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Nowadays, our society is characterized by high levels of social cohesion and coopera-
tion that are in contrast with the selfish nature of human beings. One of the principal
challenges for the social sciences is to explain the emergence of agglomeration and coop-
erative behavior in an environment characterized by egoistic individuals. In this paper
we address this long standing problem with the tools given by evolutionary game the-
ory. Specifically, we explore a model in which selfish individuals interact in a public
goods creation environment. As a further ingredient each agent is characterized by an
individual expectation and, if unsatisfied, can change its location. In this scenario we
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study the effects of the knowledge of other players’ performances on both cooperation
and agglomeration and discuss the results in the context of previous and related works.

Our results show that cooperation and agglomeration are generally robust against the
inclusion of different information on other player performances and, in some cases, it can
produce an enhancement of the cooperative behavior. Moreover, our results demonstrate
that only in extreme and very competitive environments cooperation and agglomeration
are lost.

Keywords: Evolutionary dynamics; public goods games; spatial games.

1. Introduction

Cooperation between unrelated agents (from bacteria to human societies) is
ubiquitous in nature even when cooperative behaviors are clearly unfavorable and
selfishness seems the best choice. This unexpected observation is one of the most
fascinating challenges of Evolutionary Theory [1–4]. However, the recent financial
crisis has highlighted that this cooperative behavior can be undermined by several
factors i.e. an excessive complexity [5] and extremely aggressive behavior [6].

Recently, Evolutionary Game Theory [7–9] has firmly established as one of the
most powerful tools for the study of the emergence and sustainability of coopera-
tion and to analyze model societies in which individuals are driven by performance
and selfishness. In particular, public goods games [10] is a classic paradigm for the
study of social dilemmas that naturally arises in societies when group and individ-
ual interests differ and can result in the so-called “tragedy of the commons” [11, 12].
In the past years several enhancements to the classical public goods game in well-
mixed populations have been proposed in the literature. Besides direct strategies
like individual punishment for free-riding [13–16], the inclusion of a spatial struc-
ture in the contacts between individuals has proved to better reproduce real world
scenarios. Specifically,taken into account the structure of the population from a
simple grid [17, 18] to complex and heterogenous interactions, has proved to highly
favor the emergence of cooperation and to sustain it also in adverse conditions
[19–27]. Another important ingredient in our rapidly changing society is related
to the mobility of individuals and the variability of the environment in which they
act. These features have been recently incorporated to evolutionary models [28, 29],
showing that in such scenarios, cooperation is also able to survive.

Here we exploit the public goods games formalism and spatial networks to study
the evolution of cooperation and agglomeration under different environmental con-
ditions including knowledge of other players’ performances. Our purpose is to inves-
tigate the effect of different kinds of information about competing and neighboring
players on the formation and stability of a cooperative and cohesive society. Specif-
ically, we take as a starting point a model for spatial public goods games recently
presented in the literature [30]. This model assumes a zero knowledge about other
players’ strategies and performances, and their behavioral rules are only based on
actual and previous individual payoffs. In addition, unsatisfied players can change
their location in the network trying to reach a more favorable neighborhood. In
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this setting two different social dilemmas arise: One represented by the game itself,
and another one posed by the possibility of formation of strongly cohesive groups in
which cooperation gives higher benefits but, due to larger group sizes, also defection
is particularly favored.

We modify the model in [30] to include an increasing pressure by other play-
ers’ performances to change individuals perceptions and decisions. To this end, we
introduce the accomplishments of neighboring players in three different aspects of
individuals behavior and decision process: The aspiration of each individual about
future payoffs, the way in which persons define their satisfaction and, finally, the
response to a dissatisfying environment/strategy. Our results show a substantial sta-
bility of cooperative behavior and, in some cases, a little knowledge of other players
earnings and strategies, results in an increase in both cooperation and agglomer-
ation of individuals. On the other hand our study highlights that an extremely
competitive setting can strongly affect cooperation and a minimum cooperative
level can only be achieved at the cost of higher levels of social instability. Finally,
we think that the present results can shed some light on the formation of cohesive
societies and also give some hints on how changes in individual behavior can lead
to catastrophic social and economical events.

