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Abstract

This paper reports on a combined experimental and theoretical study on the size dependency
of tension strength of clear wood at loading parallel to %ber direction. The fracture behavior of
the tested softwood specimens was found to be rather brittle with low precursory activity and a
statistical variation of the strength. The distribution of the strength values can be well %tted with
a Weibull distribution distinguished by a shape parameter � ∼ 8− 10. A signi%cant dependency
of the mean strength of the material on the cross-sectional size of the specimens was obtained.
The range of load redistribution in clear wood subjected to tension parallel to %ber was assessed
by the theoretical concept of %ber bundle models for %ber composites. Hereby the macroscopic
behavior was modelled in terms of the microscopic damage process.
c© 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction

The material wood is a natural unidirectional %ber composite. The %brous character
of softwoods can be found at two di>erent length scales: On the micro-scale (some
10–100 �m) softwood consists of hollow, unidirectionally aligned cells, in the
following named ‘micro-%bers’, which are bonded in lateral direction by very thin
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layers of matrix material. On the ultra-scale (some 0.01-1 �m) the walls of the hollow
micro-%bers consist of bundles of very sti> and strong cellulose chains (ultra-%bers), be-
ing wriggled around the axis of the micro-%bers in di>erent layers and mainly bonded
by two matrix materials, lignin and hemicellulosis. The crystalline structure of the
‘ultra-%bers’ determines the brittle character of fracture at tension loading and the very
high ratios of strength and sti>ness vs. density. The unidirectional build-up at the
micro-scale leads to a pronounced anisotropy in the directions parallel and perpendic-
ular to the %ber; typically strength and sti>ness values di>er by a factor of 10–20 for
the two directions. The natural growth process forwarding several kinds of defects and
irregularities yields a high scatter of all material parameters; typically coeGcients of
variation are in the range of 15–30 percent.
Scale e>ects of wood strength are well known with respect to tension loading per-

pendicular to %ber direction. In this weak plane of wood, exhibiting the most brittle
failure mode of splitting, the pronounced scale e>ect of the stressed volume can be
modelled adequately by a simple weakest link approach for a purely serial system [1].
However, recent investigations showed that the purely serial system approach is not
fully applicable for realistic length scales but that the stress redistribution e>ects of
partial parallel systems have to be taken into account.
In case of bending and tension parallel to %ber direction scale e>ects of width

and depth have been reported in several studies [2]. However, modelling of wood
loaded parallel to %ber as a parallel system of %bers has not yet been performed to the
knowledge of the authors. Existing models mostly treat all scale e>ects in the view of
some modi%ed weakest link approach thereby silently neglecting the e>ects of stress
redistribution after the initial fracture of the weakest %ber [3].
In the presented study results of tension strength of wood parallel to %ber direc-

tion obtained from quasistatical ramp-loading are presented. As anticipated, the tested
wood specimens exhibited a rather brittle fracture character with low precursory ac-
tivity preceding %nal failure. Tension strength for the specimens of a %xed size can
be described by a Weibull distribution. Furthermore, samples of larger cross-sectional
dimensions have smaller average strength indicating the existence of a size e>ect of
wood, when loaded in tension parallel to %ber direction.
In order to obtain an accurate prediction of the point of ultimate failure the statistical

evolution of the damage across the entire macroscopic system and the associated stress
redistributions have to be considered, being a demanding problem. One of the most
important approaches to the strength and reliability of %ber composites reducing the
complexity thoroughly are the Fiber bundle models (FBM). The basic concept of FBM
was %rst introduced by Daniels [4] and Coleman [5] and in the following has been the
subject to intense research e>orts during the last decades [6–24]. Fiber bundle models
are constructed so that a set of %bers is arranged in parallel, each one having identical
elastic properties but statistically distributed strength values. The modelled specimen is
loaded parallel to the direction of the %ber and the %rst %ber failure during the loading
process occurs, when the load stress exceeds the tensile strength of the weakest %ber.
Once the %bers begin to fail the released load of the broken %bers has to be redistributed
to the intact %bers according to some speci%c interaction law between the %bers. A large
amount of e>orts have been devoted to understand the behavior of %ber bundles under
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various load sharing conditions [6–24]. Based on a novel %ber bundle model introduced
recently [25] a theoretical interpretation of the experimental results obtained for tension
strength of clear wood parallel to %ber direction is presented. The macroscopic strength
data are explained in terms of the damage process occurring on the micro-%ber level,
i.e., on the level of the wood cells. In order to provide a quantitative characterization
of the load redistribution among %bers a power law load-transfer function is proposed
and its e>ective exponent is assessed.
In Section 2 a detailed description of the experimental procedure used for the uniaxial

testing of wood specimens is presented. The experimental results are summarized in
Section 3 followed by the presentation of the theoretical approaches in Sections 4 and 5.

