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Abstract

Recent studies have pointed out the importance of transient synchronization between widely distributed neural assemblies
to understand conscious perception. These neural assemblies form intricate networks of neurons and synapses whose
detailed map for mammals is still unknown and far from our experimental capabilities. Only in a few cases, for example the
C. elegans, we know the complete mapping of the neuronal tissue or its mesoscopic level of description provided by cortical
areas. Here we study the process of transient and global synchronization using a simple model of phase-coupled oscillators
assigned to cortical areas in the cerebral cat cortex. Our results highlight the impact of the topological connectivity in the
developing of synchronization, revealing a transition in the synchronization organization that goes from a modular
decentralized coherence to a centralized synchronized regime controlled by a few cortical areas forming a Rich-Club
connectivity pattern.
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Introduction

Processing of information within the nervous system follows

different strategies and time-scales. Particular attributes of the

sensory stimuli are transduced into electrical signals of different

characteristics, e.g. regular or irregular spiking, the rate of firing,

etc. Further aspects of the information are ‘‘encoded’’ by

specialization of neurons, e.g. the color and orientation of a visual

stimulus will activate only a set of neurons and leave others silent.

For higher order processes such as feature binding and association,

the synchronization between neural assemblies plays a crucial role

[1–5]. For example, subliminal stimulation which is not con-

sciously perceived, triggers a similar cascade of activation in the

sensory system but fails to elicit a transient synchronization

between distant cortical regions [6].

The neurons comprising the nervous system form a complex

network of communications. To what extent this intricate

architecture supports the richness and complexity of the ongoing

dynamical activity in the brain is a fundamental question [7]. A

detailed map of the neurons and their synapses in mammals is still

unknown and far from our experimental capabilities. Only in a

few cases, for example the nematode C. elegans, we know the

complete mapping of the neuronal tissue. In the cases of macaque

monkeys and cats a mesoscopic level of description is known,

composed of cortical areas and the axonal projections between

them. These areas are arranged into modules which closely follow

functional subdivisions by modality [8–13]. Two cortical areas are

more likely connected if both are involved in the processing of the

same modal information (visual, auditory, etc.) Beyond this

modular organization, some cortical areas are extensively

connected (referred as hubs) with projections to areas in all

modalities [14,15]. For the corticocortical network of cats, these

hubs are found to be densely interconnected forming a hidden

module [16], at the top of the cortical hierarchy which might be

responsible for the integration of multisensory information. A core

of cortical areas has also been detected in estimates of human

corticocortical connectivity by Diffusion Spectrum Imaging [17].

Following the above discussion that synchronization plays a major

role in the processing of high level information, it would be

important to analyze the synchronization behavior of these

networks in relation to their modular and hierarchical organiza-

tion. To this end, we simulate the corticocortical network of the cat

by non-identical phase oscillators and we follow the evolution of

their synchronization from local to global.

The study of synchronization phenomena is a useful tool to

analyze the substrate of complex networks. The dynamical

patterns under different parameters unveil features of the

underlying microscopic and mesoscopic organization [18]. In

particular, recent studies highlight the impact that the topological

properties such as the degree heterogeneity, the small-world effect
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and the modular structure have on the path followed from local to

global synchronization [18–21].

In this work we study the routes to synchronization in the

corticocortical network of cats brain (see Figure 1) by modelling

each cortical area as a phase oscillator with an independent internal

frequency. This assumption considers that the ensemble of neurons

contained within a cortical area behaves coherently having a well

defined phase average whose dynamics is described by the internal

frequency [22]. The coupling between areas is modelled using the

Kuramoto nonlinear coupling and its relative strength can be

conveniently tuned to allow for the observation of synchronization

at different scales of organization. This seemingly crude approxi-

mation allows to obtain similar synchronization patterns as those

observed with more refined models based on neuronal ensembles

placed at each cortical area [23–25]. For instance, using the

Kuramoto model one obtains that highly connected areas promote

synchronization of neural activity just as revealed by the more

stylized model used for the dentate gyrus [26].

