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Abstract

Background: The topological analysis of biological networks has been a prolific topic in network science during the
last decade. A persistent problem with this approach is the inherent uncertainty and noisy nature of the data. One of
the cases in which this situation is more marked is that of transcriptional regulatory networks (TRNs) in bacteria. The
datasets are incomplete because regulatory pathways associated to a relevant fraction of bacterial genes remain
unknown. Furthermore, direction, strengths and signs of the links are sometimes unknown or simply overlooked.
Finally, the experimental approaches to infer the regulations are highly heterogeneous, in a way that induces the
appearance of systematic experimental-topological correlations. And yet, the quality of the available data increases
constantly.

Results: In this work we capitalize on these advances to point out the influence of data (in)completeness and quality
on some classical results on topological analysis of TRNs, specially regarding modularity at different levels.

Conclusions: In doing so, we identify the most relevant factors affecting the validity of previous findings,
highlighting important caveats to future prokaryotic TRNs topological analysis.

Keywords: Biological networks, Transcriptional regulatory networks, Motifs significance, Community structure,
Network superfamilies

Background
As it is commonly noticed in the literature, gene reg-
ulation is a complex process involving different phases
and biochemical phenomenologies [1,2]. Among these
mechanisms, transcriptional control constitutes one of
the main resources the cell relies on to respond biochem-
ically to environmental fluctuations and challenges. As
a consequence, systematic characterization of TRNs has
turned into a subject of high scientific interest [3]. Topo-
logical features of TRNs are customarily characterized
at all scales using different metrics. At the large scale,
genome-wide TRNs are signed and directed networks
which present the following features: (i) regulatory pro-
teins –origin of the regulatory interactions of the whole
system– represent a small fraction of the total number of

*Correspondence: yamir.moreno@gmail.com
1Institute for Biocomputation and Physics of Complex Systems (BIFI),
University of Zaragoza, Zaragoza 50009, Spain
2Department of Theoretical Physics, University of Zaragoza, Zaragoza 50009,
Spain

nodes; (ii) out-going connectivity patterns are very hetero-
geneous –a small percentage of global regulators (hubs)
send most of the links; and (iii) in-coming link distribu-
tions are quite compact: there is a characteristic scale that
defines the typical number of regulations each protein
receives [4].

Turning to the mesoscale, modularity appears also in
TRNs as a key feature to understand the dynamical func-
tion of the system. In genome-wide TRNs, each regulator
defines its own regulon as the set of nodes directly or
indirectly regulated by it. Regulons are then subnetworks,
that can be sometimes hierarchically organized; in other
occasions, regulons partially overlap in non-trivial ways.
Thus, the identification of groups of regulons –or parts
of them– interconnected through atypical, dense patterns
is expected to store information about the biological role
of the proteins within them [5]. The underlying idea is
that community structure in biological networks might
contribute to unveil functional modularity.

However, perhaps one of the most striking results on
topological analysis of TRNs is related to small-scale (sets
of 3 or 4 nodes) connectivity patterns, which present

© 2012 Sanz et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.



Sanz et al. BMC Systems Biology 2012, 6:110 Page 2 of 10
http://www.biomedcentral.com/1752-0509/6/110

statistics anything but contingent [6]. Some of these
patterns (or motifs) have been found to appear much
more frequently than expected by random, while others,
instead, are underrepresented in real networks. These sta-
tistical profiles, measured on different systems, allow the
emergence of network families, each of which provide
a general framework to understand the origin and the
dynamical principles of the systems within them [7].

In addition to the aforementioned issues, the experi-
mental challenges underlying the systemic characteriza-
tion of the TRNs are far from being solved. The quantity
and quality of available data on genome-wide transcrip-
tional regulation are significant only for a small set of
model organisms. Besides scarcity, the usual problem is
related to the heterogeneous quality of the experimen-
tal evidences of the regulatory interactions, the building
blocks of TRNs. Despite these problems, the amount of
high-quality experimental information about transcrip-
tional regulation at systemic level is growing each day, not
only within the context of model prokaryotes.