The work is organized as follows. In Sec. 2 we present the original model and the
different modifications to include the effect of information about neighboring play-
ers. Section 3 is devoted to the presentation of the numerical models employed and,
in Sec. 4 we discuss and analyze the results of the extensive numerical simulations.
Finally, in Sec. 5 we draw our conclusions and future directions.

2. The Model

In the model firstly presented in [30] a population of N mobile agents is randomly
distributed on a L × L square lattice with periodic boundary conditions. Assuring
that N < L2 the population density is ρ = N

L2 and surely lower than one, allowing
individuals to move from one site to another and occupy free sites within a certain
range R. Each site in the lattice is connected with its Moore neighborhood k = 8
and so, depending on the number of occupied sites, each individual i can interact
with 0 ≤ Ni ≤ k other players. In each neighborhood a round of a public goods
game (PGG) is played, and each player participates in Ni + 1 different games: The
one in which she is the focal player and the other Ni games from her neighbors.
In a PGG round players can decide to contribute a fixed quantity c (that for sim-
plicity we can set to 1) and thus cooperate (C) or act as free-riders and defect (D).
Once the contributions of the cooperators are collected they are multiplied by an
amplification factor r and then divided equally between all the participants inde-
pendently of their strategy. In this scenario each player from each PGG round earns
a payoff of πc = r nc

Ni
− 1 if she is a cooperator or πd = r nc

Ni
if she defects, where

nc is the number of cooperators in the neighborhood and Ni the total size of i’s
neighborhood. For r greater than 1 we are in presence of a social dilemma because
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full cooperation is more convenient than full defection, although a defector in a
group of all cooperators can exploit the maximum benefit. It is also important to
notice that as mobility can change the size of the neighborhoods a second dilemma
arises. In fact, in larger groups the obtained benefit depends more on other play-
ers strategies but, a larger neighborhood also means to get involved in more PGG
rounds and thus potential higher benefits. In this framework the best possible soci-
ety is constituted by highly dense groups that cooperate for the common wellbeing
but, in this case, the temptation and the benefits of behaving as free-rider are the
highest possible.

In the original model [30] the behavioral update rules (the changes in the strat-
egy, cooperate or defect, and also in the position) are intended to take into account
only the single individual wellbeing without considering her neighbors number and
acquired benefits. Thus, the update rule is based on a measure of the satisfaction
level of each individual and her aspirations for the future. Specifically, each player
i calculates its own satisfaction si(t) at time t as:

si(t) = πi(t) − ai(t) + ηi(t), (1)

where πi(t) represents the total payoff earned by node i in the last round of PGGs,
ηi(t) denotes a Gaussian noise with zero mean value, and ai(t) stands for i’s cur-
rent aspiration level. If si(t) is positive then the player is considered satisfied and
she will maintain her previous strategy and position. On the other hand, when
si(t) < 0 the player is dissatisfied and she will change her strategy and her posi-
tion with a probability proportional to the amplitude of si(t). In particular, to
change the strategy or position of individuals two independent random numbers are
drawn (one for the strategy and one for the position) and a change is made with
probability:

tanh(|si(t)|/kmax), (2)

where |si(t)| is the absolute value of the satisfaction and kmax is the maximum
possible size of the neighborhood. If a player decides to change her location she will
move to a randomly chosen empty site in the network within a certain range R. In
the satisfaction level of an individual an important role is played by her aspiration
that represents a measure of how much a player is hoping to earn based on the
knowledge of her previous payoffs and greediness. The aspiration ai(t) of player i

is defined as:

ai(t) = αiπi,max(t) + (1 − αi)πi,min(t), (3)

where πi,max(t) and πi,min(t) denote the maximum and minimum payoffs perceived
by each player in the previous games and incorporate a memory effect. αi stands for
the individual greediness level which lies between 0 and 1 allowing the aspiration
level to vary between πi,max(t) and πi,min(t). To include a finite memory effect for
the values of πi,min(t) and πi,max(t) a memory decay is introduced, so that at each
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time interval their values are updated according to:

