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In this Letter, we study how cooperation is organized in complex topologies by analyzing the
evolutionary (replicator) dynamics of the prisoner’s dilemma, a two-player game with two available
strategies, defection and cooperation, whose payoff matrix favors defection. We show that, asymptotically,
the population is partitioned into three subsets: individuals that always cooperate (pure cooperators),
always defect (pure defectors), and those that intermittently change their strategy. In fact, the size of the
later set is the biggest for a wide range of the ‘‘stimulus to defect’’ parameter. While in homogeneous
random graphs pure cooperators are grouped into several clusters, in heterogeneous scale-free (SF)
networks they always form a single cluster containing the most connected individuals (hubs). Our results
give further insights into why cooperation in SF networks is enhanced.
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To understand the observed survival of cooperation
among unrelated individuals in social communities when
selfish actions provide a higher benefit, a lot of attention is
being paid to the analysis of evolutionary dynamics of
simple two-players games like the prisoner’s dilemma
(PD). In this game individuals adopt one of the two avail-
able strategies, cooperation or defection; both receive R
under mutual cooperation and P under mutual defection,
while a cooperator receives S when confronted to a defec-
tor, which in turn receives T, where T > R> P> S. Under
these conditions it is better to defect, regardless of the
opponent strategy, and assuming that strategies are allowed
to spread within the population according to their payoffs
(replicator dynamics [1,2]), the proportion of cooperators
asymptotically vanishes in a well-mixed population (i.e.,
when each agent interacts with all other agents).

If the well-mixed population hypothesis is abandoned,
so that individuals only interact with their neighbors in a
social network, several studies [3–9] have reported the
asymptotic survival of cooperation on different types of
networks. Notably, cooperation even dominates over de-
fection in heterogeneous, scale-free (SF) networks where
the distribution density of local connectivities follows a
power law. In view of the accumulated evidence [10,11]
that many social (as well as technological, biological, and
other) networks are highly heterogeneous, these results are
highly relevant for the understanding of the evolution of
cooperation.

In this Letter, we are interested in exploring the roots of
the diverse behavior observed on top of different complex
topologies and in providing an explanation in terms of
microscopic arguments. We have analyzed in detail the
microscopic structural aspects underlying the differences
in the evolution of cooperation in a one-parameter family
of networks interpolating between Barabási-Albert (BA)
[12] and Erdös-Rényi (ER) graphs. As usual in recent
studies [3,4], we choose the prisoner’s dilemma payoffs

as R � 1, P � S � 0, and T � b > 1, and implement the
finite population analogue of replicator dynamics [4]. At
each time step t, which represents one generation of the
discrete evolutionary time, each node i in the network
plays with all its neighbors and accumulates the obtained
payoffs, Pi. Then, the individuals, i, update synchronously
their strategies by picking up at random a neighbor, j, and
comparing their respective payoffs Pi and Pj. If Pi > Pj,
nothing happens and i keeps the same strategy for the next
generation. On the contrary, if Pj > Pi, with probability
�i!j � �Pj � Pi�=maxfki; kjgb, i adopts the strategy of j
for the next round robin with its neighbors [4].

We have performed simulations for a population of N
individuals that interact following the couplings dictated
by the underlying graph. To explore the structure and
dynamics of cooperative behavior in different topologies,
we have made use of the model developed in [13], which
allows to smoothly pass from a BA network to a random
graph of the sort of ER networks by tuning a single
parameter � 2 �0; 1�. We will restrict hereafter to these
two limiting cases (ER, � � 1, and BA, � � 0). The
results obtained for other values of � will be discussed
elsewhere [14]. We advance that they are consistent with
the picture described in what follows.

The dynamics is implemented once the network is
grown. At the beginning, each individual of the population
has the same probability of adopting either of the two
available strategies: cooperation (si � 1) or defection
(si � 0). We let the system evolve for 5000 generations
and check whether or not the system has reached a sta-
tionary state as given by the fraction, c�t�, of individuals
that are cooperators. We impose that this magnitude is in
equilibrium when, taken over a time window of 103 addi-
tional generations, the slope of c�t� is smaller than 10�2

[15]. After such a defined transient time t0, we let the
system evolve again for 104 additional time steps, and
measure the magnitudes whose behavior is described in
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the following. All simulations presented hereafter have
been carried out for networks of 4000 nodes with hki � 4
and results are averaged over at least 103 different realiza-
tions of the networks and initial conditions [16].