In this work, we analyze three of the best known
prokaryotic TRNs, for which these data quality improve-
ments are being more thoroughly incorporated to publicly
available data sets. Two of them correspond to the model
bacteria Escherichia coli [8] and Bacillus subtilis [9], while
the third one corresponds to the pathogen Mycobac-
terium tuberculosis, whose first network characterizations
[10-12] are more recent and incomplete due to the much
higher difficulty associated to its wet-lab treatments and
protocols. Specifically, the general question we set to
answer here is whether robust and biologically relevant
conclusions about TRNs can be reached given the cur-
rent incompleteness of the data, going a step further with
respect to other works that had somehow addressed this
question previously [13]. Besides, we also show that some
topological metrics do depend on the level of detail incor-
porated in TR maps, in particular, the structure of the
mesoscale. Our findings show that extreme care should be
taken when strong claims are made based on partial data.
This is the case of TRNs superfamilies, which we argue are
indeed grouped into a single class.

Results and discussions
Community detection and link attributes
The identification of modules in complex networks has
attracted much attention of the scientific community in
the last years. A modular view of a network offers a coarse-
grained perspective in which nodes are gathered not due
to knowledge-based decisions –function, composition,
etc.–, but rather on a topological basis –who is connected
to whom. To this end Newman put forward the concept
of modularity Q [14], which quantifies how far a certain
partition is from a random counterpart. From this defi-
nition, algorithms and heuristics to optimize modularity

(Q) have appeared ever faster and more efficient [15],
and generalizations to directed, weighted and signed net-
works are also available in the literature [16,17]. All these
efforts have led to a considerable success regarding the
quality of detected community structure in networks, and
thus a more complete topological knowledge at this level
has been attained. Behind this interest underlies the intu-
ition that the relation between network structure and
dynamics is strongly mediated by the mesoscale, and that
community structure plays a central role in network for-
mation and functioning. And yet, with few exceptions,
link attributes are seldom taken into account.

In this section we intend to underline that interaction
direction and sign critically shape the detected commu-
nity structure of a network. This is ever more dramatic
in the case of TRNs, where a sharp distinction must be
made between regulators (which mostly emit links) and
the rest of the network, which mainly receive them. Also it
is peculiar (though not exclusive) of these systems to allow
for positive (activating) and negative (inhibitory) relation-
ships. In practice, directions and signs are not always
available in the datasets. Regarding directionality, we ana-
lyze a system –the TRN of M. tuberculosis [12]– for which
that is not an actual problem, as regulatory proteins are
well identified, i.e. their function as link sources is known.
Nevertheless, there are many cases of organisms whose
regulatory pathways have not been explicitly identified,
and in those cases the real topology is usually replaced by a
co-expression network, which acts as an undirected proxy
for the true underlying regulatory structure. Unavailability
of interaction signs is, on the other hand, a more persis-
tent problem: there exist many experimental approaches
to infer a transcriptional regulation that do not inform
about the sign of the interaction. Furthermore, there are
interaction signs which depend on environmental condi-
tions. Therefore, given the unavoidable incompleteness of
the data, we explore whether link attributes determine the
network modular structure, and to what extent.

To address the previous question, we perform a system-
atic comparison of the effects of preserving the original
information (sign and direction) in modularity measures
and community structure in TRNs. To this end, we will
analyze the TRN of M. tuberculosis [12], for which we will
consider three different topologies: one that preserves all
available information (directed-signed, DS); an interme-
diate one (preserving directions, but not signs –directed-
unsigned, DU); and a last one where all fine-grained
information is ignored (undirected-unsigned, UU). From
the output of this analysis, we provide a way to quantify
how much biological information is lost when directions
and/or signs are dropped out. Note that the three ver-
sions of the network have the same number of nodes N
and number of links L, the only differences being those
regarding direction and/or the sign of the interactions.
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Interaction signs have been compiled from the experi-
mental works enlisted in [12], although signs were not
reported there (see [18]).

