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The time to failure,T, of dynamical models of fracture for a hierarchical load-transfer geometry is studied.
Using a probabilistic strategy and juxtaposing hierarchical structures of heiglg devise an exact method to
computeT, for structures of height+ 1. BoundingT, for largen, we are able to deduce that the time to failure
tends to a nonzero value wharends to infinity. This numerical conclusion is deduced for both power law and
exponential breakdown rulegS1063-651X99)03309-1

PACS numbgs): 64.60.Ak, 64.60.Fr, 05.45.a, 91.60.Ba

I. INTRODUCTION simulation. But fracture in heterogeneous materials is, from a
statistical viewpoint, a process critically dependent on the
Fracture in heterogeneous materials is a complex physicaails of the failure distribution and these tails are naturally
problem for which a definite physical and theoretical treat-difficult to sample using conventional Monte Carlo methods.
ment is still lacking. By “heterogeneous material” we un- It is thus very important to develop a set of simple models
derstand a system whose breaking propefges., strengths, which can be analyzed either analytically or numerically,
lifetimes) depend on time and/or space in a random Widy  with precision and with clear asymptotic behavior, in order
This randomness arises from the many-body interactionto guide our understanding of more complex models.
among the constituent parts of the system, each one having The load-transfer models belong to this group of simple,
mechanical properties that can be considered independestochastic fracture models amenable to either close analytical
of—or at least weakly correlated with—the properties ofor fast numerical solution, and whose output, spanning many
neighboring parts. The term disordered systems is also usamders of magnitude in sample size, allows a precise charac-
as a collective name for this kind of material. The presencéerization of the asymptotic behavior. The collective name
of disorder alters radically the way the rupture procesgyiven to this type of model is fiber-bundle modéRBM),
evolves compared to the single-crack growth mechanism ofecause they arose in close connection with the strength of
erating in homogeneous materidisich as glass or alloys bundles of textile fiber§7,8]. Since Daniels’ and Coleman’s
In heterogeneous materi@omposites, ceramics, rocks, con- seminal works, there has been a long tradition in the use of
crete the process of rupture begins with delocalized damagéhese simple models to analyze failure of heterogeneous ma-
affecting the bulk of the material, and consisting of an enor+erials.
mous number of microcracks nucleated at random inside the FBM come in two “flavors,” static and dynamic. The
system. This population of microcracks evolves with time bystatic versions of FBM simulate the failure of materials by
coalescence and growth of individual microcracks until thequasistatic loading, i.e., by a steady increase in the load over
final rupture point of the system is reached. In the very finathe system up to its macroscopic failure. One of the basic
stages, the process of coalescence gives rise to a $orghe  outputs is precisely the value of this ultimate strength. Time
few) dominant cracts) responsible for the macroscopic fail- plays no role in these models, loatl is the independent
ure of the material. variable, and the strength of each element is considered to be
The analytical or even complete numerical solution of thisan independent identically distributed random variable. On
complex problem is prohibitive. Nevertheless, our underthe other hand, the dynamic FBM simulate failure by stress-
standing of fracture in heterogeneous material has improverlpture, creep-rupture, static-fatigue, or delayed-rupture, i.e.,
recently with the development of simple algorithms to simu-a (usually constant load is imposed over the system and the
late the breaking process. Most of these algorithms are basedements break by fatigue after a period of time. The time
on percolation theory3] and include models of random re- elapsed until the system collapses is the lifetime or time to
sistor networkg4], spring network$5], and beam networks failure of the set. Time acts as the independent variable, and
[6]. The standard way of solving these models is through dhe lifetime of each element is an independent identically
more or less dense sampling of failure space via Monte Carldistributed random quantity.
There are three basic ingredients common to all FBM:
first, a discrete set oN elements located on the sites of a
*On leave from Departamento déska, Technological Univer- d-dimensional lattice; second, a probability distribution for
sity of Havana, ISPJAE, Havana 19390, Cuba. the failure of individual elements; and, third, a load-transfer
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rule which determines how the load carried by a failed ele-here: the equal load-sharin@ELS) rule, the local load-
ment is to be distributed among the surviving elements in theharing(LLS) rule, and the hierarchical load-sharifigLS)
set. rule. In the ELS rule, which can be thought of as a mean-
The most common probability distribution functiésec-  field approximation, the load supported by failing elements is
ond ingredient used to express the breaking properties ofshared equally among all surviving elements. In the LLS
individual elements is the Weibull distributid®]. For the  ryje, the load of failing elements is accommodated by a
static cases, where the load, is the independent variable, neighborhood whose exact definition depends on the geom-
failure statistics are described by the functi®{o)=1  etry and dimensionality of the underlying lattice. In the HLS
—exp{—(a/a0)’}. Here, o is a reference strength andis e the scheme of load transfers follows the branches of a
the so-called Weibull index or shape parameter, which i acta) (Cayley tree with a constant coordination number.

essence controls the variance in the strength thresholds. Fethmmon to all three load-transfer modalities is the fact that
the dynamic cases, with time as the independent variablgy.oken elements carry no load.

things are more complicated because the failure of each ele- £ 5 models have been used to predict failure under ten-
ment is sensitive to both the elapsed timred its load his-  gjon in elastic yarns and cables with little or no twist, be-
tory. The probabilityP(t; o(t)) of a single element failing at  4yse in these arrangements the load supported by a failing
time t after suffering the load history(t) is of the form[8]  finer or cable strand is shared equally by all the remaining
N fibers or strands in the bundle. The conjunction of a loose
P(t;o(t))= 1—exp[ _f Kj[g'(T)]dT}, (1.2 arrangement and a load under tension facilitates this global-
0 range load redistribution scheme.
LLS models have their natural field of application in the
ure of composite materials, and more specifically in fiber-
reinforced composites with brittle fibers embedded in a stiff
matrix [13]. There, as fiber breaks appear, the matrix serves
the important function of transferring the shear traction gen-
o \P erated in the matrix at the point of a fiber break to the neigh-
Kl(o‘)ZVO(—> (1.20  boring fibers, with most of the load going to the nearest
90 neighbors. This arrangement results in a very short-range
load redistribution, both laterally across fibers and longitudi-
nally along the fiber axis.