2. Experiment description

The tested material was soft-wood of the species spruce (picea abies) being the most
important wooden building material for load bearing timber structures in Europe. In
order to investigate the size e>ect of tension strength parallel to %ber direction, two
sets of specimens were manufactured distinguishing with respect to the cross-section
by a factor of 10. Following the specimens with the smaller cross-section will be de-
noted “small” specimens and those with the large cross-section will be denoted “large”
specimens. In order to minimize uncontrolled variability of material parameters of the
natural material wood several aspects had to be taken care of:

(1) All specimens were cut from one single log.
(2) The specimens were selected to be free of macroscopic defects such as knots.
(3) The most crucial parameter for the tension strength of the mainly unidirectional

%ber composite wood is the angle between %ber direction, or longitudinal direc-
tion “L”, and applied tension load. Due to low tension strength perpendicular to
%ber the strength o>-axis decreases by about 50 percent at %ber deviations of 10◦

[26]. Within a typical rectangularly sawn scantling the deviation between nominal
longitudinal direction of the stem and local %ber direction may vary consider-
ably between 0◦ and about 15◦. Whereas a non-destructive evaluation of the %ber
deviation is technically quite demanding, the fracture surfaces of splitted wood in-
dicate the %ber direction in a straightforward manner. Therefore the specimen raw
material has been split to obtain straight grained wood pieces and the specimens
were then cut parallel to the split surfaces.

(4) As an additional measure of scatter reduction the specimens have been matched as
twin-pairs consisting of one large and one small specimen each cut from adjacently
located wood segments. Thereby each pair showed the highest possible conformity
with respect to strength relevant parameters such as density or year ring width.

The specimen shape has been chosen with respect to three major aspects, being:
(i) the anisotropy of the material with high tension strength parallel to %ber vs. low
compression strength perpendicular to %ber direction; (ii) the low shear strength of the
annual ring interface between high-density late wood and low-density early wood and;
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Fig. 1. Specimen geometry and the used notations.

Table 1
Nominal dimensions of the small and large tension specimens (in mm)

Nom. dim. a1 a3 r2 b l1 l2 l3 c A = a1b

Small 2 5 200 6 35 27.5 50 6 12
Large 6 15 700 20 110 80 150 20 120

(iii) the necessity of scalability. Fig. 1 shows the employed specimen shape and the
dimensional notations.
The dimensions of the small and large specimens are given in Table 1. The specimen

shape is characterized by a rectangular cross-section with a shoulder shaped reduction
of the thickness ai parallel to the tangential growth direction T (following the annual
rings).
In detail the specimen shape shows a straight section (1) of length l1 with a con-

stant minimal cross-section a1b, a curved shoulder section (2) of length l2 and radius
r2 and, (3) the straight clamping section with cross section a3b and length l3. The
specimen’s width b parallel to radial growth direction R (perpendicular to the annual
rings) has been chosen constant in order to minimize shear and transverse tension
stresses perpendicular to the weak annual ring interfaces.
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(a) (b)

Fig. 2. Views of experimental setups for small (a) and large (b) tension specimens mounted in the di>erent
test machines.

In order to enlarge the clamping area in sections (3), thereby reducing the necessary
compression stresses for load application in width direction, on-gluings of width c
and depth a3 were adhered both-sided to the ends of the specimens. All dimensions
between the small and the large specimens were scaled by a factor of about 101=2 in
order to achieve geometrically similar shapes and a scale factor of 10 between the
cross-sections of the small and the large specimens.
The load was applied to both, the small and large specimens by means of clamping.