Our results point out that complex structures of highly

connected areas play a key role in the synchronization transition.

In contrast to the usual partition of the brain cortex into four sets

of modally-related areas, we find that this modular organization

plays a secondary role in the emergence of synchronization

patterns. On the contrary, we unveil that a new module made up

of highly connected areas (not necessarily modally-related) drives

the dynamical organization of the system. This new set is seen as

the Rich-Club of the corticocortical network. Surprisingly, the new

partition of the network including the Rich-Club as a module

preserves the modular behavior of the system’s dynamics at low

intercortical coupling strengths. This modular behavior transforms

into a centralized one (driven by the Rich-Club) at the onset of

global synchronization highlighting the plasticity of the network to

perform specialized (modular) or integration (global) tasks

depending on the coupling scale.

Results

As introduced above, we describe the dynamical behavior of the

cortical network using the Kuramoto model [27], where the time

evolution of the phase of each cortical area, hi(t), is given by

_hhi~vizl
XN

j~1

Wij sin(hj{hi), ð1Þ

where vi is the internal frequency associated to area i and Wij is

the weighted inter-cortical coupling matrix that takes a value 0 if

area j does not interact with the dynamics of area i while Wijw0

otherwise. In this latter case Wij can take values 1, 2 or 3

depending on the axon density going from area j to area i. Let us

remark that the inter-cortical coupling matrix is not symmetric so

that in general Wij=Wji. Besides, the inter-cortical dynamical

coupling is modeled as the sine of the phase differences between

two connected areas such that when hjwhi the average phase of

area i accelerates while that of area j slows down to approach each

other. Finally, the parameter l accounts for the strength of the

inter-cortical coupling.

In a system composed of all-to-all coupled oscillators, the

Kuramoto model shows a transition from incoherent dynamics to

a synchronized regime as l increases [28,29]. However, when the

system has a nontrivial underlying structure this transition does not

take place in an homogeneous manner. In complex topologies,

and for moderate coupling values, certain parts of the system

become synchronized rather fast whereas other regions still behave

incoherently. Therefore, one can monitor the synchronization

patterns that appear as the coupling l is increased and describe the

path to synchronization accurately [18] by reconstructing the

synchronized subgraph composed of those nodes and links that

share the largest degree of synchronization (see Materials and

Methods). The study of these synchronization clusters as the

coupling l is increased allow to unveil the important set of nodes

that drives these dynamical processes in the system.

We will analyze different scales of organization: i) the macroscopic

scale referring to global synchronization of the network; ii) the

microscopic scale of organization corresponding to the individual

state of the oscillators; and finally iii) the intermediate mesoscopic

scale of dynamical organization between the macroscopic and

microscopic scales. Usually, it consists of groups of nodes classified

_
_

Figure 1. The brain cortical network of the cat. On the left we show the topology of the nodes (areas) and links (axon interconnections)
between them. On the right the weighted adjacency matrix is shown. The weight of the links denote the axon density between two connected areas.
Besides the matrix shows the partition of the network into four main modules of modally-related areas: Visual, Auditory, Somatosensory-Motor and
Fronto-Limbic.
doi:10.1371/journal.pone.0012313.g001
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according to a certain additional information, for example that

provided by the anatomico-functional modules. Every scale of

organization requires a particular set of statistical descriptors. This is

especially important in the mesoscopic scale where changing the

groups, the characterization of the system is also changed.

Macroscopic analysis
We start by describing how global synchronization is attained as

the inter-cortical coupling l is increased. Global synchronization is

characterized by the usual Kuramoto order parameter, r, and the

fraction of links that are synchronized rlink [20,21] (see Materials

and Methods). Both parameters take values in the region ½0, 1�,
being close to 0 when no dynamical coherence is observed and

close to 1 when the system approaches to full synchronization.

In Fig. 2 we show the evolution of r and rlink as a function of l.