More important from a geophysical point of view and for
this paper is the HLS rule recently introduced by Turcotte
and collaborators in the seismological literat{itd]. In this
p ] load-transfer modality the scale invariance of the fracture

t

wherekj(x), j=1,2, is the hazard rate or breaking rule. To fail
impart to Eq.(1.1) the commonly observed Weibull behavior
of real materials under constant loadpawer-law breaking
rule is used[10]:

Here, vy is the hazard ratéhumber of casualties per unit of
time) under the unit loadry. For constant load, inserting Eq.
(1.2) into Eq.(1.1) gives the Weibull probability distribution
function for the dynamic FBM:

g
P(t;U):l—eXD{ - VO(O'_ (1.3 process is directly taken into account by means of a hierar-
0 chical load-transfer scheme following the branches of a frac-

The widespread use of Weibull statistics stems from thd@l tree. An important property of the HLS scheme is that the
experimental fact that real materials follow very closelyZOne of stress transfer is equal in size to the zone of failure,
Weibull probability distribution functions for both the and this nicely simulates the Green's function associated

strength and the time to failure of the individual elementsWith the elastic distribution of stress adjacent to a rupture
[7,8,11,12. [15]. The fractal tree structure used to redistribute loads is a
Besides the power-law breaking rule, Hd.2), another ~Mere construction useful to envisage the way loads from

breaking rule basic aspect of the topology of the hierarchical structure is

the number of elements directly linked together; this defines
the coordinationc, of the tree. That is¢ fibers could be
' (1.4 assembled to form a bundle which would behave as if it were
itself a fiber. Theng of these second-generation fibers could
where¢ and » are two positive constantthe amplitude and themselves be assembled to form a bundle which would act
the characteristic scale of the exponential fundgtiohhis as a third-generation fiber, and so on. This hierarchical as-
breaking rule has a theoretical support in the apparent necesemblage can be continued indefinitely and an indeis
sity of a Boltzmann factor in the loagtress for any ther-  used to describe the level within the hierarchy or, equiva-
mally activated procesi@s fracture at the molecular level is lently, the height in the tree structure. 8e-0 refers to the
interpreted 11]). The substitution of Eq1.4) into Eq.(1.1)  individual elements in the system=1 refers to the first
does not give a Weibull function. Nevertheless, the establevel in the tree, etc. Far=2, n=0 implies individual ele-
lished use of the two breaking rules makes it necessary tments,n=1 implies pairs of elements,= 2 pairs of pairs of
take both into account, and so we have dedicated Sec. V telements, etc. Thus, anth-order tree with coordination
the discussion of the lifetime of sets under the exponentiahumberc would containN=c" elements.
breaking rule. Although we would stress below the importance of the
The most critical of the three basic ingredients of all FBM analytical solution of the FBM, it is enlightening to show
is theload-transfer rule where a great deal of the physics of how these models can be solved using Monte Carlo tech-
the models is hidden. Three end members are of interestiques because that would facilitate the understanding of

g
K2<a>=¢exp[ n(a—o
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TABLE |. Main asymptotic results for the three standard modalities of FBM in the static and dynamic

cases.
ELS LLS HLS
Static Critical point No critical point No critical point
g=e g 1/InN o= 1IninN
Daniels[7] Harlow [18] Newman and Gabrielof22]
Dynamic Critical point No critical point Critical point
T.=1lp
Coleman[10] Kuo and Phoenix20] This paper

parts to follow. We will focus on thelynamicFBM, as this  and dynamic ELS FBM. Regarding the asymptotic properties
is the type of problem we want to address in this paperof the LLS models, the work of Smith and co-workers and of
Consider a set oN elements arranged on the sites of a lat-Harlow, Phoenix, and co-workers has been fundamental.
tice. The general Monte Carlo recipe goes as follogis: They proved that neither the static nor the dynamic LLS
Assign random lifetimes; to thei=1, ... N individual el- FBM have a critical point. For the static case, the strength of
ements, as drawn from E@L.1) under unit load{ii) advance the system goes to zero as the size of the system is increased.
time an amount equal to the lifetime of the shortest-livedMore specifically,o.«1/InN (conjectured by Harlow, Phoe-
nonfailed element in the set, sady (i) reduce lifetimes of nix, and Smith[17]; proved by Harlow[18]). For the dy-
all remaining elements by an amouso;) 5, wherex(x) is ~ namic case a similar result holdsonjectured by Tierney
either the power-law or the exponential breaking rule) [19]; proved by Kuo and Phoenip20]). See[21] for a re-
transfer load from the failing element to other sound eleview of the static LLS models.
ments in the set according to a preset load-transfer BLUS, The static HLS model was shown to lack a critical point
LLS, or HLS); (v) proceed to stefii) if at least one element by Newman and Gabrielo\22]. In this case the reduction to
is unbroken, or end if the system has collapsed) add zero of strength in relation to system size is very slow,
together all the individua¥’s to obtain the time to failurd&  «1/InInN, but strictly speaking the strength of an infinite
of that particular realization of the system. This way of ap-system is zero. The dynamic HLS model was introduced in
plying the Monte Carlo method is what we will refer to as the geophysical literature in R423]. Afterwards, Newman
the standard method et al. [15] used this dynamic HLS model with the specific
Among the different results that one can obtain from theaim of finding out if the chain of partial failure events pre-
analytical or numerical solution of the fiber-bundle modelsceding the total failure of the set resemble a log-periodic
(for a review, seg?2]), here we are mainly interested in the sequence. This was motivated by the amazing fit of this type
asymptotic strengtfstatic FBM) and asymptotic time to fail- obtained in Ref[24] to data of the cumulative Benioff strain
ure (dynamic FBM of the system. The asymptotic strength released in magnitude 5 earthquakes in the San Francisco
is defined as the maximum load that an infinite system caBay area before the October 17, 1989 Loma Prieta earth-
support before all its elements break. The asymptotic time tguake. In the analysis dfl5], it appeared that, contrary to
failure or lifetime is the minimum time one has to wait until the static model, the dynamic HLS model seemed to have a
an infinite system collapses by all its elements breaking byonzero time to failure as the size of the system tends to
fatigue. These are themselves important questions from ainfinity. This issue was also studied[i85] by using a renor-
engineering point of view. Table | gathers the mainmalization approach. This behavior seems odd because, as
asymptotic results for the different FBM, including the dy- Table | shows, there is a symmetry, for a specific load trans-
namic HLS model, to which this paper is dedicated. It hager rule, between the static and the dynamic cases: the ELS
been known since the work of Dani¢lg] that the static ELS models have a critical point both for the static and the dy-
fiber-bundle model has a critical point in the sense that for amamic cases; the LLS models have no critical point behavior
infinite system there is a zero probability of breaking theeither for the static or the dynamic case. The static HLS
system when applying a loa€ less than a critical value., model has no critical point, and so it would seem natural that
and a probability equal to 1 to break the system if the appliedhe dynamic HLS would not have a critical point either. Here
load is bigger than the critical load. This is valid for any we present an exact iterative method to compute the time to
probability distribution function satisfying some very mild failure of sets of elements with a hierarchical modality of
conditions[7]. The critical strengthr, quoted in Table | is load transfer(A preliminary account of the behavior of the
only valid, however, for a Weibull function. As for the dy- dynamic HLS model under the power-law breaking rule has
namic ELS model, Colema8] proved rigorously a compa- been recently publishe@6].) Due to the fact that the exact
rable result, namely that there exists a critical timebelow  method is too time consuming to yield useful asymptotic
which an infinite system under dynamic rules has a zeraesults, we also present here rigorous upper and lower
probability of collapsing and above which the system col-bounds to the lifetime of large dynamic HLS sets. From the
lapses with a probability of 1T, varies with the assumed behavior of the lower bound we conclude that the dynamic
probability distribution function, but otherwise the critical- HLS model has indeed a critical point, that is, its time to
point result is independent of jthe value quoted in Table | failure is nonzero for an infinite system.
is for a power-law breaking rule Smith and Phoenix16] This paper is organized as follows. In Sec. Il we review
give a summary of the main asymptotic results for the stati¢the continuous formulation of the ELS model given by Cole-
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man [8]. This is useful for understanding the probabilistic 1 p
approach used in the rest of the paper. This approach is com- k(o)= a
pared with the standard method in a Monte Carlo simulation,