In case of the small specimens a screw clamp has been used with a nominally equally
distributed compression stress at the clamping faces. In case of the large specimens
hydraulic clamps were applied which allowed continuously decreasing compression
stresses towards the edge of the on-gluings. Both clamping arrangements yield, com-
pared to usual wedge type clamping devices, relatively smooth stress distributions at
the transition from the clamping section to the test section.
The sets of small and large specimens consisted of 23 specimens each. The ex-

periments were performed as stroke, (i.e., global deformation) controlled ramp-load
tests with a constant cross-head displacement rate of the test machine. The stroke rate
was chosen based on pre-testing of additional specimens such that fracture was ob-
tained within 180 ± 60 s. In case of the small specimens the tests were conducted in
a screw-driven test machine, whereas for the large specimens a servo-hydraulic type
machine has been used. Fig. 2 shows photographs of a small and large specimen,
installed in the respectively employed clamping arrangements of the di>erent testing
machines. In case of the large specimens, the mean strain of the straight section has
been recorded with a strain gauge based extensiometer, too Fig. 2b. However, as the
strain was only measured for the large specimens the quantitative evaluation of the test
results focuses solely on the strength results.
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3. Experimental results

The fracture of the tension specimens occurred throughout within the test sections,
i.e., predominantly in the straight section (1) and partly in the shoulder-shaped section
(2). No failure occurred within the clamping section. Two typical views of broken small
and large specimens are shown in Figs. 3a, b). The fracture surfaces were throughout
inPuenced by the inhomogeneity of the annual rings: Distinct blunt tension ruptures can
be observed in the early wood layers and then local shear failure planes along the early
wood-late wood interfaces yielding pronouncedly stepped fracture surfaces. During the
tension test it was not possible to follow the succession of fracture processes, however,
quite often some cracking sound and dust presumably from a crack, yet not visible
for blank eye could be observed prior to failure. Moreover, some of the stress–strain
curves, recorded in case of the large specimens, showed pre-peak load drops with load
recovery, which additionally indicated, that some kind of damage or crack evolution
stop mechanism acted during loading. Fig. 4) shows a measured curve of global stress
vs. global strain within the straight cross-section (1) of one large specimen exhibiting
a pre-peak load drop. The ultimate failure occurred throughout as an unstable, brittle
fracture. For all tests the maximum load was recorded and the strength was calculated
on the basis of the individually measured minimal cross-sections. The mean values
and standard deviations of the tension strength c and the mean values of the e>ective
cross-sections A=a1b are summarized in Table 2 separately for both test sets. The small
specimens exhibited an 8.2 percent higher mean tension strength as compared to the
large specimens. Thus, the results indicate a size e>ect of tension strength parallel to

(a)

(b)

Fig. 3. Views of typical failure appearance of small (a) and large (b) specimens.
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Fig. 4. Typical stress–strain behavior obtained for a large specimen.

Table 2
Summary of results of the tension tests

Specimen size Cross-section (mm2) Number of Fibers Qc ±Rc (N=mm2) b0 (N=mm2) �

Small 12.4 ∼ 5000 138:5± 18:7 146.2 8.3
Large 116.6 ∼ 50000 128:0± 13:6 134.0 10.3

2

Fig. 5. Strength cumulative distribution from specimens with di>erent sizes.

%ber of wood on the mean value level. However, also the scatter of the results is higher
for the small specimens compared to the test set with the large cross-sections. Thus,
the size e>ect seems to be smaller for the lower fractiles of the strength distribution.
The cumulative frequencies of both strength data sets are plotted in Fig. 5. Hereby

the empiric cumulative frequency Hi of each individual strength value c has been
estimated based on ranking of the results in increasing order of the strength values
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according to Hi = ni=(N +1), whereby ni and N denote the rank number and the total
number of specimens in both samples, respectively. For both empiric sets of strength
values a two-parameter Weibull distribution

P(c) = 1− exp
[
−
(
c
b
0

)�]
(1)

has been %tted. In Eq. (1) quantity b
0 denotes the stress scale parameter and � is

the Weibull shape parameter which characterizes the amount of disorder in the sample
being determined by the coeGcient of variation. The numerical result for the Weibull
parameters, b

0 and �, obtained by least square %tting are given in (2); the respective
cumulative distribution functions are plotted in Fig. 5 together with the empiric data.