The plot reveals a well defined transition from incoherent to

globally synchronized, the onset of synchronization occurring for

coupling strength 0:011ƒlƒ0:021. When l^0:2, the system

reaches the fully synchronized state. In the following, we will explore

this transition in more detail and at lower scales of dynamical

organization.

Mesoscopic analysis as described by the four anatomical
modules

The measures r and rlink describe completely the dynamical state

of the system if one assumes that all the cortical areas behave

identically. However, it is possible to extract more information

about the local dynamical properties of the system. In particular, for

a given value of l we can monitor the degree of synchronization

between two given areas i and j, rij[½0, 1� (see Materials and

Methods).

The studies of the transition to synchronization in modular

architectures [19,21] show that synchrony patterns appear first at

internal modules, i.e. synchrony shows up among the nodes that

belong to the same module due to a larger local density within the

module and similar pattern of inputs of the nodes. As the coupling

l is increased, synchrony starts to affect the links connecting nodes

of different clusters and finally spreads to the entire system. Now,

we analyze whether the four anatomico-functional modules of the

corticocortical network of the cat act also as dynamical clusters in

the synchronization transition. To this end, we have analyzed the

evolution of the average synchronization within and between the

four anatomical modules taking into account solely the informa-

tion about the dynamical coherence rij between the network’s

areas. We define the average synchronization between module a
and module b as:

rab~
1

Lab

X
i[a, j[b

rij , ð2Þ

where Lab is the number of possible pairs of areas from modules a
and b, i.e., Lab~NaNb=2 where Na and Nb are the number of

areas of modules a and b respectively. If a~b equation (2) denotes

the intramodule average synchronization.

The histograms in the left columns of Figure 3 and Figure 4

show the values of the set frabg for several values of l
corresponding to the region before (Fig. 3) and at (Fig. 4) the

onset of synchronization. From the histograms it is clear that the

degree of synchronization grows with l as it occurs for the global

parameters r and rlink in the macroscopic description. Besides, the

histograms inform us about the importance of the anatomical

partition in the dynamical organization of the cat cortex. From

Figure 3 it becomes clear that the average dynamical correlation

within areas of the same anatomical module is higher than that

between areas belonging to different modules. Moreover, before

the onset of synchronization, for l~0:007 to l~0:11 all the

modules satisfy raa§rab for a=b. At the onset of synchronization

(left column of Figure 4) we observe that the initial intra-module

synchronization is progressively compensated by the increase of

inter-module dynamical coherence. In particular, the influence of

the Somatosensory-Motor on the remaining modules is remark-

ably relevant during the onset of synchronization and, for

lw0:021, this module shows the largest degree of synchronization

with the rest of the system.

Microscopic analysis: Unveiling the dynamical
organization

The mesoscopic analysis based on the partition of the cortex

into four modules has revealed a fingerprint of a hierarchical

organization of the synchronization based on the dominating role

of the Somatosensory-Motor module. Here we will analyze the

microscopic correlation between all the areas of the cortical

network to unveil whether there is a group of nodes that lead the

onset of synchronization in the system. To this purpose we study

the subgraphs formed by those pairs of areas sharing an average

synchronization value rij larger than a threshold T . Certainly

when T~1 the subgraph is the null (empty) graph and for T~0
the subgraph is the whole cortex.

In Figure 5 we show a ranking of the cortical areas at

coupling strengths l~0:015, 0:017, 0:019 and 0:021 corre-

sponding to the onset of synchronization. The rankings are

made by labeling the area i with the largest value of the

threshold at which the area is incorporated into the synchro-

nized subgraph as T is tuned from 1 to 0. Additionally, the

modular origin of the areas has been color coded to distinguish

the role of each module. From the rankings we find that there

are three areas 36, 35 and Ig, from the Fronto-Limbic system,

that share the largest degree of synchrony. In all the cases,

several jumps in the threshold are observed that distinguishes

those groups of cortical areas that are more synchronized than

Figure 2. Synchronization diagrams. The figure shows the
evolution of the Kuramoto order parameter r and the fraction of
synchronized links rlink as the coupling strenght is increased. The
transition from asynchronous dynamics to global dynamical coherence
as l grows is clear from the two curves. The region in blue corresponds
to the onset of synchronization.
doi:10.1371/journal.pone.0012313.g002
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the rest of the network. For instance, at l~0:017 we observe 14
areas spanning from the 36 area to the 2 (Somatosensory-Motor