to illustrate that both are equivalent. Section Ill contains the-;,, Egs.(2.1), (2.2), and(2.3) with x=(Bad,N) andn, and
core of the iterative method to exactly calculate the time tq,q conditionsn,(0)=,N andn(T)=0, one d(éduces ’
failure of dynamical HLS sets. The strategy of the juxtapo- ’

o

O

(2.9

sition of configurations is explained and the need of defining afr> dxe* a
“replica” configurations is introduced. This leads to the con- T= I_J =— I_Ei( —Bay). (2.5
cept ofprimary diagramfrom which the value of thé’s and poo X

of T, for a givenn, are exactly calculated. From a primary

diagram one obtains an easier one calleduced diagram

which is used to build the primary diagram of the next level I

n+1. In Sec. IV, aiming at simplification, we introduce the T= @_ (2.6)

concept ofeffective diagramas the averaged form of a pri- p

mary. In these diagrams each stage of breaking is represented o ] o o )

by a unique effective configuration whose decay width isEquation(2.2) is similar to a radioactivity equation in which

obtained by an appropriate average of the various decaly< stands for the decay raté, of one nucleus. In the ELS

widths existing in the primary. Depending on the type ofCase itis not of much interest to lose this elegant continuous

means used’ upper or lower bounds for thef the next formulation. HOWeVer, fOI’ Othel’ |0ad-transfer SChemeS, SUCh

height are obtained. So far the power-law breaking rule i8S the HLS, this analogy with radioactivity is useful, but

used in the quantitative calculations. Section V is devoted t@imilar continuous differential equations cannot be formu-

the exponentia| breakdown ru|e Speciﬁcs_ Two Append|xe§ated anymore. Thus, the discrete version of this prObablllstIC

have been added: In Appendix A we detail the number ofhilosophy applicable to any load-transfer scheme was de-

replicas demanded for a general coordinatimin Appendix ~ Veloped in Ref[27] and will be used throughout this paper.

B, we show the reason why the three types of means used frepresents an alternative to what we have called the stan-

the averaging effectively work to provide rigorous bounds. dard method[15] commented on in Sec. I, in which the
random thresholds for breaking are assigned at the beginning

II. ELS MODEL. THE PROBABILISTIC APPROACH and the process of breaking is henceforth completely deter-
ministic. Both points of view are equivalent. In the following
In Ref.[8], in the context of his statistical theory for the we will use nondimensional magnitudes. In particular,

time dependence of mechanical breakdown in bundles of fi-

bers at constant total load, Coleman defines an “ideal (all)=1, o0,=1, and Bo,=1. (2.7

bundle” as one fulfilling precisely the same premises as the

ELS model presented in Sec. |. Following the work of thisNote that this would be equivalent to adopting, with the no-

author, let us calN the size of the bundiér sej att=0 and  tation of Sec. l,y,=0,=d=7n=1.

n(t) the number of filament&r elementswhich survive to In the probabilistic approadt27], in each time increment,

t without breaking; the lifetimeT, of the bundle is defined as defined as

the time required fon(t) to reach zero. We will call-, the

Using Eq.(2.4) instead of Eq(2.3), one obtains

fixed load attributed to every single elementtatO. The 1
hypothesis of the ELS model implies that the actual load in a o= ' (2.8
particular unbroken filament at tintes E ¥
J
aoN ..
o= R (2.))  one element of the sample decays. The indexs along all

the surviving elements. Using Ed&.3), (2.4), and(2.7), we

Thus the lifetime of a very large ideal bundle formed by have
fibers of equal length, may be calculated from

Ij=a? (or I'j=e"). (2.9
dn
- aznlx(cr), 22 The probability of the specific elememn, to fail is
wherek (o) is a phenomenological function. The produeat Pm=TImo. (2.10
is called the hazard rate. In polymeric fibeksgcan be satis-
factorily represented by an exponential functionoof Equation(2.8) is the ordinary link between the mean time
interval for one element to decay in a radioactive sample and
S the total decay width of the sample. The time to faildreof
Kk(o)= a 23  a bundle(set of elemenisis the sum of theN &’s.