4. Modelling of damage development

For a realistic modelling of the damage process of natural %ber composites under
an uniaxial load, the local stress distribution would have to be calculated in the whole
volume of the sample. Even limiting the number of independent variables needed to
describe the internal microstructure of the specimen, an accurate prediction of the
ultimate strength is a computationally demanding task. Hence, in general, the modelling
of %ber composites is based on certain idealizations about the geometry of the %ber
arrangement and the stress redistribution following %ber failures in the specimen. One
of the most important type of models of %ber composites are the so-called %ber bundle
models (FBM). In spite of their simplicity they capture most of the main aspects
of material damage and failure, and hence, they have been successfully applied to
the study of various kinds of composites. FBMs provided a deeper understanding of
fracture processes and have served as a starting point for more complex models of %ber
reinforced composites. If an uniaxial load is applied in the direction parallel to the %bers
the actual composite stress T can be obtained as T = fAf + (1− Af)m, where Af

denotes the %ber area fraction and m is the usually small stress carried by the matrix.
The matrix stress m can normally be neglected in damage modelling since already at
relatively low load levels, the matrix gets multiply cracked or yields plastically limiting
its load bearing capacity. However, stress transfers between the %bers by the matrix
action continues despite gradual damage so that it has a very important role in the
load redistribution. In reconstituted arti%cial construction materials the range of load
redistribution also called load sharing can be controlled by varying the properties of
the matrix material and the %ber–matrix interface.
Two limiting or extreme cases of load redistribution can be distinguished: In the case

of global load sharing (GLS), the load of a broken %ber is equally redistributed among
all the unbroken %bers. This model is a mean %eld approximation where long range
interactions are assumed among the elements of the system. For the case of high number
of %bers it was proved [4] that strength c of %ber bundles, when determined by global
load sharing, is independent of the system size. Moreover, during the loading process
the failure events are uncorrelated, resulting in a random spatial distribution of clusters
of broken elements. In the case of local load sharing (LLS), being the other extreme,
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it is assumed that the entire load of the broken %ber is taken by a local neighborhood
of the failed element %ber. This case represents the short range interaction among
%bers. The shape of the constitutive curve characterizing the macroscopic behavior of
the system is the same as for GLS, but the maximum of the curve is shifted to lower
stress values indicating a lower macroscopic strength and a more brittle behavior. The
damage process is accompanied by a strong damage localization, i.e., the nucleated
micro-cracks in the specimen tend to grow perpendicular to the load until a certain
critical cluster size is reached. The critical cluster becomes unstable at an in%nitesimal
load increment and catastrophic failure occurs. Local load sharing implies that the
global strength of samples decreases unlimited with the increase of the system size. In
Ref. [17] a logarithmic size e>ect was revealed in a one dimension linear system of
%bers loaded in parallel assuming that the load of broken %bers is taken by the two
nearest intact %bers of the system.
The load redistribution in actual heterogeneous materials falls somewhere between

the extremes of local and global load sharing. Usually there is an important fraction of
stress redistributed to intact elements not located in the neighborhood of the failed ones,
but also stress concentrations around broken %bers occur. During the last two decades,
several studies on the strength distribution of composites were performed with FBMs
[13,21–24], either based on analytic calculations or Monte Carlo simulations.
Now, if global load sharing is assumed in the case of small number of %bers, it can be

shown analytically that the global strength of a bundle of Weibull %bers approximately
follows a Weibull distribution, too [6,7,12,16]. The Weibull strength distribution then
implies a decrease of the average strength according to a power law when the number of
%bers is increased. Finally, approaching very large system sizes the strength distribution
slowly converges to a normal distribution with a constant value of the average strength.
Contrary, when the load sharing mechanism is assumed to be completely localized,

then the approximated strength distribution takes again the Weibull form, whereby the
parameters, describing the macroscopic distribution, are di>erent from the microscopic
ones. The Weibull shape parameter of the bundle, �, is related to that of the single
%bers as

�= Nc�s ; (2)

where Nc denotes the size of the critical cluster of broken %bers. The Weibull distri-
bution of global strength implies again a power law size dependence of the average
strength which asymptotically turns into a slower logarithmic decrease [6,16].
A wood sample may be modelled by an array of parallel %bers arranged approxi-

mately on a regular square lattice. This is in agreement with the morphology of the
real material at the micro-scale (see Fig. 6). The amount of matrix material between
%bers is rather low, less than 1% of the total volume of the sample.
The macroscopic strength of %ber composites is mainly determined by the strength

distribution of individual %bers and the interaction of %bers governing the load re-
distribution. Recently, the strength distribution of single wood %bers extracted from
softwood materials has been studied extensively [27]. Experiments showed that the
rupture of wood %bers is caused by the Paws of various sizes existing along %bers.
The distribution of %ber strength values is controlled by the size distribution of Paws.
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aa

Fig. 6. The structure of softwood (left) and illustration of the model build-up (right). The wood %bers are
arranged on a regular square lattice for which %ber bundle models can provide an adequate description.