The modularity expression used hereafter corresponds
to its most general definition, i.e. the one that accounts for
the existence of directions, weights, signed relations and
self-loops, preserving the original information [17]:

Q = w+

w+ + w− Q+ − w−

w+ + w− Q− (1)

This expression generalizes the concept of modularity,
and simply computes the contribution to group formation
of positive (w+) and negative (w−) interactions separately,
Q+ and Q− respectively, which can be interpreted as the
tendency to form communities (positive weights) and that
of negative weights to dissolve them. For more detail, Q+
is defined as

Q+ = 1
2w+

∑
i

∑
j

(
w+

ij − w+
i w+

j

2w+ )

)
(2)

which accounts for the deviation of actual positive weights
w+

ij against a null case random network; the negative
counterpart Q− is defined accordingly, just placing nega-
tive weights in the expression. As for our current object of
study, links in the network can only take values +1 or -1,
and are originally defined as directed.

An intrinsic limitation of modularity maximization, as
posed in Eq. 1, is that it provides a single snapshot of
the modular structure of the network. However, several
topological descriptions of the network coexist at different
scales, which is, in general, a fingerprint of complex sys-
tems, and particularly relevant in biological ones [19]. A
method to overcome this fundamental drawback of typical
modularity optimization was put forth in [16]. A param-
eter r is introduced as a constant self-loop to each node,
thus changing the total strength in a network and avoid-
ing the inherent resolution limit of Newman’s modularity
Q [20]. The shift only affects the property of each node
individually and in the same way for all of them. Thus,
the original adjacency matrix A is changed as a func-
tion of r: Ar = A + Ir. The interesting property of the
rescaled topology is that its characteristic scale in terms
of modularity has changed. Then the topological struc-
ture revealed by optimizing the modularity for Ar is that
of large groups for small values of r, and smaller groups for
large values of r, all of which are strictly embedded in the
original topology. As an example, the method can uncover
each significant resolution level in the well-known syn-
thetic hierarchical network model RB [21], see Figure 1 in
[16]. To perform these costly calculations we have used
a mixture of heuristics, including extremal optimization
and Newman’s fast algorithm, as implemented in [22].

Figure 1 (top) represents the number of modules Nc
that a combination of Q-maximization heuristics [22]

has detected for the three versions of the TRN of M.
tuberculosis. Each topology has been scrutinized at differ-
ent scales, screening the parameter r for 200 possible val-
ues, in a range such that it yielded an interpretable amount
of modules. This range changes for different topologies,
thus r is normalized in the plot to allow for comparison.
On visual inspection it is apparent that the three topolo-
gies present plateaus, where different r values yield similar
partitions in terms of Nc. This indicates that certain topo-
logical scales are robust and persistent, which might be a
clue to identify functionally relevant groups of nodes [16].
Notably, the UU topology presents a single plateau at Nc
= 205 and then fails to stabilize for larger r’s. On the con-
trary, DU and DS, which retain more information, yield
stable partitions at many levels. Although for different r
values, these topologies exhibit almost the same behav-
ior regarding plateaus and the number of communities
Nc these plateaus present. At this point, one can say that
the mesoscale analysis for DU and DS networks allows a
richer interpretation in terms of the grouping of nodes,
but there is no way to confirm if these are more or less
biologically sound, than, for example, the UU topology.

To address this last question, we asked whether the par-
titions inferred by our method group genes with similar
biological functions. The reason underlying this possi-
bility is that genes within a topological community are
connected among them by more regulations than aver-
age. This fact should imply that they tend to transcript
together, as a response to common stimuli and even-
tually, to perform closely related functions. To do this,
we compared the identified communities to the func-
tional classification provided in the Tuberculist database
[23]. There are many metrics and indices to compare
two clusterings [24-28]. However, we need to rely on an
index that does not severely punish different resolution
scales: our reference partition categorizes genes in only
NF