It is instructive to apply Eq(2.8) to the ELS case where
wherea and 8 are parameters that determine the behavior of’; does not depend ojbecause every surviving element
the fibers under any load. Equation(2.3) represents the bears the same load. Here, in #th time step, the number of
so-calledexponential breakdown ruleAn alternative also survivors isn,=N-—k and the individual load igr,=N/(N
widely used is the so-callepower-law breakdown rute —Kk). Then for the power-law rule,
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50 T T T N=1 N=2
p=2 ® ) 5 5 5
o2 . |l B VAN VAN VAN
401 - c=2 b
Cc=
(<13) (1) 1 (0) 1 (1) 2 2
> P
O 30F | 1 -
c N=4
(V] 03 04 05
g_ 20k time to failure i
o 3 8 A 8
“I= — — 2,1) — —
10 . 11 1 1 2 1 1 4
e . () (1) (©) (4)
- 2 2
0 o e (2,2)
0.3 04 0.5
time to failure FIG. 2. Breaking process for the three smallest trees of coordi-

) . ) ] ~ nationc=2 (N=1,2,4). The integers in parenthegesrepresent
FIG. 1. Comparison of Monte Carlo simulations; the broad dis-ye \ymper of breakings that occurred. Tée stand for the time

tributions come from using the standard approach, and the thinngfj,ngeq petween successive individual breakings and the numbers
distributions come from using the probabilistic approach. The time,der the legs indicate the load they bear.

to failure is plotted in dimensionless units.

3 Ill. EXACT ITERATIVE METHOD
1 (N=Kk)” (N—k)” FOR HLS DYNAMICAL MODELS

K"N—k NP NP ’

To give a perspective of what is going on in the rupture
process of a hierarchical set, we have drawn in Fig. 2 the
with k=0, ... N—1 and three smallest cases for trees of coordinatier?. Denoting

by n the number of levels, or height of the tree, i+ 2",
N-1 we have considered=0, 1, and 2. The integers within pa-
T= IZO O - (211 renthesegr) account for the number of failures existing in
N the tree. When there are several nonequivalent configurations
1 ) corresponding to a given they are labeled as (s), i.e., we
If p=2, T=3(1+ 1/N). For a general value op, Using 544 a4 new indes. The total load is conserved except at the

Stolz’s theorenj28] we find end, when the tree collapses. Referring to the high symmetry
. of loaded fractal trees, note that each of the configurations

lim T= (N=1)” _)1 (2.12 explicitly dra\_/vn_in Fig. 2 represents qll those that can be

New  NP—(N=1)P p’ ' brought to coincidence by the permutation of two legs joined

at an apex, at any level in the height hierarchy. Hence we call

. - . them nonequivalent configurations or merely configurations.
Wh\'/(\:/r;] CO'QC'dl?S W't.?hEtﬂ(z'G)' tial breakd | In general, each configuratiom,§) is characterized by its
en dealing wi € eéxponential breakdown rule, pro'probability p(r,s), =Z¢p(r,s)=1, and its decay width

ceeding analogously one easily checks that the sum of t : ) .
series ofs’s, for sufficiently highN, provides the same result hili((;i\?zalnTQ; time step for one-element breaking at the stage

as the exponential integral of E.5).
It is also instructive to compare the results obtained from 1

Monte Carlo simulations in the calculus ©in two ways:(a) 5= p(r,s) =——. (3.0

by using the standard procedure, i.e., of assigning random E I'(r,s)

individual lifetimes at the beginning of each simulation and

proceeding deterministically; db) by using a probabilistic  This is the necessary generalization of E2.8) due to the

point of view, i.e., from Eq(2.8) and Eq.(2.10. This com- appearance, for the samgof nonequivalent configurations

parison is shown in Fig. 1 for HLS sets df=128 andN during the decay process of the tree. In cases of branching,

=512 elementgwith c=2, p=2). Note the significant re- the probability that a configuration chooses a specific direc-

duction in the dispersion thickness obtained by using thigion is equal to the ratio between the partial decay width in

second method. This contrast tends to decrease for growirtfpat direction and the total width of the parent configuration.

N and growingp. Obviously, the Monte Carlo strategy can And the probability of a given configuratigo(r,s) is given

be applied for any modality of load transfer in the frameworkby the sum, extended to all its possible parents, of the prod-

of the probabilistic method. The inconvenience lies in theuct of the probability of each parent times the probability of

very essence of these simulations, i.e., their moderate accahoosing that specific direction.

racy and large cost for large sets. In this paper, we will show We will compute at a glance th&s of Fig. 2 in order to

how to apply the probabilistic method to the HLS transferanalyze the general case later. To be specific, we will always

modality, in order to obtain an exact algebraic method for theuse p=2. For n=0, we havel'(0)=12 and §,=1/12=1

lifetimes, and how to explore the asymptotic valuesTof =T. For n=1, I'(0)=12+12=2, §,=3; I'(1)=22, &,

whenN tends to infinity. =% and hencéel=%+1=2 Forn=2, I'(0)=1%+12+17?
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+12=4, §p=13; I'(1)=2%2+12+1%2=6, 5,=%. Now we Type (a) transition
face a branching; the probability of the transition (1)
—(2,1) is ¢ and the probability of the transition (1) (3)(0) (3)(1)
—(2,2) is %; on the other handI'(2,1)=2%2+2?=8
=T(2,2), henced,=¢XxXi+2xi=%. Finally 6;=% and axi=d
_—

the addition of8’s gives T=33.

Now we define theeplica of a configuration belonging to
a givenn, as the same configuration but with the loads
doubled(this is because we are using-2). The replica of a
given configuration will be recognized by a prime sign. In 4 1 1 1 1 4 2 1 1
other words, £,s)’ is the replica of {,s). Note that when a
configuration represents the state of complete collapse, it and Type (b) transition
its replica are the same thing. When dealing with the power- '
law breakdown rule, any decay width, partial or total, related 3)0) (4)0)
to (r,s)’ is automatically obtained by multiplying the corre-
sponding value of (;s) by the common factoc?=2=4.
This also implies thap(r,s)=p(r,s)’. In the exponential
rule, this does not work and the widths of the replicas have to
be specifically calculate@his is explained in Sec. V The
need to define the replicas stems from the observation that
any configuration appearing in a stage of breakingf a
givenn is built as the juxtaposition of two configurations of
the leveln—1, including also the replicas of the leval Type (c) transition
—1 as ingredients of the game. In Fig. 2, one can observe the
explicit structure of the configurations ®i=4 (or of N (4)(0) @y
=2) as a juxtaposition of those df=2 (or of N=1) and its
replicas. From this perspective, we notice that the total num- 4x2*=16
ber of configurations appearing in the fracture process of a
tree of heightn (omitting the totally collapsed one\,,, is
equal to