It was found that the strength values c of single wood %bers with a %xed length can
be well described by a two-parameter Weibull distribution of the form of Eq. (1), with
the stress scale parameter 0 and the Weibull shape parameter �s, which characterizes
the amount of disorder in single %bers. It was found that the value of �s for single
%bers always ranges from 1 to 2 indicating the presence of high disorder in wood
%bers due to the pre-existing Paws [27].
In the above reported experiments on wood samples hardly any precursory breaking

activity could be observed. The constitutive curves were practically linear up to the
failure point and the %nal rupture occurred in a rather brittle manner suggesting a
very localized load redistribution. The strong locality of load redistribution is further
supported by the macroscopic Weibull shape parameters of � ≈ 8−10, which are much
larger than the corresponding range of single %bers acc. to [27]. Assuming completely
local load sharing it follows from Eq. (2) that the size of the critical cluster in softwood
is Nc in the range of 4−10; so when a cluster of Nc broken %bers is formed, the sample
becomes instable and fails abruptly. If the empiric data follow a Weibull distribution,
which cannot be proved positively, the size e>ect can approximately be given in the
power-law form b

0 ∼ N−1=�, where Qc denotes the average strength of a sample of N
%bers, which is in a reasonable agreement with the experimental results (see Table 2).
The discrepancy between the calculated value of (N2=N1)1=� = 1:25. and the value of
b
o1=

b
02 = 1:08. vs. the empiric data should result from the fact, that the extreme LLS

case is approximate, but not an exact model for wood at tension loading parallel to
%ber direction.

5. Fiber bundle model with variable range of interaction

In order to get a deeper insight into the damage process of wood at uniaxial loading
in %ber direction a new %ber bundle model introduced recently [25] was applied. In
the new model approach the interaction among %bers is modelled by an adjustable
stress-transfer function. Varying the parameters of the model an interpolation is per-
formed between the two limiting cases of load redistribution, the global and the local
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Fig. 7. Numerical estimates of ultimate strength of the %ber bundle material for di>erent system sizes as a
function of the e>ective range of interaction d [25].

load sharing schemes. The model is composed of N parallel %bers having statistically
distributed strength drawn from a cumulative distribution function P(=0). Thus, to
each %ber i a random strength value ci−th is assigned. All intact %bers have a nonzero
probability of being a>ected by the ongoing damage process. Hereby the additional load
received by an intact %ber i depends on its distance rij from %ber j which has failed.
Elastic interaction is assumed between %bers such, that the additional load � received
by a %ber follows a power law form, i.e., in this discrete model the stress-transfer
function �(rij; d) takes the form

�(rij; d)˙
r−d
ij

Z
: (3)

In Eq. (3) the quantity Z represents a normalization condition Z =
∑

i∈I r
−d
ij , the

sum runs over the set I of all intact elements, whereby rij is the distance of %ber i
to the rupture point (xj; yj), i.e., rij =

√
(xi − xj)2 + (yi − yj)2 in a two-dimensional

representation. Periodic boundary conditions are assumed so that the largest rij value
conforms to Rmax = (

√
2(S − 1))=2, where S is the cross-sectional linear size of the

square model N = S × S. The geometrical model build-up is illustrated in Fig. 6).
Quantity d is an adjustable model parameter, which determines the e>ective range
of load redistribution. It is obvious from Eq. (3) that the limiting cases d → 0 and
∞ represent the two extreme cases of load redistribution, being the global (GLS)
and the local load sharing (LLS), respectively. Furthermore, intermediate values of
d interpolate between the extreme load sharing cases. A comprehensive study of the
general damage evolution in the framework of the model was carried out in Ref. [25].
The main results obtained are summarized in Figs. 7 and 8. In Fig. 7 the dependency of
the average global strength of bundles on the system size, N , is presented for several
values of d. Note that in every case the value of global strength is normalized by
the characteristic strength value 0, of the local strength distribution of single %bers.
The numerical results con%rm those obtained analytically in Refs. [14–16,6]. In Fig. 8
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Fig. 8. Variation of the model strength with the system size (number of elements N ) for several values
of d [25].