c = 7 groups, which yields a coarse-grained func-
tional classification of the genome of M. tuberculosis. We
note that, for the comparison between topological parti-
tions and functional classification, only genes belonging to
truly structural functions have been considered. So, “con-
served hypotheticals” and “unknown” genes have been
excluded, as well as genes with regulatory roles (“regula-
tory proteins” and “information pathways” genes), which
are expected to join transversally the TRN. Any partition
with significantly more modules will show low resem-
blance to the functional one if the index is biased toward
literally similar partitions. Thus, we present our results
using the Asymmetric Wallace Index AW , which shows
the inclusion of a partition into the other. The Asymmetric
Wallace Index [29] is the probability that a pair of elements
in one cluster of partition A is also in the same cluster
of partition B. Let be a clustering A with cA communities
and a clustering B with cB communities, and let us define
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Figure 1 Mesoscale Attributes. Top: number of detected modules Nc as a function of the normalized rescaling parameter r. The mesoscale has
been screened only for a range of r yielding an interpretable amount of modules. DU and DS topologies show more than one persistent
mesoscopic plateau, whereas the UU topology only has a single plateau made up of around Nc ≈ 200 communities. Beyond r = 0.5, no other
stable plateau can be found for this topology. Bottom: the detected community structures for the three versions of the TRN of M. tuberculosis are
compared to the functional partitions in Tuberculist [23]. DS is the only network that shows significant values of similarity, in terms of the
Asymmetric Wallace Index, against the functional partition for a large range of r values.

the confusion matrix M whose rows correspond to the
communities of the first clustering (A) and columns cor-
respond to the communities of the second clustering (B).
Let the elements of the confusion matrix, Mαβ , represent
the number of common nodes between community α of
the clustering A and community β of the clustering B; the
partial sums being Mα· = ∑

β Mαβ and M·β = ∑
α Mαβ .

Then, AWA,B (how much partition A is embedded in B) is
defined as follows:

AWA,B =

cA∑
α=1

cB∑
β=1

Mαβ(Mαβ − 1)

cA∑
α=1

Mα· − 1
. (3)

The Asymmetric Wallace index can also be defined the
other way around (AWB,A), but in this case this is not
considered, because detected partitions are systematically
more divisive than the functional one, i.e. we are inter-
ested in seeing how detected partitions are embedded in
the functional one.

Figure 1 (bottom) shows the results for the proposed
scheme. Initial results (early r) for the UU and DS net-
works are artificially high, because Nc < NF

c . Besides this,
the plot indicates that only the partitions obtained from
the DS topology are significantly similar to the functional
one. In fact, beyond the initial stages of the resolution
levels, both DU and UU’s community structures are far
from being embedded in the functional categorization.

Quite surprisingly, resolution levels with similar Nc do not
entail similar AWA,B values. For instance, the three topolo-
gies show at some point a plateau with Nc ≈ 200. But
AWUU ,F ≈ 0.1, AWDU ,F ≈ 0.2 and finally AWDS,F ≈ 0.5.

These results suggest that the more complete knowledge
about link attributes, the richer representation of the
mesoscale, in which different levels of topological coarse-
graining can be well identified, with possible bio-
dynamical implications that need to be explored.

Motifs significance robustness versus network growth
Exhaustive search of topologically common footprints and
systematic differences between different real systems con-
stitutes an important topic in network theory since its
very beginning [30]. Along these lines, the classification
of networks in families bring light into the evolutionary
principles that ultimately yield to the complex topologies
that real, evolving systems like TRNs show today [4]. In
this sense, the work by Alon and coworkers [7] constitutes
a milestone.

In their work, the statistical significance of 3-nodes
motifs –triads– was analyzed. The number of appearances
of each of the thirteen possible directed structures in real
systems was compared to those observed in a null model.
The null ensemble was constructed by randomly rewiring
the links of the original networks, preserving the num-
ber of single links and mutual interactions (as it is done
in [7]). The statistical significance of each motif h is then
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defined as the Z-score of its number of appearances when
compared to the results found in the null ensemble:

Zscoreh = nh − 〈nrand,h〉
σrand,h

(4)

Therefore, computing the Zscore for all possible triads in
a network yields a 13-dimensional vector that, when nor-
malized, represents the so-called triad significance profile
(TSP). From the analysis of different systems’ profiles,
four superfamilies were identified with common TSPs:
two families of non-biological networks –semantic adja-
cency words maps and social systems– and two families of
biological, information processing networks.