416

4 1 1 1 1 2 2 2 2

anfl(anl""l)_’_Nn_l- 2 22 2 4 2 2

2 FIG. 3. Calculation of three partial decay widthsrir3, from
the information obtained in=2.
In this formula the first term represents all the possible com-
g;nt?]ioazgém ielp .egltrll?sgi:g?gsté)rfr: rgg?gecrigf;%:rigzgzu_a common factoc’ times the ordinary v_vidth. This holds fc_)r
rations formed by juxtaposing a collapsed tree of height 2" helghtn qnd allows thg computation of aII_ the _partlal
—1 together with any of the\, , replicas of the previous de_cay widths in a_tr_ee of helghtfrqm those obtained in the
height. Thus, heightn—1. This is illustrated in Fig. 3 for the three types of
transitions for trees witihn=3 (p=2 has been used
No—1(Ny—1+3) In Fig. 2 and Fig. 3 we have drawn the different configu-
Nn:f- (3.2) rations of lown explicitly, that is, by representing them as
small fractal trees at different stages of damage. It is conve-
FeedingNy=1 into Eq. (3.2, we obtainA;=2, N,=5, nient, for reasons of economy, to introduce a symbolic nota-
N3=20, N;=230, N5=26 795, N5g=3.59x 1%, N,=6.45 tion for the configurations so that the complete process of
X 10, etc. It is clear that the amount of configurations tobreaking of a tree of height adopts a more compact look.
deal with soon constitutes an insurmountable problem. This is shown in Fig. 4. There, the different configurations of
The single-element breaking transitions in configurationsy=3 are labeled by the integers within the boxes. The two
of heightn can be only of three types. Typetransitions parentheses at their right, with their respective integers, rep-
correspond to the breaking of one element in half of the treeesent the twan=2 juxtaposed configurations forming that
while the other half remains as an unaffected spectator. Typef leveln=3. This information of the previous height will be
b transitions correspond to the decay of the last survivingcalled thegenealogy Time is assumed to flow downwards.
element in one-half of the tree, which provokes its collapseThe numbers accompanying an arrow connecting two boxes
and the corresponding doubling of the load borne by thestand for the decay width of that transition. Coming back to
other half. In these two cases, the transition width coincide$ig. 3 one recognizes there that those explicit transitions are
with that already obtained when solving the lewet 1. Fi-  nothing else but what in Fig. 4 is represented as block 3,1
nally, typec transitions correspond to the scenario in which ——— block 4,2, block 3,2—— block 4,1, and block
one-half of the tree has already collapsed and in the othet,1]——— block 5,1. A diagram like that of Fig. 4 is called
half one breaking occurs. In this third case, the decay widtla primary, because it is formed by the juxtaposition of all
is that of a replica of the level— 1, which, as said before, is possible configurations of the previous height. Thus,

N
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FIG. 4. Symbolic representation of the gradual rupture of the 5
tree of heighh=3 (c=2,p=2). Time flows downwards.

24
each configuration belonging to a primary diagram has a v
specified genealogy. This allows the computation of all the 6
decay widths of the diagram. As foreseen in [E82), not
counting the totally collapsed configuration;=20. The 32

sum of all the partial widths of a parent configuration in a
branching is always equal to the total decay widthof the 7
parent. From this primary width diagram one deduces the
probability of any primary configuration at any stagef

breaking, and consequentl§ is obtained using Eq(3.1). 64
Finally, by adding all the5’s we calculateT(n=3). 3
After a primary diagram has been obtained, i.e., after cal- 8

culating all its decay widths, it can be simplified. The idea is
to fuse, at each, all the configurations having the same total
decay rate]'. Once fused, these configurations have a prob-
ability equal to the sum of the old probabilities, and obvi-
ously maintain the samE. A primary diagram simplified in  rived by means of the computer to obta\y =1, A, =

this way will be called aeduceddiagram. An element of a Aj =10, A, =36, Vg =202, N§ =1669, \; =16 408. The
reduced diagram resulting from a fusion has no genealogy ifmportant point is that one can use a reduced diagram of the
the sense that it does not derive from one but from severakvel n to build a primary of the leveh+ 1 obtaining the
juxtapositions. The genealogy was used in the calculation oéxact information of the new level. After calculating that
the primary diagram. The later fusion does not require anyrimary, by fusing again configurations of equi| one
other independent information. To illustrate the concept ofwould obtain the reduced diagram of the height 1.

what a reduced diagram is, let us look again at Fig. 2. For By iterating this procedure, that is, by forming the pri-
n=0 andn=1, for eachr there is only one configuration mary diagram of th@+ 1 height by juxtaposing the configu-
and hence primary and reduced diagrams are identical. Feations of the reduced diagram of the heightwe can, in
n=2, for r=2 there are two configurations in the primary principle, exactly obtain the total time to failure of trees of
diagram, but they have the same width, specifically, dor successively doubled size. In spite of the great simplification
=2,1'(2,1)=I'(2,2)=8. Thus these two configurations can obtained when using reduced diagrams, the problem of deal-
be fused and the resulting effective diagram is a chain of fivéng with a vast amount of configurations still remains. This
elements, i.e., the branching disappears. Performing this taskct eventually blocks the possibility of obtaining exact re-
with the n=3 of Fig. 4, one would obtain the reduced dia- sults for trees high enough as to be able to gauge the
gram of Fig. 5. The total number of configurations appearingasymptotic behavior o in HLS sets. A few examples of

in the reduced diagramgy, , does not derive from a closed exact results, for=2 andp=2, areT(n=3)=£32L T(n
formula as occurs withV;,. However, it can easily be de- =4)= 55505 52050505000  T1(N=5)=0.420823 219104 814.