πi,max(t + 1) =

{
πi(t) if πi(t) > πi,max(t)

πi,max(t) + µ(πi(t) − πi,max(t)) if πi(t) ≤ πi,max(t),
(4)

and

πi,min(t + 1) =

{
πi(t) if πi(t) < πi,min(t)

πi,min(t) + µ(πi(t) − πi,min(t)) if πi(t) ≥ πi,min(t),
(5)

where µ determines the memory effect of individuals and can be between 0 and 1.
Initial values for πi,min(0) and πi,max(0) are chosen as the first payoff earned by
player i.

It is worth noting that the present model only relies on individual’s history and
current satisfaction without considering the environment (the number and perfor-
mances of neighboring agents) that surrounds each player and can influence her
decisions. In particular, players behavioral rules, both the satisfaction and the aspi-
ration, are entirely based on three factors: The actual, minimum and maximum
payoffs of individuals and no external information is used to determine agents’
strategy. This model has the advantage to count only on individuals situation but
in most real cases it is unrealistic to think that individuals behavior is not influenced
by the environment and the neighborhood that surround them. For these reasons in
this paper we consider a series of modifications to the original model that incorpo-
rate in different ways the influence of neighborhood size and other player strategies
in individuals behavioral rules. Our aim is to study the effects of environmental fac-
tors on the aspiration and satisfaction levels of the players and to analyze how these
changes can affect the cooperation and agglomeration between greedy individuals.
To do so here we introduce three different classes of modifications that impact the
three principal components of the behavioral rules: The aspiration, the satisfaction
and the rules governing the strategy’s selection of each player.

2.1. Class I

In class I models we modify the evaluation of individuals aspiration levels to take
into account the wealth of other players in the surroundings since the perception of
the state of the neighborhood can alter individuals expectations. The main idea in
this case is that not only the memory of previous earnings can define the aspiration
of a player but also the previous payoffs of its neighbors. That is, an individual
that always earned a low payoff but is located in a wealthy environment will have
higher aspirations, and more likely will be unsatisfied, with respect to other indi-
viduals with the same minimum and maximum payoffs but located in a very poor
neighborhood.

To implement the effects of the environment on the aspiration level of a player
we define two strategies. In the first one we take as a reference the maximum and
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the minimum values of the payoff in the entire neighborhood. In the second one we
consider the average payoff of the entire group. We named the first strategy model
Ia and modify Eq. (3) as follows:

ai(t) = αi max
j∈Ni

[πj,max(t)] + (1 − αi) min
j∈Ni

[πj,min(t)], (6)

where Ni is the set of all the players in the neighborhood of player i including i

itself, that is, all the players that participate in the PGG round centered at node
i. In this case, to calculate the aspiration level of each player, we consider the
maximum and minimum payoffs in the entire neighborhood as reference.

In the second strategy, defined as Ib, we consider a not so extreme scenario in
which, instead of taking into account the best and worst payoffs in the surroundings,
each player calculates her aspiration using the average maximum and minimum
payoffs in the neighborhood

ai(t) = αi〈πj,max(t)〉 + (1 − αi)〈πj,min(t)〉, (7)

where, also in this case, j ∈ Ni, so j is one of all possible nearest neighbors of i,
including i.