system) while for l~0:021 we find 16 areas ranging from the 36

to the area 4 (Somatosensory-Motor system). From these figures

it is no clear that there is one module dominating the

synchronization. Quite on the contrary both Somatosensory-

Motor and Fronto-Limbic systems are well represented among

the most synchronized areas.

A further analysis of the composition of these highly synchronized

areas reveals that most of them take part in a higher-order topological

structure of the cortical network: a Rich-Club (see Materials and

Methods). The Rich-Club of a given network is made up of a set of

nodes with high connectivity, which at the same time, form a tightly

interconnected community [30,31]. Therefore, the Rich-Club of

a network can be described as a highly cohesive set of hubs, that

form a dominant community in the hierarchical organization. The

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Dynamical correlation within the 4 modal clusters (left column) and the new 4 modally-related clusters and the Rich-Club
(right column) before the onset of synchronization. The bars of the histograms show the values of the dynamical correlation rab (see Equation
(2)) between the 4 original modules (left) and the new 4 clusters and the Rich-Club (right). From top to bottom we show the cases for l~0:007, 0:009
and 0:011 that correspond to the region before the onset of synchronization.
doi:10.1371/journal.pone.0012313.g003
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Rich-Club of the cat cortex is composed of 11 cortical areas of

different modalities: 3 visual areas (20a, 7 and AES), 1 area from the

Auditory system (EPp), 2 areas of the Somatosensory-Motor system

(6m and 5Al) and 5 fronto-limbic areas (Ia, Ig, CGp, 35 and 36). In

Figure 6 we show again the ranking of areas for the cases l~0:015,

0:017, 0:019 and 0:021 but highlighting those areas belonging to the

Rich-Club in black. From the plots it is clear that most of the Rich-

Club areas are largely synchronized. In particular for l~0:019 and

0:021 the 8 out of the 10 largest synchronized areas of the network

belong to the Rich-Club, although originally they belong to the

Fronto-Limbic, Somatosensory-Motor and the Visual systems in the

partition into four modules.

Mesoscopic analysis of synchronization including the
Rich-Club

Looking at the composition of the Rich-Club we observe that it

is mainly composed of fronto-limbic areas. Taking into account

that we previously observed how the Somatosensory-Motor

system took the leading role within the description with 4
modules of the synchronization transition, this dominance of the

Fronto-Limbic system in the Rich-Club may seem counterintu-

itive. To test the role of the Rich-Club in the synchronization

transition we define a new partition of the cortical network into 5
clusters composed of the Rich-Club (as defined above) and the 4
original modules, but with the corresponding areas of the Rich-

Club removed from them.

At the mesoscopic scale, we investigate the self-correlation of the

new five clusters and their cross correlation according to Equation

(2). In the right columns of Figure 3 and Figure 4 we present

the histograms of the inter and intra correlations for different

values of the coupling. In both figures the role of the Rich-Club

orchestrating the process towards synchrony while increasing the

coupling strength becomes clear. More importantly, the addition

of the Rich-Club to the partition helps to elucidate the patterns of

Figure 4. Dynamical correlation within the 4 modal clusters (left column) and the 5 dynamical clusters (right column) at the onset of
synchronization. The bars of the histograms show the values of the dynamical correlation rab (see Equation (2)) between the 4 modules (left) and
the new 4 modally-related clusters and the Rich-Club (right). From top to bottom we show the cases for l~0:013, 0:015, 0:017, 0:019 and 0:021 that
correspond to the onset of synchronization.
doi:10.1371/journal.pone.0012313.g004