FIG. 5. Result of “reducing” the diagram of Fig. 4.
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The iterative procedure was programedviTHEMATICA 3.0 <
with infinite precision and took 10 min CPU time far=5. O

IV. BOUNDS FOR THE TIME TO FAILURE
OF THE HLS MODELS

As seen above, whenever in a primary diagram one fuses
configurations of the samié, no information is lost and the S
calculation of the time to failure remains exact. In spite of
this simplification, the magnitude of the Bayesian problem a4
becomes huge even when dealing with a modenathat is v
why we have looked for alternative approximation proce- 9]
dures to estimatd. In fact, the most important goal, as ex- | & |
plained in Sec. I, is to find out if th€ of very large HLS sets
tends to zero or, on the contrary, remains finite. With these a
points in mind, we have found that a drastic but appropriate
simplification of the primary diagrams, in which one aver-
ages all the configurations of a giveimto a unique configu-
ration with an effective decay width, leads to obtaining, in
the subsequent heights, valuesTosystematically loweror
highen than the exact result. As this fusion leads to only one
effective configuration, it will have probability 1. The value
of its decay width will be called@, . Such “chain” diagrams
will be calledeffective diagramsFor n=3, this is drawn in 1
Fig. 6. These effective diagrams, which substitute the previ-
ously defined reduced diagrams, are used exactly in the same ay
way, i.e., to calculate a neyapproximate primary diagram v
of the next height. The economy obtained by using effective
diagrams is obvious. As the number of effective configura- e
tions of a leveln—1 is 2" 1, the primary of heighn, built
from this effective diagram of heigim— 1, will have a num- ag
ber of configurations\V”, given by v

222 43x 2"t

N 5 ; 4.7

that is, N7'=2, V=5, N3 =14, N/=44, NZ =152, N v

=560, N7 =2144, etc. 7
It is clear that forn=0, 1, and 2, the reduced diagrams (A

and the effective diagrams are identical, i&g=1'(r). The

point is to definea, for n=3 so that theT (n=4) are lower az

(or highep than its exact result. v
A trivial option is to define

& =Dpnafr) or I'pin(r) (4.2

i.e., by assuming that the only configurations formed during FIG. 6. “Effective” diagram forn=3.

the breaking of the tree are those of the maxim{mini-

mum) value ofl". As it is easy to foresee, the use of £4.2)

leads to poor bounds. In fact, the lower bound goes quickly ) , )

to zero. We have found that good lower bounds are obtainef00d higher bounds are obtained from the harmonic mean
by using effective diagrams wheeg is the arithmetic mean (HM),

(AM),
a,(HM)= 1 4.5
a(AM)=2 p(r,9)T(r,s), (4.3 2 prs)g
s s (r,s)
or even better by using the geometric me¢@M), In Appendix B, we analyze why bounds result. Note that
given the primary diagram of a heigim; which leads to
a (GM)=H r(r,s)Pr9). (4.4) c" &'s, the elements forming the effective diagram defined
' s ’ with the aim of obtaining higher bounds are exacty
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] TABLE Il. Sensitivity analysis of the exponential decay fitting

HLS model, C=2, p=2 to the lower bound results.
Nmax=20 Nmax=19 Nmax=18
k T o k T = k T
19 0.32575 18 0.32579 17 0.32585
~ 18 0.32551 17 0.32553 16 0.32555
o) 17 0.32541 16 0.32542 15 0.32542
g 0.44 i 16 0.32537 15 0.32537 14 0.32538
"G-J' 15 0.32536 14 0.32536 13 0.32536
5‘_|= 14 0.32536 13 0.32536 12 0.32536
13 0.32536 12 0.32536 11 0.32536
12 0.32537 11 0.32537 10 0.32536
11 0.32537 10 0.32537 9 0.32537
10 0.32537 9 0.32537 8 0.32537
9 0.32537 8 0.32537 7 0.32537
8 0.32537 7 0.32537 6 0.32537
0.2 — T T T T T T T T 7 0.32537 6 0.32537 5 0.32537
2 4 6 8 10 12 14 16 18 20 6 0.32537 5 0.32537
number of levels, n 5  0.32537

FIG. 7. Dimensionless lifetimel, for a fractal tree of height.
The small circles are obtained from Monte Carlo simulations. Line
4 and 1 are higher bounds basedlgy,, and the HM, respectively.
Lines 2, 3, and 5 are lower bounds based on the GM, AM, an
I nax, respectively.

Shis result implies is that a system with a hierarchical scheme
f load transfer and a power-law breaking rute<2,0=2)
as a time to failure for sets of infinite siZ€,,, such that
0.3253%&T,=<0.33984. Thus, there is an associated zero
probability of failing for T<T., and a probability equal to 1
of failing for T>T., . The critical point behavior is thus nu-
‘merically confirmed.

=1/6, . The fact that they, (i), i=AM, GM, and HM, lead
to bounds in the form explained above is in qualitative con
cordance with the inequality

Fmin(r)=<a,(HM)<a,(GM)<a,(AM)=<I"na(T), o V. EXPONENTIAL BREAKING RULE
When dealing with the exponential breaking rule in the

which is always a mathematical fact. The bounds Obtaine%robab”istic approach, one has to use a]:g) for the haz-
from these formulas foc=2,p=2 are plotted in Fig. 7, to-  ard rate function. For the specific value of the parameters as
gether with points representing Monte Carlo results. As theixed in Eq.(2.7), we have
bounds based on the GM and on the HM are the most strin-
gent, they will be calledr, and T,,, respectively. The de- o
tailed behavior ofT| has been analyzed in a log-normal plot I'j=e%. 5.3
of T,—T, .. against the numbaer of levels of the treeT, .. is
a constant obtained from a fit of the data points to the expo- N ' o
nential function ae ®("~"0 shifted downwards by this ol \\\{HLS model,c=2,p=2 ]
amountT, .. (a, b, andng are three fitting parameters of no A * harmonic mean

. age . % o geometric mean
interest here We have performed a careful sensitivity analy- AN
sis of the four-parameter exponential fitting because the suc-

cess of this exponential decay to a nonzero limit is the hall- B“;}\
mark of the claim. Table Il records, .. obtained from an 102} RN
exponential fit to the ladt data points. The first, .. column = '*1';\
is for a fit using up to a maximum level of=20 (hence the BN
notationn,, in the tablg; the second, .. column is for the '
same fit but dropping th@=20 value; for the thirdT, .. 109k )
column we have also dropped the- 19 data point. It is clear
from the trend in the thred, .. columns that a saturation T, . =0.32537 N
towards T, ..=0.325 37 0.000 01 occurs when using only T = 0.33984
information of big trees to perform the nonlinear fitting. A .

similar analysis ofT, leads toTy_..=0.33984+0.00001. O T T s 12 16 20
The.quallit.y of this exponential fit is also §hown i|_’1 Fig. 8. number of levels, n

Similar fittings of the Monte Carlo data points are inconclu-

sive, due to the intrinsic noisiness of the MC results and the FIG. 8. Visualization of the exponential fittings to the results
limited size of the simulated set®N 21 elements What  obtained by using geometric and harmonic means.