2.2. Class II

In the second class of models we not only consider the effects of other players
as a pressure on the aspiration of the individuals, but we also take into account
neighborhood effects on the satisfaction level of each player adopting Eq. (1) to
include nearest neighbors’ performances. This choice is the natural extension of
class I models and also in this case we introduce two different implementations,
namely: Models IIa and II b. In both models we use Eq. (7) as our starting point
for the calculation of the aspiration level but assuming that individuals’ aspirations
are influenced by the average value of the payoffs of their neighbors. In model IIa

we introduce the perturbation in the satisfaction levels as the average earnings of
the players in the neighborhood. Thus we substitute Eq. (1) by:

si(t) = [πi(t) − 〈πj(t)〉j∈Ni ] − ai(t) + ηi(t), (8)

where 〈πj(t)〉j∈Ni denotes the average current payoff of all the nearest neighbors of
player i. It is important to remark that such modification is much more restrictive
than the original model since Eq. (8) implies that every player that in the last round
of the PGG perceived a lower payoff with respect to the average of her neighbors
very likely will be unsatisfied and thus she will change her strategy and/or location.
Model II a represents a very dynamic and competitive world in which individuals
are not only driven by their personal greediness and aspirations but also by the not
so noble intent of prevailing over other players.

As a further modification we also introduce model II b in which not only the
difference between individual and average neighbors payoffs is used but also the
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magnitude of aspiration is rescaled by the average aspiration level of the group. We
modify Eq. (1) as follows:

si(t) = [πi(t) − 〈πj(t)〉j∈Ni ] − |ai(t) − 〈aj(t)〉j∈Ni | + ηi(t), (9)

where as in Eq. (8) 〈πj(t)〉j∈Ni is the average current payoff of the group, and
〈aj(t)〉j∈Ni is the mean aspiration value in the neighborhood centered at player i.
Note that for the aspiration level we choose the absolute value of the difference
introducing a conforming effect in which higher or lower aspirations are discouraged
as they will end in a higher probability to be unsatisfied. With this latter change we
are trying to reproduce an effect also observed in real societies in which individuals
with very different aspirations with respect to the rest of persons in the same group
are usually isolated.

2.3. Class III

In classes I and II models we acted on the two quantities that regulate the satisfac-
tion of an individual and thus her willingness to change strategy or location. In the
third class of models, named class III , we do not focus on the factors that can lead
a player to modify her behavior but on the response that individuals have in front
of dissatisfaction. In the original model once an individual judges her condition as
unsatisfactory she decides to move or change her strategy with two independent
random selection processes, one for the movement and one for the strategy, both
based on the same probability p = tanh(|s|/kmax). In class III models we modify
this random selection rule with two different implementations creating models IIIa

and II b respectively.
In model IIIa the aspiration and satisfaction levels are calculated according to

Eqs. (1) and (3) as in the original model, but if si < 0 only one random selection
is made regarding the location change to a new random location within a given
movement radius R. In this case the random selection is conditional to the original
probability p = tanh(|s|/kmax). Once a decision has been made about the site
change, if the player did not change her location she will change strategy with
probability pc = 1 otherwise as she arrived in a new environment she will choose
a strategy C or D with equal probability. Note that this strategy can be defined
more rational than two different selection procedures. Admittedly if a player is
unsatisfied and decide to stay at her place the only thing she can do to change her
situation is to move to the opposite strategy, otherwise, if a player reaches a new
environment, without a previous knowledge about other players, the two strategies
have a priori the same probability of success.

In model III b we adopt the same principles as model IIIa but we suppose
that, once a player enters a new neighborhood, she has the opportunity to know
the wealth status of each individual at the new location and also their strategies.
Thus, in model III b we evaluate the aspiration and satisfaction of each player using
Eqs. (1) and (3) and we calculate the probability of moving in the same way as
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model IIIa but, if a player decides to change her location she has the opportunity to
copy the best performing neighbor strategy, using the so-called “imitate the best”
imitation rule.

3. Numerical Simulations

To assess the effectiveness of our assumptions about how players behavior is modi-
fied by external stimuli (neighbors performances and aspirations) we conduct exten-
sive numerical simulations of the three classes of models. Our main purpose is to
explore the stability of cooperative and aggregative behavior under the different
modifications we introduced in the systems. To measure how the system responds
to the two dilemmas, the one related with the PGG and the other related with the
groups cohesion, we define three observables: (i) cooperation: Defined as the frac-
tion of cooperators in the system at the steady state, (ii) agglomeration: Measured
as the average number of neighbors of each player divided by the maximum possible
number of neighbors, and finally (iii) social instability, that represents how often
individuals change their positions, measured as the fraction of players that changed
position in the last time-step.