Regarding the two biological networks superfamilies
originally identified, TRNs of three unicellular organisms
were found to conform the first one: yeast, B.subtilis and
E.coli. In Figure 2, panel A, we plot the TSPs that belong
to two of the four datasets analyzed by the authors in
their original work: yeast [31] and E.coli (available at the
authors’ web site [32]). The second group contains devel-
opmental TRNs of eukaryotic cells belonging to pluricel-
lular organisms, signal transduction maps and synaptic

Figure 2 Triad significance profiles (TSPs) of bio-information
processing networks. Panel A: E.coli (2004). TRN of E.coli as firstly
published in [32,34] (N = 423 operons, L = 519 regulations plus
SL = 59 self-regulations). Yeast (2004) TRN of budding yeast [6]
(N = 688 genes, L = 1079 regulations [32,35]). Panel B: C.elegans
neural network [33] (N = 279 neurons, L = 2990 synapses).
M.tuberculosis TRN [12] (N = 1624 genes, [36] L = 3169 regulations
plus SL = 43 self-regulations). Panel C: E.coli (2011). Updated TRN of
E.coli based on RegulonDB, release 7.2, dated on May, 2011 (N = 1037
operons, L = 2574 regulations plus SL = 113 self-regulations).
B.subtilis (2011), updated TRN of B.subtilis, based on DBTBS database
[9], (accessed in October, 2011) (N = 814 operons, L = 1294
regulations plus SL = 80 self-regulations).

networks. In Figure 2, panel B, the TSP of the synap-
tic wiring map of the nematode C.elegans [33] is plotted,
as an example of this second superfamily, evidencing the
differences with respect to panel A.

The biological interpretation of the emergence of the
two superfamilies of TRNs –or more generally, bio-
information processing networks– proposed in [7] has
to do with the typical response times developed by each
group of systems. These times are similar to those of
single interactions for the networks in the first group
(rate-limited networks) but remarkably greater than char-
acteristic interaction times for the systems within the
second superfamily (unrate-limited networks).

The recent addition to this scheme of the TRN of
M.tuberculosis poses an intriguing question. As it is visi-
ble to the naked eye in Figure 2 (panel B) its TSP, although
belonging to an unicellular organism, has a greater cor-
relation with the representative of the unrate-limited
superfamily. The fact that M.tb. has these developmental-
like topological features at its TRN might be interpreted
under a coherent biological picture [12]. The pathogen
has an evolutive history tightly bound to its condition of
a human intracellular obligate parasite, which could even-
tually have caused an adaptation of the bacterium to the
rhythms and response dynamics of host cells. Indeed, cer-
tain stimuli, like hypoxia, yield anomalously slow shifts in
Mycobacterium tuberculosis gene expression patterns,
which can take as much as 80 days until stabilization [11].

The third panel in Figure 2 invalidates the previous
hypothesis, and presents the TSPs of the updated TRNs
of two bacteria which were initially characterized as rate-
limited according to their TSPs. Visible at a glance, the
update of the datasets has shifted their TSPs from one
superfamily to another, in a way that suggests that the
division of the information processing networks into two
groups was an effect of data incompleteness.