T
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HLS model, c=2
m (0)0) Q ©y(oy exponential breaking rule
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FIG. 9. Primary diagrams for the exponential breaking rule \

(n=2). 00065 10 12 14 16 18 20 22
The problem with this breaking rule is that the values of the number of levels, n

decay widths appearing in a diagram where the loads are g 10, Results foff from trees of heighh, with the exponen-
doubled, i.e., in a diagram replica, are not obtained by Mulyja preaking rule. The small circles correspond to Monte Carlo

tiplying the normal ones by a fixed constant, as occurredimylations. Lines 2 and 3 correspond to lower bounds based on
with the power-law breaking rule. This is easily checked ingm and AM, respectively.

Fig. 9, where the primary diagram for=2 and its replica

are shown. The notation is equal to that of Sec. Il. The valuegy,ye-mentioned triangular array, we were referring to exact
of the decay widths here are dictated by E5.1). Several ,imary diagrams, taking for granted that our aim was to
comments are in order. We see that the structure of the digspain ‘exact results. Obviously this changes if our aim is the

grams is equal to those appearing for the power-law casgy|cylation of bounds; then one would proceed by averaging

because this is independent of the breaking rule assumed. |4ihs for eachr, that is, by calculating means and dealing
Fig. Ab) we have drawn explicitly a replica, that is, a dia- \\ith effective diagrams.

gram in which the system instead of starting with individual |, Fig. 10, we have drawn the lifetimes, for trees of

loads, 0o=1, starts with doubled individual loadsr,  heightn. The circles are results obtained from Monte Carlo
=20,=2. We also see that, just in the same way as th&jmuylations. For the exponential breaking rule, the lower
quantitative calculation of the primary of Fig(ed required  pound based on the arithmetic mean, cuidegoes to zero.
the knowledge of the information of the previous height andrhys the only lower bound that remains useful is that based
of its replicas, the calculation of the diagram of Figb®  on the geometric mean. Again, it will be call@. By fitting
requires the knowledge of the primed elements and thene gataT, by an exponential function of the forf=T, ..
double-primed elements.e., with loads multiplied by 4) of 4 3e-b(0~no) e observe a clean saturation of the

the previous height. Thus, suppose that we want to Ca|CU|at§symptotic time to failure towardsT,.=0.05285
T up to the heighh=4. This demands the knowledge of the - gog 01; analogously, we obtainTh’x=0.088 25
reduced diagram afi=3 and of its replica. We will denote = 000 01. Hence, the critical point behavior is also numeri-

them by{3} and{3}'. To obtain{3} we need to know2} |y confirmed for the exponential breaking rule.
and{2}', and to obtai{3}' we need to know2}' and{2}".

Going backwards up tn=0, we observe that the scheme of

w

information needed looks like the following triangular array: VI. CONCLUSIONS

[Ol=e [0}'=€? {0)'=e* [0}"=eP {0} =¢'® In this paper the time to failurel, of hierarchical load-
transfer models of fracture has been studied. Initially we

{1} {1} {1}” {1} have explained in detail the so-called probabilistic approach

(2} 2y 2 to load-transfer dynamical models as opposed to the standard
approach, in which random lifetimes are assigned to the el-

{3} {3}’ ements of the set and the process of fracture evolves deter-

{4} ministically. We have emphasized that when viewed from

the probabilistic point of view, the calculation ®fis analo-

In other words, to obtain th& of a given heighth, we  gous to the computation of the total decay time of a radio-
have to explicitly calculate the primary diagrams of the pre-active sample. In fact, the terminology of radioactivity ap-
vious values of, starting fromn=0, up to a loadingn times  pears throughout this paper. We have shown that the
the usual diagram witkr,= 1. The primary diagrams of low calculation of T, using Monte Carlo simulations, has a
n are calculated at once, hence the extra work with respect temaller dispersion if one adopts the probabilistic approach.
the power-law case is not too much. When explaining the Then, we have devised an exact method to computé
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hierarchical structures of sizd=c". The number of ele- APPENDIX A: ON THE REPLICAS
ments of the set i8l, ¢ is the coordination of the tree, amd
the height of the fractal tree. The method is iterative, i.e., forduced configuration of a level— 1 is not enough to obtain

a givenc it allows the computation of a .tree of.helght the primary diagram of the levet we also have to know the
+1 once one has calculated a tree of heighin this con-  ajica of then— 1 level. Expressed in the singular, this sen-
text, the sentence “a tree is calculated” means that ongence is misleading. In fact, it only holds foe=2. One can
knows the value of all the partial decay widths between allgsjly check that for a general the number of replicas
possible configurations appearing during the breaking prorequired,m, is

cess of that tree. Once this information is known, one easily

calculates the probability of reaching each configuration, and Isms<(c—1). (A1)

the individual values of each, i.e., the one-element break-

ing time. The key of the method derives from the observatiorin the case of the power-law breaking rule, any decay width
that the structure of the configurations of the 1 type is a  Of these replicas would be obtained by multiplying its normal
mere juxtaposition of configurations of then type. In this  value by the factor

juxtaposition, the so-called replicas also play a role. The P

guantitative information of how replica configurations be- ( ¢ ) , (A2)
have is explained for the two relevant breaking rules: the c—m

power law and the exponential. In the power-law breaking . ) i i
rule, any decay width of a replica is just a common factorV/hile as seen in Sec. V, the exponential breaking rule de-
ands the individualized calculations of each replica, with

times the original value. In the exponential breaking rule, o . .
the contrary, the decay widths of replicas have to be indi-ItS corresponding extra loading. As an example, beyond the
vidually calc'ulated usualc=2, let us consider for the cage=4 the process of

The iterative process, including the information of the breaking up to the collapse of the two minimum trees0

replicas, can be easily processed by a computer. It allows th%ndn: 1. Using a self-explanatory notation, we have

exact calculation of for moderate heighta. An exact sim-

plification, denoted as reduction, is introduced to diminish? = 0 — @
the magnitude of the information to deal with. But even with

the reduction trick, it is difficult to surpass, say=7 for c

n=1
=2. Higher values of the coordination imply smaller values _ @ . @@ R @ @ . @ @
for the accessible height. @ @ @

Thus we conclude that exploring the behaviorToffor
large n, dealing with exact results, is impossible. For this