To study the emergence of cooperation and its stability we start each numerical
simulation with a population totally composed by defectors allowing the appearance
of cooperation only by the effect of the noise η in Eqs. (1), (8) and (9). In the
majority of our simulations we set the lattice side L = 100 creating an environment
with L × L = 104 possible positions and we set the number of individuals to
N = 5000 resulting in a density of ρ = 0.5 and as mobility range we employ R = 10
although, as for the basic model, results are almost insensitive to changes in R.
At each time-step simulations run as follows. Firstly, each player plays a PGG
round in which she is the focal player and for all the rounds she earns a payoff.
Then, according to the different models, each player evaluates her aspiration and
satisfaction levels. Finally the update process starts. For the update process we
choose an asynchronous method in which we select each player randomly, assuring
that every individual is chosen exactly one time. Then, according to her satisfaction
level, she decides to change game strategy and/or position. At the end of each time-
step the payoff, satisfaction and aspiration are set to zero and the maximum and
minimum payoffs at time t are updated following Eqs. (4) and (5).

4. Discussion

Figure 1 shows the typical time evolution of the three variables: Cooperation,
agglomeration and social instability, for our implementation of the basic system
in [30]. The main result of Fig. 1 is that, although in a moderate greedy setting
(α = 0.3), cooperation arises in a whole defectors’ system and ends up colonizing
around the 70% of the entire population; determining also an enhancement in the
agglomeration. It is also important to notice the low social instability suggesting
that most of the individuals are satisfied and did not change their positions.
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Fig. 1. Time evolution of social instability, cooperation and agglomeration for our implementa-
tion of the basic model in [30]. The model parameters are L = 100, N = 5000 leading to ρ = 0.5,
α = 0.3 the same for all individuals, η = 0.1, µ = 0.01, R = 10 and the synergy factor r = 5.
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Fig. 2. (models Ia and Ib) Time evolution of social instability, cooperation and agglomeration
for models Ia (left panel) and Ib (right panel). The model parameters are L = 100, N = 5000
leading to ρ = 0.5, α = 0.3 the same for all individuals, η = 0.1, µ = 0.01, R = 10 and the synergy
factor r = 5.

In Fig. 2 the time evolution of the first class of models is showed. Results show
that the inclusion of neighbors’ performances in the aspiration level does not sig-
nificantly alter the evolution of cooperation, demonstrating the stability of the
cooperative behavior against external perturbations and, also in this case, the low
levels of social instability remark the high satisfaction levels reached by the entire
population. To have a detailed view of the effects of neighborhood influence on the
aspiration levels Fig. 3 presents the results for the stationary state of the three
quantities: Social instability, cooperation and agglomeration while varying the two
parameters of model Ib: The individual greediness α and the PGG synergy factor r

(similar results, not showed here, are obtained for model Ia). The results in Fig. 3
again demonstrate the extreme stability of cooperative behavior for model Ib and
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Social Instability Model Ib
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Fig. 3. Color map representing social instability (left), cooperation (right) and agglomeration
(down) at the stationary state for model Ib as function of α and r. All other parameters are the
same as in Fig. 2. Each point is an average over 102 realizations.

