |k)� 2
k �

Š
1
2

� 2k2

�
�

k �

P(k� |k)� k �

� 2

. (22)

Again, the “rst two terms in both cases correspond to
the standard CP and RP HMF equations, respectively,
and the additional terms are second-order contributions
corresponding to reinfections and multiple infections.

Conclusions. … We have proposed a new framework
to study disease spreading in networks. By de“ning a set
of discrete-time equations for the probability of individ-
ual nodes to be infected, we construct a dynamical system
that generalizes from an individual contact process to the
classical case in which all connections are concurrently
used, for any complex topology. Solving the equations at
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the stationary state, we “nd the whole phase diagram of
the system. The numerical solution of the analytic equa-
tions overcomes the computational cost of MC simula-
tions. Moreover, the formalism allows to gain insight on
the behavior of the critical epidemic threshold for di�er-
ent values of the probability of contacting a fraction � of
neighbors per time step. The proposed model deals with
infections driven by direct contacts between nodes, but not
with tra�c situations where nodes transmit the epidemics
by ”ow communication with others [15]. In this latter case,
the routing protocol of tra�c between nodes is absolutely
relevant and can change the critical point of the epidemic
spreading. We are currently working to adapt the present
formalism also to tra�c situations.
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