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Abstract. The discovery of the important role played by the complex connectiv-
ity structure between individuals has lead to an increasing interest in the analysis
of epidemic spreading in complex networks. Here we propose a discrete-time for-
mulation of the problem of contact-based epidemic spreading, within the context
of susceptible-infected-susceptible epidemic models. The proposed equations es-
tablish the relations between the probabilities of infection of individual nodes.
They can be easily solved by iteration, showing an almost perfect agreement with
Monte Carlo experiments throughout the whole phase diagram. This framework
also allows the determination of the epidemic threshold and, unlike heterogeneous
mean-field approaches, it is valid for any finite-size and weighted network.
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1. Introduction

The problem of modeling how diseases spread among individuals has been
intensively studied for many years [1, 2, 3, 4], allowing to address important
issues such as immunization and vaccination policies [2, 5, 6]. The application
of the theory of statistical physics, phase transitions and critical phenomena
[7] has been extremely helpful to understand the macroscopic behavior of
epidemic outbreaks [8, 9, 10, 11, 12]. This success relies basically on the
Mean-Field (MF) approximation, where averages of the system reduce the
degrees of freedom.
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The study of complex networks [13, 14] has provided new grounds to
the understanding of contagion dynamics. Particularly important in nature
are scale-free (SF) networks, whose degree distribution follows a power law
P (k) ∼ k−γ for the number of connections, k, an individual has. SF networks
include patterns of sexual contacts [15], the Internet [16], as well as other
social, technological and biological networks [17]. The critical properties of an
epidemic outbreak in SF networks can be addressed using the heterogeneous
MF (HMF) prescription [8, 9, 10, 11, 12, 18]. It consists in the consideration
that all nodes in a degree class have the same dynamical properties, and the
neglection of fluctuations. Specifically, if β is the infection rate rate at which
the disease spreads, the epidemic threshold in uncorrelated SF networks is
given [8] by βc = 〈k〉/〈k2〉.

MF approaches are extremely useful to assess the critical properties of
epidemic models, however they are not designed to give information about in-
dividual nodes. Then, questions concerning the probability that a given node
be infected are not well posed in this framework. To obtain more details at
the individual level of description, one has to rely on Monte Carlo (MC) sim-
ulations, which have also been used to validate the results obtained using MF
methods. Here we present the Microscopic Markov-Chain Approach (MMCA)
formalism first introduced in [19], and compare the epidemic spreading results
with those obtained using the HMF, showing the outperformance of MMCA.

2. MMCA Formalism

Let us consider the dynamics of a susceptible-infected-susceptible (SIS) epi-
demic process over a N node complex network. We make no assumptions
on the structure of the network, the MMCA formalism applies to any finite
size, correlated, weighted and/or directed complex network. The main idea of
MMCA is the discovery of the equations satisfied by the microscopic variables
pi(t), which in this case represent the probabilities of nodes i being infected at
time step t. Calling β the infection rate, µ the recovery probability and qi(t)
the probability of node i not being infected by any neighbor, the SIS MMCA
equations are

pi(t + 1) = (1 − pi(t))(1 − qi(t)) + (1 − µ)pi(t) + µpi(t)(1 − qi(t)) , (1)

qi(t) =
N
∏

j=1

(1 − βrjipj(t)) . (2)

The three terms in the r.h.s. of eq. (1) account respectively for the prob-
ability that a susceptible node (1 − pi(t)) is infected by at least one neighbor
(1 − qi(t)), an infected node does not recover ((1 − µ)pi(t)), and an infected
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node recovers (µpi(t)) but gets infected again by a neighbor (1 − qi(t)). This
third term may be removed if recovery and reinfection are not allowed at the
same time step. In eq. (2) the rji parameters represent the probabilities of
node j contacting node i. If only one contact is allowed at each time step, rji

is proportional to the strength of the link (wji), whereas rji = 1 if all nodes
are contacted per unit time. In general, allowing λj contacts per time step,

rji = 1 −

(

1 −
wji

wj

)λj

, (3)

where wj =
∑

i wji is the output strength of node j. The particular cases
λj = 1 and λj → ∞ correspond to the standard contact process (CP) and
reactive process (RP) respectively. Other prescriptions for λj conform a family
of models that can be obtained using this unified framework.

In the stationary state eq. (1) simplifies to

pi = (1 − qi) + (1 − µ)piqi (with reinfections) , (4)

pi = (1 − pi)(1 − qi) + (1 − µ)pi (without reinfections) . (5)

These equations are easily solved by iteration until a fixed point (with re-
infections) or a cycle (without reinfections) is found; in this second case, the
average between the oscillating values must be considered. Finally, the average
fraction of infected nodes in the stationary state is given by

ρ =
1

N

N
∑

i=1

pi . (6)

A first order approximation of eqs. (4) and (5) allows the determination
of the epidemic threshold (see [19]),

βc =
µ

Λmax(R)
, (7)

where Λmax(R) is the largest eigenvalue of the contact matrix R. For the CP,
βc = µ, and for the RP βc = µ/Λmax(A), where A is the adjacency matrix of
the network.

3. Results

To show the performance of the MMCA formalism we have carried out Monte
Carlo (MC) simmulations of the RP on top of different networks, and compared
them with the iteration solutions of the MMCA stationary equations. First,
in fig. 1 we show the results for a SF network. The agreement between MMCA
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Figure 1: Comparison of MMCA, MC and HMF for a SF network of N = 500
and γ = 2.7, for the RP, µ = 1, with and without reinfections.

and MC is matchless, both with and without reinfections. On the contrary,
the numerical solutions of the HMF equations show a significant deviation in
epidemic spreading, and a shift of the epidemic threshold.

Fig. 2 shows two examples where MMCA has difficulties in reproducing
MC near the epidemic threshold. The first one is a regular squared grid with
periodic boundary conditions, which is known to be one of the most difficult
networks due to the high dynamic correlations induced by the topology. In
most of the phase diagram there is good agreement between MMCA and MC,
but there is an over-estimation of the epidemic spreading near the epidemic
threshold. The second is a real network, the power grid [21], which is known
to have an important disagreement between theory and simmulations in bond
percolation processes [22]. Here the deviation between MMCA and MC is not
so remarkable.

Finally, in fig. 3 we show the individual MMCA infection probabilities pi

for the air transportation network [20], using the RP and two different values
of the infection rate. In this case, the agreement between MMCA and MC
was already shown in [19].
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Figure 2: Comparison of MMCA and MC for a 100 × 100 grid (top) and the
power grid (bottom), RP, µ = 1 and with reinfections.

4. Conclusions

Summarizing, we have proposed a new framework to study disease spreading
in networks. By defining a set of discrete-time equations for the probabil-
ity of individual nodes to be infected, we construct a dynamical system that
generalizes from an individual contact process to the classical case in which
all connections are concurrently used, for any complex topology. Solving the
equations at the stationary state, we find the whole phase diagram of the
system. The numerical solution of the analytic equations overcomes the com-
putational cost of MC simulations. Moreover, the formalism allows to gain
insight on the behavior of the critical epidemic threshold for different values
of the probability of contacting a fraction of neighbors per time step (λ). The
method outperforms the HMF approach in the whole phase diagram.
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Figure 3: Individual MMCA infection probabilities for the airports network,
RP, µ = 1 and with reinfections.
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