We have seen in Sec. lll that the knowledge of the re-

e see that the solution of the height=1, demands the
. UL i : . §nformation of the decay width of block 1 but also that of
interesting information on the asymptotic valueTofin this  p0-k 2 of block 2. and of block 4- i.e.. for=4 the iterative

context appears the i‘?'ea of obtaining bounds Torit is method requires the knowledge of three replicas, as foreseen
found that by performing adequate averages of the decay, Eq. (AL).

widths appearing at each stage of breaking of a heigtite
value of T obtained in the next height+ 1 is systematically
lower (or highe) than what the exact result would be. In one
Appendix we have given details of why bounds result. As the  Following the arguments of Secs. IIl and 1V, one easily
results obtained from the bounds reach values beyond sees that the firsé in which there must be a discrepancy
=17 (c=2), one is able to explore their asymptotic behav-petween the exact result and the approximate results coming

ior by a careful exponential fitting, which provides clear nu-from the use of effective diagrams is ti#g of n=4. Forc
merical evidence(although nonrigoroysthat forc=2, T =2, ;=2 we obtain

tends to a nonzero value whartends to infinity. This con-

clusion is obtained for both the power-law and the exponen-

tial breaking rules. For the power-law hazard rate, a proof 3(HM) = 5552=0.044 2447,
was given in[29]. Invoking conventional universality-class

arguments, one deduces that this nonzero limit holds for hi-

APPENDIX B: ON WHY BOUNDS RESULT

) o 17
erarchical structures of any coordination. S5(exach= 3 0.044 1558,
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FIG. 11. Top of a failure diagram down to the fourth decay
stage.(a) represents the reduced diagram @o)the corresponding
effective diagram.

This results from the fusion of the two configurations block
3,1 and block 3,2 of Fig. 5, which have a differdnt To
clarify why bounds result, let us analyze this point from a
general perspective. In Fig. 11 is drawn the top of a reduce
diagram of height, say, and at its right the corresponding
effective diagram. We assunig #1I',, a,=y;+ v,, andi
=AM, GM, or HM,

ag, szrzllazrgzlaz, (B2)

1
1
Iy

a = .
3, AM 1

I,

2
ar

Y2
az

From the reduced diagram we obtain the top of the corre-

sponding primary of the heighit+ 1. This is shown in Fig.

12, and from the effective diagram one obtains the top of the

primary shown in Fig. 13. Now let us compute the exagt
coming from Fig. 12 to be compared with tHapproximate
coming from Fig. 13. In Fig. 12, we have

a; Y1
agta; apgt+a,’

p(3.1)=

a Y2
agta; a,+a,’

p(3.2)=

ay Qo

Qo
+ .
apt+a; a,+a,

Qpta,

p(3.39 =

VAZQUEZ-PRADA, GtMEZ, MORENO, AND PACHECO

PRE 60

123a
1o 123
a/ a,
2,1 @0 2,200
/ T
T/ o 3 2a,
v TSy

3,1 6n0 3,2]20 3, 3 @0

aytl, a,tl, a,*ta,

FIG. 12. Top of the primary diagram built from the reduced
diagram drawn in Fig. 11a).

Thus

S3(exac)=p(3.1 m + p(32)m

+p(3.3 (B3)

a;t+ap

Analogously, in Fig. 13,

31 ai az
g P(3. )_a0+a1 agta,’
Qo ai Qo
p(3.2 = + ,
a0+a1 a0+a1 a2+a2

and

2,120 [2,200
o
3,1 eno |3, 2@

!

a;+q,

!

a,ta,

FIG. 13. Top of the primary diagram built from the effective
diagram drawn in Fig. 11b).
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55=p(3.) P32 —— (B4) % I SV
3 pls. a31i+a0 p(s. al+a2. Y1 1 Y2 1 \ao+rl ao+F2'
At | — o
aly al,

As the third term of Eq(B3) coincides with the second of
Eq. (B4), let us reorder Eq(B3), giving

S3(exac)—p(3.3

which means thatA;(AM)<Aj(exact) and therefore
53(AM) < §;(exact).
To deal with the geometric mean, let us in E§7) make

ataz the change of variable=Inx, then
_ a Y1 V2 a a
(a0+a1)(ao+az) a0+Fl a0+F2 f(X): 2 Eg(z): 2 ,
o _ o a+Xx ap+ €’
and similarly in Eq.(B4), obtaining
aa 1 which is also a concave function in Hence we have
182
53,i_ p(22) = ) .
a;+a; (agtay)(aptay) \asj+tag \ a, \ a, a,
1 +A = ;
To simplify the comparison, let us define two new functions, a,+en a,+e?2  ay+elPratpaz)
ap+1)(ag+a,)
As(exach=| 8;(exac)—p(3.3 n (80* 1)(ao+az o, az _ a
a;Tap a; ag+Il; a,+I, ao+(e'” zl))\l(eln Z2)\; ag+ Filrgz'
N n V2 (B5)
T agtl,  agtl,’ Thu.sAg(GM)sAg('exact) and53(GM)s53(e>§act).
Finally, for the higher bound we will make in E(B7) the
. 1 \(ag+1)(ag+ay,) change of variable= 1/x:
Aj(i)=| d3;—p(2.2
a;+a, a; a, a,2
f(x)= =h(z)=
Y B6) a,+X agz+1
~agtag; (

Thus, theA’s represent they’s after adding an equal term,

h(z) is a convex function irg, therefore

h(N1Z1+N3Z) =N 10(Z;) + N\ h(Zy),

and multiplied by an equal factor. It is interesting to observe
the effect produced by the fusion of block 3,1 and block 3,2 ) ) . o
from an algebraic point of view: the sum of the two fractions@nd in terms of our ordinary variables this implies
of Eq. (B5) has converted into the fraction at the right of Eq.
(B6). In the case ofl =15, Az(exac)=Ajz(i). In other

Az(HM)=f =p, f(T')+p, f(T
words, ifI';=T", that fusion is exact. a(HM) 1 PLfla) P2 T
To deal with the arithmetic mean, let us define I‘_1+1“_2
Y =Aj(exac)
r0o0= a,+X ®&7)

(ay,a2,>0), which is concave; this implies th&t(\ 1"
+7\2F2)$)\1f(rl)+)\2f(rz)y where )\15'}/1/3.2, )\2
=1vy,/a,, A\i+Ay=1, and therefore

and hencej;(HM) = §;(exact).

Note that the argument presented is valid for hef any
n of coordinationc=2 and for both the power-law breaking
rule and for the exponential breaking rule.
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