The above procedure allows us to scrutinize in depth
the microscopic temporal evolution of cooperation as well
as to characterize how its local patterns are formed. Indi-
viduals’ strategies asymptotically (i.e., t > t0) follow three
different behaviors. Let P�x; t� be the probability that an
individual adopts the strategy x at any time t > t0. We say
that an element i of the population is a pure cooperator if
P�si � 1; t� � 1: i.e., it plays as cooperator in all gener-
ations after the transient time. Conversely, pure defectors
are those individuals for which P�si � 0; t� � 1. A third
class is constituted by fluctuating individuals, that is, those
elements that alternatively spend some time as cooperators
and some time as defectors.

Figure 1 shows the densities of the three classes of
players as b is increased, for the two limiting cases of
ER (upper) and SF networks (bottom). Note that the frac-
tion of pure cooperators (�c, continuous leftmost line) is
always equal or smaller than the density hci�b�, which is

the asymptotic expected value of the fraction of coopera-
tors. This indicates that the density of cooperators is, on
average, stationary, but not frozen as a significant fraction
of individuals are still able to intermittently adopt different
strategies. It is observed that in a small range of b > 1,
�c � hci�b� for the ER network, while the equality does
not hold for any value of b when the underlying architec-
ture is a SF network. Looking only at pure cooperation,
there is a crossover for moderate values of b. From that
point on, the level of pure cooperators in SF networks is
above that in ER graphs. Additionally, the decay of �c�b� is
abrupt for homogeneous networks and more smooth for SF
ones. Therefore, pure cooperators are more robust to var-
iations of b in these latter topologies.

Furthermore, there is a region of b in which almost all
strategies are fluctuating for the ER graph while this is not
the case for heterogeneous networks. This feature is illus-
trated in Fig. 2, where it is represented by the fraction of
fluctuating strategists, �f, as a function of �c. The devia-
tion from the continuous line, which is the function �f �
1� �c, marks the appearance of pure defectors. For both
networks, the density of fluctuating elements raises when
�c decreases; however, the decay of �f is clearly differ-
entiated. While for the SF network this magnitude falls
smoothly and well below 1, for the ER network the fraction
�f continues to increase almost to 1, and then decreases
suddenly, roughly keeping �c constant. Moreover, the
number of pure cooperators relative to the total number
of elements of the population is significantly smaller in the
ER networks than in the SF case.

Figure 2 gives even more information about what is
going on at a microscopic scale. Why is the fraction �c
smaller in ER than in SF networks? An important clue
comes from the analysis of the local distribution of pure
cooperators. Let us first define the concept of cluster or
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FIG. 1 (color online). Fraction (referred to the total number of
individuals of the population) of pure and fluctuating strategies
as a function of b. hci (black continuous line) represents the
asymptotic expected fraction of cooperators at each generation.
The border lines separating colored regions correspond to �c�b�
(red-green) and 1� �d�b� (green-blue). Networks are made up
of 4000 nodes and hki � 4. The exponent of the SF network is
�3.
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FIG. 2. Fraction of fluctuating strategies as a function of the
density of pure cooperators. The solid line is �f � 1� �c.
Deviations from it means that pure defectors have come into
play. Note that the same value of �c in both topologies corre-
sponds, in general, to different values of b. Networks parameters
are those used in Fig. 1.
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core. A cooperator core (CC) is a connected component
(subgraph) fully and permanently occupied by cooperator
strategy si � 1, i.e., by pure cooperators so that P�si�t� �

1;8t > t0� � 0, 8i 2 CC. Analogously, a defector core
(DC) is the subgraph whose elements are pure defectors,
namely, when the condition P�si�t� � 0;8t > t0� � 0,
8i 2 DC is fulfilled. It is easy to see that a CC cannot
be in direct contact with a DC, but with a cloud of fluctu-
ating elements that constitutes the frontier between these
two cores. Note that a CC is stable if none of its elements
has a defector neighbor coupled to more than kc=b coop-
erators where kc is the number of cooperators linked to the
element. Thus, the stability of a CC is clearly enhanced by
a high number of connections among pure cooperators,
which implies abundance of cycles in the CC.

This microscopic structure of clusters is at the root of the
differences found in the levels of cooperation for both
networks and nicely explains why cooperative behavior
is more successful in SF networks than in homogeneous
graphs. In fact, as far as loops are concerned, the main
difference between the two topologies is that the number of
small cycles of length L, NL, are given by [17,18]
�log�N��L and �hki � 1�L, respectively. Therefore, it is
more likely that SF networks develop a CC than ER
ones. This has been tested numerically by looking at the
probability that at least one cooperator core exists. The
results indicate [14] that in SF networks this probability
approaches 0 smoothly, while for ER graphs a sudden jump
to 0 takes place at b � 2.