Figure 5. Synchrony Rank of areas: Unveiling anatomical structure of the largest synchronized areas. In these plots we show the rank of areas
from the most to the less synchronized for l~0:015 (a), 0:017 (b), 0:019 (c) and 0:021 (d). The height of the bars account of the maximum value of the threshold,
Ti , at which the area is incorporated in the synchronized subgraph. Besides, the colour of each bar accounts for the corresponding module of the cortical area.
doi:10.1371/journal.pone.0012313.g005
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synchrony: both the dynamical self-correlation of the four

modally-related clusters and their correlation with the Rich-Club

remain large. In particular, we observe in Figure 3 that, before the

onset of synchronization, these new five modules keep a large self-

correlation during this stage. On the other hand, at the onset of

synchronization (Figure 4) the four modally-related clusters loose

their large self-correlation in the following sequence: The ‘‘Fronto-

Limbic’’ cluster remains autocorrelated until l~0:013, the

‘‘Visual’’ one until l~0:017, the ‘‘Auditory’’ system until 0.019

and the ‘‘Somatosensory-Motor’’ cluster until l~0:021. For larger

couplings, all the clusters switch from autocorrelation to be

synchronized with the Rich-Club, which acts as a physical mean-

field of the system. Moreover, during the whole synchronization

path the Rich-Club is always the cluster with the largest self-

correlation. Thus, the distinction of Rich-Club in the partition

preserves the autocorrelation of the four modal clusters before the

onset of synchronization while, at the same time, rules the path to

complete dynamical coherence during the onset of synchroniza-

tion. This two-stage dynamics (modal cluster synchronization

followed by a sequential synchronization with the Rich-Club)

supports the idea that the modular organization with a centralized

hierarchy described in [16] facilitates the segregation and

integration of information in the cortex.

Characterization of the transition from modular to
centralized synchronization

The results so far indicate a plausible transition from modular to

centralized organization in the cortex, depending on the coupling

strength. In particular, we have shown patterns of synchronization

that change the behavior while increasing the coupling l. Now we

propose a characterization of this change in terms of statistical

descriptors. To this end, we define two different measures: (i) the

dynamical modularity (DM) and (ii) the dynamical centralization

(DC). The dynamical modularity compares the degree of internal

synchrony within the clusters with the average dynamical

correlation across clusters. With this aim we define the DM as

the fraction of the average self-correlation of clusters and the

average intercluster cross-correlation. For a network composed of

m clusters we have:

DM~

P
a raa=mP

a,b=a rab=½m(m{1)� : ð3Þ

The DM will take values above 1 when the system contains true

dynamical clusters while DMv1 means that the entitity of the

partition is not consistent with a clustered behavior. On the other

Figure 6. Synchrony Rank of areas: Structure of the largest synchronized areas as described by the Rich-Club. The two plots show the
same synchrony ranks as in Figure 5 (again l~0:015 (a), 0:017 (b), 0:019 (c) and 0:021 (d)). We have recolored the bars of those areas corresponding
to the Rich-Club to highlight the dominant role of this topological structure in the composition of the largest synchronized areas.
doi:10.1371/journal.pone.0012313.g006

Dynamics of Cat Cortex

PLoS ONE | www.plosone.org 7 August 2010 | Volume 5 | Issue 8 | e12313



hand, the dynamical centralization of the network measures the

relative difference in synchrony between the maximum among the

m clusters of ra~
P

b rab=m and the average degree of synchrony

over clusters, SraT~
P

a ra=m:

DC~
maxafrag{vraw

vraw
: ð4Þ

In the case of the DC we always obtain positive values. A large value of

DC means that the system displays a highly centralized dynamical

behavior around a leading cluster while we will obtain DC values

approaching to 0 when the system behaves homogeneously, i.e. when

there is no leading cluster that centralizes the dynamics.