the low social instability also in settings where cooperation is highly discouraged
like low r values and very high greediness. The strong similarities between the
results obtained for the basic model and the ones of models Ia and Ib suggest that
in the basic model an indirect evolutionary pressure is at work favoring the forma-
tion of dense clusters, mainly formed by cooperators, with similar aspirations and
satisfaction. To test this hypothesis, it could be helpful to have a more detailed look
of the system organization at the stationary state. Figure 4 presents a snapshot of
the final state reached by the system in models Ia and Ib in which cooperators are
depicted in blue and defectors in red. Also at the microscopic level the basic system
(Fig. 1 in [30]) and models Ia and Ib show a high level of similarity corroborating
the hypothesis that in both cases agents tend to form clusters with similar features
reducing the effects of the modifications of class I that explicitly introduce a mech-
anism that is in some sense already present in the basic model. It is important to
stress that similar effects are present also in real world societies where individuals
of the same social class and with similar backgrounds form highly cohesive groups.
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Fig. 4. (Color online) (models Ia and Ib) Snapshot of the stationary state (cooperators are in
blue and defectors are in red) for models Ia (left panel) and Ib (right panel). The model parameters
are L = 100, N = 5000 leading to ρ = 0.5, α = 0.3 the same for all individuals, η = 0.1, µ = 0.01,
R = 10 and the synergy factor r = 5.

Once we have demonstrated the stability of the cooperative behavior when indi-
viduals’ aspiration is affected by neighboring players we move to an extreme and
very competitive environment in which besides the aspiration levels also the satis-
faction is altered by other player earnings. Specifically in model II a an individual
probably will be unsatisfied if her payoff is lower than the average payoff of the
neighborhood introducing a competition between individuals. In model II b also
the mean aspiration level comes in the evaluation resulting in a standardization
effect. Results presented in Fig. 5 show how an extremely aggressive behavior can
be detrimental for cooperation levels leading to a substantial decrease of cooper-
ative behavior in both cases. Another striking result is represented by the effect
of the so-called standardization strategy. In fact in model IIa although individuals
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Fig. 5. (models IIa and II b) Time evolution of social instability, cooperation and agglomeration
for models IIa (left panel) and II b (right panel). The model parameters are L = 100, N = 5000
leading to ρ = 0.5, α = 0.3 the same for all the individuals, η = 0.1, µ = 0.01, R = 10 and the
synergy factor r = 5.
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are often unsatisfied (i.e., high levels of social instability) they still can maintain a
minimum of cooperation rapidly changing their position. In model II b instead, the
addition of a conformation effect leads to a reduction of individuals movement (and
thus to a general satisfaction) and a drastic decrease of cooperation levels causing
the appearance of a society of opportunistic individuals that are, in general, satis-
fied. Results of Fig. 5 are confirmed in general in all the parameter space α and r

(Fig. 6) in which minimal levels of cooperation are observed only for higher values
of the synergy factor r and the minimum possible level of agglomeration is reached
for the parameters’ combinations.

Other interesting insights came from the microscopic organization of the agents
at the steady state. Figure 7 shows that for both models agents distribute to occupy
the entire environment and reach very sparse configurations (the minimum possible
value for agglomeration is 0.5) in which large cohesive groups disappear and coop-
eration can only survive in small clusters usually surrounded by free-riders. This
effect is even amplified in model II b in which, in addition to a very competitive

Social Instability Model IIb
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Fig. 6. Color map representing social instability (left), cooperation (right) and agglomeration
(down) at the stationary state for model II b as function of α and r. All other parameters are the
same as in Fig. 5. Each point is an average over 102 realizations.
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Fig. 7. (Color online) (models II a and II b) Snapshot of the stationary state (cooperators are
in blue and defectors are in red) for models IIa (left panel) and II b (right panel). The model
parameters are L = 100, N = 5000 leading to ρ = 0.5, α = 0.3 the same for all the individuals,
η = 0.1, µ = 0.01, R = 10 and the synergy factor r = 5.

behavior, a conformation effect is included. On a global perspective results for class
II suggest that one of the possible causes for the end of large societies is an exces-
sive competition between its individuals that can lead to the tear of large groups
that favor the emergence of cooperation.