the dependency of the global strength for di>erent system sizes N as related to the load
sharing exponent d is depicted. For small values of d (d¡ 2:2) the global strength of
the bundle is approximately independent on the number of %bers, which is in agreement
with the global load sharing approximation. However, the global strength of the system
decreases with increasing system size for d¿ 2:2. In every case the results can be
%tted by an inverse logarithmic law c=0 ∼ #=logN and only the slope of the curve,
#, changes with the e>ective range of interaction determined by d. The logarithmic size
e>ect is in agreement with the asymptotic size scaling of bundles with very localized
interaction. In Section 3 a signi%cant dependency of the average failure strength of
the specimens on the size of their cross- section was obtained experimentally. Based
on the empiric results, an estimate of an e>ective exponent d, characterizing the load
redistribution in softwood, will be provided in the framework of the outlined model.
It is plausible that real materials are not characterized by the extreme cases of global

or local load sharing. A real specimen with N %bers should have a normalized strength
value c(N )=0 which falls between the bounds of the GLS and LLS approaches. The
normalization constant 0 is the characteristic stress value of the cumulative strength
distribution of single elements. As in the presented case 0 is unknown, it has been
used as a free %t parameter.
For an estimation of upper and lower boundaries of 0 %rst the limits of GLS and

LLS were calculated. Numerical results, using a cumulative Weibull distribution with
the disorder parameter �s = 2, are shown in the Figs. 7, 8. It can be seen that in
the global case, due to the independence of the system size on the c=0 vs. 1=logN
graphic forwards a line parallel to the 1=logN axis with c=0 = (�se)−1=�s . Note that
given by Figs. 7 and 8 this value is c=0 = 0:429. This parallel line is the upper
bound for the strength data of the test series with smaller number of %bers N = 5000.
Using its corresponding strength value (shown in Table 2) yields the lower bound of
0 = 322:8N=mm2.
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Table 3
Load sharing parameters estimated from the strength values obtained from test samples with di>erent sizes

Weibull disorder parameter Weibull scaling parameter Slope Load-sharing parameter
[N=mm2]

�s = 1 384:7¡0 ¡ 520:1 0:8¡#¡ 1:1 6¡d¡ 10
�s = 2 322:8¡0 ¡ 426:5 0:9¡#¡ 1:3 5¡d¡ 10

In the same manner the limiting case of LLS (d=9), i.e., a line c=0=0:971=logN+
0:21, gives a lower bound of normalized strength, for the empiric test series with higher
number of %bers N =50 000, and thereby yields the upper bound of 0 =426:5N=mm2.
In this way it is possible to %t the experimental results presented in Section 3 with

the model using the %t parameter 0. The slope of the %tted curves can be calculated,
enabling a numerical estimation of the value d.
In Table 3 the results of the limit case considerations are compiled including the

ranges of 0, the derived slopes # and %nally the resulting values for the load sharing
exponent d. In the %tting procedure, two extreme values of the Weibull shape parameter
�s, previously determined by Thuvander et al., have been used [27]. Comparing the
%tted values of # to the results of Ref. [25] it can be seen that the exponent characterize
the load redistribution in wood in case of tension loading parallel to the %ber direction
already falls in the regime where the behavior of the system can be well described by
assuming almost completely localized load sharing. This result is in agreement with
the general arguments of the previous section.

6. Conclusions

The size e>ect of tension strength of softwood loaded parallel to %ber direction has
been assessed experimentally. The macroscopic constitutive behavior of the specimens
was, as anticipated, rather brittle and the strength values showed a statistical variation
which could be well %tted in terms of a Weibull distribution. It was revealed that
the average strength is a decreasing function of the cross-sectional specimen size. In
order to provide a theoretical interpretation of the experimental results with respect to
the size e>ect and the modelling of the load sharing mechanism, the wood material
was modelled as a natural %ber composite with extremely small volume fraction of
matrix material. Comparing the strength distribution of single %bers and that of the
macroscopic samples it was deduced that the load redistribution among wood %bers is
short ranged giving rise to a low precursory activity preceding %nal failure and small
clusters of broken %bers. For qualitative characterization of the load sharing it has
been assumed that the load-transfer function has a power law form and its e>ective
exponent has been estimated. The experimental and theoretical results are in satisfactory
agreement.
Additional researches are needed in order to con%rm the results in a more quantitative

manner including experiments with intermediate size scales. Moreover, some aspects
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of the damage evolution of wood at tension loading parallel to %ber are not yet well
described by the used FBMs.
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