We have measured both DM and DC for the original partition

into m~4 modules and the new partition with m~5 incorporat-

ing the Rich-Club. In Figure 7 we show the evolution of the two

quantities as a function of the coupling parameter. For the case of

the DM we confirm that the partition with the Rich-Club keeps

the modular behavior of the original partition along the whole

synchronization path. The DM is remarkably high for low values

of the coupling l pointing out that before the synchronization

onset the internal synchronization dominates over the cross-

correlation between the clusters. Regarding the DC we find that in

both partitions DC increases with l reaching a maximum around

the synchronization onset, signaling that at this point the

synchronization is driven hierarchically and lead by one of the

modules. However, the partition that incorporates the Rich-Club

shows the remarkably larger values of DC along the whole path,

specially around the synchronization onset. In particular, the

dominant role of the Rich-Club is clearly highlighted by the

maximum of the DC at l~0:015, just at the onset of

synchronization. In order to verify that the Rich-Club is the

cluster contributing to the term maxafrag in the dynamical

centrality of the network we plot in Figure 7 the evolution of the

DC considering each of the 5 modules as the the central cluster by

substituting maxafrag by the corresponding value of ra. From the

plot it is clear that the Rich-Club is the central cluster

orchestrating the dynamics of the system at the onset of

synchronization.

The coupled evolution of DM and DC corroborates the two-

mode operation of the cortical network when described with the

Rich-Club and the remaining parts of the four original modules:

At low values of the coupling, the modular structure of the network

dominates the synchronization dynamics, pointing out the

capacity to concentrate sensory stimuli within its corresponding

module. When the coupling is increased the dynamical organiza-

tion is driven by a leading subset of nodes, organized in a

topological Rich-Club, that integrates information between

different regions of the cortex.

Discussion

Previous simulations performed in the cat cortical network

[23–25] have dealt with its synchronization properties. In these

works, the transition towards synchronization is studied by using

ensembles of neurons coupled through a small-world topology

placed inside each cortical area whereas different neuronal

populations are dynamically coupled accordingly to the topology

of the cat cortical network. By means of this two-level dynamical

model, numerical simulations allowed to find different clusters of

synchrony as the coupling between the cortical areas is

increased. It was found that only for weak coupling these

clusters were closely related to the four modal clusters. In the

light of these previous studies, and the recent report of a novel

modular and hierarchical organization of the corticocortical

connectivity [16], the issue regarding the relation between the

mesoscopic structure of the cat cortex and its dynamical

organization remains open.

Here, we have investigated the evolution of synchronization in a

network representing the actual connectivity among cortical areas

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 0.005  0.01  0.015  0.02  0.025  0.03  0.035

D
M

λ

Anatomical Clusters
Dynamical Clusters

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.005  0.01  0.015  0.02  0.025  0.03  0.035

D
C

λ

-0.4

-0.2

 0

 0.2

 0.4

 0.005  0.01  0.015  0.02  0.025  0.03  0.035

λ

Figure 7. Transition from Modular to Centralized organization
of synchronization. The two upper plots show the evolution of the
dynamical modularity DM and the dynamical centralization DC as a
function of l. Both panels show the evolution of the above properties
for the network described by means of both the original 4 modal
clusters and the 5 new modules including the Rich-Club. The panel in
the bottom shows the evolution of the DC of the 5 new modules
obtained by replacing in Equation (4) the term maxafrag by each ra

corresponding to the new 5 modules. From the curves it is clear that
the dynamics is centralized around the Rich-Club.
doi:10.1371/journal.pone.0012313.g007

Dynamics of Cat Cortex

PLoS ONE | www.plosone.org 8 August 2010 | Volume 5 | Issue 8 | e12313



in the cat’s brain. We have confirmed, that the role of the different

areas in the path towards synchrony is difficult to assess using the

traditional partition into four groups of modally-related areas. On

the contrary, we have shown that a subset of areas, forming a

topological Rich-Club, orchestrates this process. The distinction of

this subset permits the interpretation of a new mesoscale formed

by the four modules, excluding some nodes that form the Rich-

Club, which are considered here as the fifth module. This

proposed structure allows us to reveal a transition in the path to

synchronization as a function of the coupling strength, that seems

to indicate a two-mode operation strategy. For low values of the

coupling, a state of weak internal coherence within the five

modules governs the coordination dynamics of the network. As the

coupling strength is increased, the Rich-Club becomes the

responsible of centralizing the network dynamics and leads the

transition towards global synchronization.