We conclude our analysis with the third class of models in which instead of
modifying the conditions for individual satisfaction and aspirations we revise the
behavior of unsatisfied players. Figure 8 presents the time evolution of three observ-
ables: Social instability, cooperation and agglomeration for models IIIa and III b

respectively. In this case, as for class I models we observe a substantial stability of
cooperation and, especially for model III b, in which the knowledge of other players’
performances is used to copy the best strategy, a sensible growth in cooperation
and agglomeration is observed with a minimum level of social instability. As in the
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Fig. 8. (models IIIa and III b) Time evolution of social instability, cooperation and agglom-
eration for models III a (left panel) and III b (right panel). The model parameters are L = 100,
N = 5000 leading to ρ = 0.5, α = 0.3 the same for all the individuals, η = 0.1, µ = 0.01, R = 10
and the synergy factor r = 5.
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Fig. 9. (Color online) Color map representing social instability (left), cooperation (right) and
agglomeration (down) at the stationary state for model III b as function of α and r. All other
parameters are the same as in Fig. 8. Each point is an average over 102 realizations.

previous cases, Fig. 9 shows the stationary behavior of model III b for parameters
α and r. The general enhancement of cooperation is confirmed with respect to the
basic version in [30] and model Ib. Another important result highlighted in this
figure is the fact that also in the presence of higher social instability, i.e., low r and
high greediness α, cooperation reaches a considerable level. It is also worth notic-
ing that changes in model III b only affect the strategy of an individual when she
modifies her location and does not act in other points in the satisfaction evaluation
process, highlighting that once a certain level of cooperation has been reached the
system is able to maintain it. The higher cooperation and agglomeration levels are
also reflected in agents’ spatial organization as showed in Fig. 10 where, especially
for model III b, very large groups of cooperators appear leading to the creation of
an almost connected single giant component. These latter results highlight once
more that agglomeration and cooperation are strictly related and agglomeration is
a fundamental ingredient for the emergence of cooperative behavior.
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Fig. 10. (Color online) (models III a and III b) Snapshot of the stationary state (cooperators
are in blue and defectors are in red) for models III a (left panel) and III b (right panel). The model
parameters are L = 100, N = 5000 leading to ρ = 0.5, α = 0.3 the same for all the individuals,
η = 0.1, µ = 0.01, R = 10 and the synergy factor r = 5.

5. Conclusions

In summary, in this paper we have studied how the knowledge of other players’
earnings and strategies can affect the evolution and stability of cooperation on a
minimal society model in which individuals interact via PGG and are free to change
their locations when they are unsatisfied. We took as a reference a model for the
creation of public goods in a minimum information scenario in which players can
only percept their aspiration and satisfaction ignoring other players performances
and behavior. In this context we modify individuals’ behavioral rules to include the
payoffs and aspirations of neighboring agents. To do so we create three different
classes of modifications to the original model in which we address the three main
characteristics of the behavioral rules: The evaluation of individuals’ aspiration and
satisfaction levels and how players react once they are dissatisfied.

We studied the behavior of the three classes of models by means of extensive
numerical simulations. In particular, we focused on the two social dilemmas that
arose in the models: The emergence of cooperation and the agglomeration of individ-
uals in large neighborhoods. Our results demonstrate that the inclusion of different
types of knowledge on other players in many cases does not alter the stability of the
cooperative behavior and sometimes can produce an enhancement of cooperation
and agglomeration. Specifically, model III b demonstrated that a little knowledge
of new neighbors’ conditions can produce an increase in the cooperation levels. Of
interest also are the results of model II a in which players are designed to be very
competitive. Although a sensible decrease in the cooperation is observed, the system
is able to maintain a reasonable level of cooperation at the cost of a higher social
instability. In addition the proposed model and its variations have demonstrated
to be able to reproduce some of the features typical of human societies like the
formation of groups of individuals with similar aspirations or the collapse of such
groups due to excessive competition between their components.
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Concluding, our results indicate that the interplay between self-learning rules
and environmental factors can be one of the primary ingredients for the emergence
and stability of cooperative behavior and they can explain the rise and the fall of
complex human societies.
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