We next focus on the detailed characterization of CC and
DC structures. Figure 3 shows the number of clusters made
up of pure cooperators (Ncc, upper panel) and pure defec-
tors (Ndc, bottom panel) for both topologies as a function
of 1� �c and �d, respectively, (recall that 1� �c grows as
b increases). The first noticeable result concerns the num-
ber of cooperator cores. While for ER networks Ncc is
equal to 1 only for a small range of �c values, and later
increases up to a maximum, for the SF network the number
of such cores is always 1, no matter the value of �c. That is
to say, in one topology (ER), there is a wide region of b
where there are several cooperator cores, whereas pure
cooperators in SF networks always form a single core.
On the other hand, the behavior ofNcc in SF graphs implies
that the cycles discussed above are interconnected, giving
rise to more complex structures. We have also verified that
the cooperator core in SF networks contains the hubs,
which are the ones that stick together the cooperator cycles
that would otherwise be disconnected [19].

Looking again at Fig. 3, one realizes that there are also
radical differences in the local organization of pure defec-
tors. Again, the structural patterns in both networks can be
clearly distinguished. In ER networks, pure defectors first
appear distributed in several clusters that later coalesce to
form a single core for values of b < 2, i.e., before the
whole system is invaded by defectors. Conversely, defec-
tors are always organized in several clusters for SF net-
works (except when they occupy the whole system). This

latter behavior results from the role hubs play [4]. As they
are the most robust against defector’s invasion, highly
connected individuals survive as pure cooperators until
the fraction �c vanishes (see also Fig. 2), thus keeping
around them a highly robust cooperator core that loses
more and more elements of its outer layer until cooperation
is finally defeated by defection.

The picture emerging from the analyses performed
clearly indicates that two different paths characterize the
raising (or breakdown) of cooperation. This is also re-
flected in the way pure cooperators are invaded by defector
strategists. Starting at b � 1 all individuals in both top-
ologies are playing as pure cooperators. However, for b >
1, the pure cooperative level drops below 1 and the popu-
lation is constituted by pure cooperators as well as by a
cloud of fluctuating individuals. When b is further in-
creased, these fluctuating elements, which constitute the
physical frontier of CC clusters, start to spend more and
more time as defectors exploiting cooperators, which ulti-
mately leads to the invasion of the pure cooperators. In this
regard, the fragility of a CC cluster mainly depends on how
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FIG. 3. Number of clusters of pure cooperators (upper panel)
and pure defectors (bottom panel) as a function of 1� �c and �d
in order to have both x axes growing in the same way as b does.
The figures clearly show that it is possible to have more than one
cooperator cluster only for the ER network, while pure defectors
are always spread into several cores in SF networks and form a
single cluster only in homogeneous structures. Network parame-
ters are those of Fig. 1.
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the cluster’s elements are exposed to their frontier. Figure 4
shows the ‘‘effective surface’’ of CC as given by the frac-
tion of pure cooperators, Ncf, that share at least a link with
fluctuating players as a function of b. It is clear from the
figure that in ER networks the invasion is faster than in SF
graphs, with a sudden increase of Ncf at low values of b,
signaling the abrupt decay observed in Fig. 1. This is due to
the fragmentation of pure cooperators into several CC that
are in a flood of fluctuating elements, which eventually
leaves pure cooperators more exposed to invasion.
Conversely, in SF networks, the existence of only one
CC makes it more resilient to defection since in this case
the number of pure cooperators exposed to fluctuating
individuals is much lower, as indicated by Ncf. Hence,
the internal cohesion of the CC cluster sustains cooperation
for larger values of b until an N-defector core comes out.

In summary, we have shown that there are three different
classes of individuals according to their asymptotic strat-
egies and that two different patterns of cooperative behav-
ior, determined by the underlying structure, can be clearly
identified. Specifically, our results unveil that in SF net-
works pure cooperators always form a unique cooperator
core while several defector clusters coexist. On the con-
trary, for ER networks, both pure and defector strategists
are grouped into several clusters. The microscopic organi-
zation of asymptotic cooperation on the evolutionary dy-
namics of different games, like, e.g., Snowdrift and Stag-
Hunt [5], can obviously differ from the PD game. However,
one should expect that the partition of the population into
fluctuating and pure strategists will also generically hold.
Finally, we note that the same structural differences in the
emergence and evolution of cooperation has been pointed
out in synchronization phenomena on top of complex top-
ologies [20]. Whether or not these common evolutionary
patterns that emerge in two distinct phenomena are rele-
vant to explain the ubiquitous presence of SF networks in

nature is still to be tested on more firm grounds. Studies of
cooperation on real social networks, like, e.g., [21] may
help to scale up to a mesoscopic description (in terms of
communities) the observations and results presented here.
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