Finally, the composition of the Rich-Club allows to make

some additional biologically relevant observations. First, the

Rich-Club comprises of cortical areas of the four different

modalities, supporting the hypothesis of distributed coordination

dynamics at the highest levels of cortical processing such as

integration of multisensory information [32]. Second, the Rich-

Club comprises of most of the frontal areas in the Fronto-

Limbic module. Moreover, the areas of the Rich-Club collected

from the original Somatosensory-Motor system contain the so-

called supplementary motor area (SMA). The SMA is a

controversial region of the motor cortex, since in contrast with

the rest of somatosensory-motor areas it is in charge of the

initiation of planned or programmed movements [33]. Further-

more, the area AES of the Rich-Club, originally assigned to the

Visual module, is believed to integrate all visual and even

auditory signals for their multimodal processing and transfer-

ence as coherent communication signals [34]. Summing up, the

Rich-Club is basically made up of areas involved in higher

cognitive tasks devoted to planning and integration. The

prominent role of the aforementioned regions in the cortex

activity is unveiled from our network perspective in terms of a

Rich-Club leading the path to synchronization. Our proposal,

after this observation, is to investigate the evolution of

synchronization in the cat cortex by tracking the transient of

five modules corresponding to the anatomico-functional areas

(S-M, F-L, Aud, Vis) and the Rich-Club as a separate (but

interrelated) functional entities.

Materials and Methods

Cortico-cortical network of cats’ brain
After an extensive collation of literature reporting anatomical tract-

tracing experiments, Scannell and Young [8,9] published a dataset

containing the corticocortical and cortico-thalamical projections

between regions of one brain hemisphere in cats. The connections

were weighted according to the axonal density of the projections.

Connections originally reported as weak or sparse were classified with 1

and, the connections originally reported as strong or dense with 3. The

connections reported as intermediate strength, as well as those

connections for which no strength information was available, were

classified with 2, see Figure 1(b). Here we make use of a version of the

network [10] consisting of N~53 cortical areas interconnected by

L~826 directed corticocortical projections.

Rich-Club areas
A key factor of the hierarchical organization of the corticocor-

tical network of the cat is that the hub areas (those with the largest

number of projections) are very densely connected between them

[16]. The Rich-Club phenomenon [30,31] is characterised by the

growth of the internal density of links between all nodes with

degree larger than a given k’, referred as k-density, w(k’):

w(k’)~
Lk’

Nk’(Nk’{1)
, ð5Þ

where Nk’ is the number of nodes with k(v)§k’ and Lk’ is the

number of links between them. As w(k) is an increasing function of

k, a conclusive interpretation requires the comparison with

random surrogate networks with the same degree distribution.

The question is then whether w(k) of the real network grows faster

or slower with k than the expected k-density of the surrogate

networks. If w(k) grows slower, it means that the hubs are more

independent of each other than expected.

In our case, the network is directed but the input degree kin(v)
and the output degree kout(v) of the areas are highly correlated.

Hence, we compute the k-density of the corticocortical network

of the cat, wcat(k), considering the degree of every area as:

k(v)~
1

2
(kin(v)zkout(v)). The result is presented in Figure 8

together with the ensemble average w1n(k) of 100 surrogate

networks. At low degrees wcat(k) follows very close the expectation,

but for degrees kw13, wcat(k) starts to grow faster. The largest

difference occurs at k~22, comprising of a set of eleven cortical

hubs of the four modalities: visual areas 20a, 7 and AES; auditory

area EPp, somatosensory-motor areas 6m and 5Al; and fronto-

limbic areas Ia, Ig, CGp, CGa, 35 and 36.

Numerical simulation details
We integrate the Kuramoto equations, see equation (1), using

a fourth order Runge-Kutta method with time step dt~10{2.

The system is set up by randomly assigning the initial conditions

fhi(0)g and the internal frequencies fvig randomly in the

intervals ½{p, p� and ½{1=2, 1=2� respectively. The integration

of the Kuramoto is performed for a total time T~700. After a

transient time of t~300 we start the computation of the

different dynamical measures such as the order parameters r

and rlink.

Synchronization order parameters
The dynamical coherence of the population of N oscillators

(areas) is measured by means of two different order parameters r

and rlink . The first one is obtained from a complex number z(t)

Figure 8. K-density of the corticocortical directed network of
the cat w(k), compared to the expectation out of the surrogate
ensemble. The largest difference occurs at k~22 (vertically dashed
line) giving rise to a Rich-Club composed of eleven cortical areas.
doi:10.1371/journal.pone.0012313.g008

Dynamics of Cat Cortex

PLoS ONE | www.plosone.org 9 August 2010 | Volume 5 | Issue 8 | e12313



defined as follows:

z(t)~r(t)exp iw(t)½ �~
XN

j~1

exp ihj(t)
� �

: ð6Þ

The modulus of z(t), r(t), measures the phase coherence of the

population while w(t) is the average phase of the population of

oscillators. Averaging over time the value of r(t) we obtain the

order parameter r~Sr(t)T.

The second order parameter, rlink, is measured looking at the

local synchronization patterns, allowing for the exploration of how

global synchronization is attained. We define rlink by measuring

the degree of synchrony between two connected areas i and j:

Cij~ lim
Dt??

DAij

Dt

ðtzDt

t

ei hi (t){hj (t)
� �D, ð7Þ

where Aij is the adjacency matrix of the network, being Aij~1

when Wijw0 and Aij~0 otherwise. Each of the values fCijg are

bounded in the interval ½0,1�, being Cij~1 when the connected

areas i and j are fully synchronized and rij~0 when these areas

are dynamically uncorrelated. Note that for a correct computation

of Cij the averaging time Dt should be taken large enough (in our

computations Dt~400) in order to obtain good measures of the

degree of coherence between each pair of areas. Since Cij~0 for

the areas that are not physically connected we construct the N|N

matrix C and define the global order parameter rlink as follows:

rlink~
1

L

X
i,j

Cij : ð8Þ

Therefore, the parameter rlink measures the fraction of all possible

links that are synchronized in the network.

In the more general case in which all possible pairs of areas are

taken into account to compute the average synchronization

between cortical areas, Eq.(7) and Eq.(8) can be rewritten as:

C�ij~ lim
Dt??

D 1

Dt

ðtzDt

t

ei hi (t){hj (t)
� �D, ð9Þ

and

r�link~
2

N(N{1)

X
i,j

C�ij , ð10Þ

respectively. Note that C�ij and r�link account for the degree of

synchronization between areas i and j regardless of whether or not

they are connected.

Defining the average synchronization between areas
To label two areas i and j as synchronized or not one has to

analyze the matrix C� and construct a filtered matrix F whose

elements are either Fij~1 if i and j are considered as synchronized

or Fij~0 otherwise. From the computation of r�link, equation (10),

one knows the fraction of all possible pairs of areas that are

synchronized. Therefore, one would expect that N(N{1):r�link=2
elements of the matrix F have Fij~1, while the remaining

elements are Fij~0. The former elements correspond to the

N(N{1):r�link=2 pairs with the largest values of C�ij .
In order to measure the average degree of synchronization

between pairs of areas one have to average over different n

realizations using different initial conditions fhi(0)g and different

internal frequencies fvig (typically we have used n~5:103

different realizations for each value of l studied). To this purpose

we average the set of filtered matrices fFlg (l~1,…,n) of the

different realizations to obtain the average degree of synchroni-

zation between areas:

rij~
1

n

Xn

l~1

Fl
ij : ð11Þ

In this way the value for rij[½0, 1� accounts for the probability that

areas i and j are considered as synchronized.
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