The key of the change observed in the TSPs stems from
the small number of two nodes feedback loops that are
observed in unicellular organisms TRNs. Indeed, this pos-
sibility was already foreseen in [7] (see footnote 12 there).
When feedbacks are absolutely absent from the system
under study, as the randomizing algorithm preserves the
number of them, feedback loops will also be absent in the
null ensemble. This situation makes the Z-scores associ-
ated to triads 4, 5, 6, 9, 10, 11, 12 and 13 undefined, as in
Figure 2, panel A. As time goes by, such cases have become
obsolete: new links have been discovered and added to
the growing datasets, and some of them generate feedback
loops, which are now present in the triads listed before.
In the three updated systems studied, we have found as
many as 12 feedback loops in E.coli TRN, 9 in B.subtilis
and 6 in M.tuberculosis. The result, after the incorporation
of these new feedbacks, suppose that the division between
two superfamilies of biological information processing
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networks according to their TSPs disappears, affecting the
biological interpretation about the eventual relationship
between time responses and motifs statistics.

Beyond the discussion on the robustness of motifs
statistics that is faced here with a similar spirit of other
previous works [13], much has been written about the
eventually deep biological implications of anomalous net-
work motifs’ statistics as a ubiquitous, topological prop-
erty of gene regulatory networks. On the one hand, envi-
ronmental evolutionary adaptation has been claimed to
lie underneath this ubiquitous topological treat in gene
regulatory circuits [37]. According to this point of view,
different environmental requirements could exert differ-
ent evolutionary pressures to gene expression dynamics
which may be correlated to network‘s topologies at the
level of motifs, each of which is believed to offer differ-
ent dynamical performances, as it has been observed in
several precise cases [34,37-39]. Complementarily, recent
theoretical studies have addressed how functional, artifi-
cial networks required to drive different dynamical func-
tions yield divergent motifs contents [40].

However, as it has been stressed in several works, evo-
lutionary pressures are not the sole mechanism able to
generate not-random statistics in networks motifs. Sim-
ple models incorporating spatial distribution of nodes [41]
or typical mechanisms of network growth assimilable to
those which drive gene-regulatory changes upon evolu-
tionary time [42] have been found to generate network
motifs without any evolutionary pressure. Under this kind
of interpretation, network motifs could appear, not as
a consequence of environmental adaptation but rather
as a side-effect of some “intrinsic constraints” related to
typical mechanisms of genetic material transformation
like DNA fragments duplication, deletion, inversion etc
[43]. Supporting this hypothesis, a simple but powerful
argument is often put forward: topological-bias at the
level of TR networks could hardly be a consequence of
dynamics-based, natural selection, as in a vast amount
of cases transcriptional regulatory mechanisms consti-
tute only one layer of more complex regulatory pathways
also coupling translational and post-translational interac-
tions, which are the ultimate responsible of the complex
gene expression dynamical patterns observed in the cell
[44]. However, comparisons between motifs in gene reg-
ulatory networks of different bacteria which should have
suffered the effects of entirely comparable “intrinsic con-
straints” yield slight “fine-tuning” differences in motifs
statistics that can be reasonably related to environmental
adaptation [12].

The present work does not intend to introduce any
additional argument in the debate, which can hardly be
considered closed. The reason may be that, as it has
been pointed elsewhere, intrinsic constraints and evolu-
tionary pressures are not, definitely, mutually exclusive

mechanisms of network transformation [43], and to quan-
tify the relative relevance of each mechanism could result
in even a harder task. Our main purpose in this section
is, however, to increase our understanding [13] about the
robustness of certain topological treats of gene regulatory
networks against data incompleteness, as well as to warn
about how this analysis affects the network taxonomy
scheme proposed in [7].

Systematic correlations between topology and
experimental evidence
Experimental techniques used in transcriptional regu-
lation inference are numerous and often subtle [45].
However, usual approaches can be grouped within two
main categories. The first approach is based on the
explicit detection of the physical protein-DNA interac-
tion between regulators and promoters of target genes.
This presents the advantage that only direct operations of
regulators on targets can be observed. However, the exis-
tence of a protein-DNA interaction under certain in-vitro
conditions does not guarantee that it is physiologically
relevant in terms of target expression levels.

The alternative approach is essentially based on the gen-
eration of mutant strains in which the functionality and/or
the expression levels of a certain binding factor are sig-
nificantly altered with respect to those of the wild type.
Then, expression levels of genes which are potentially reg-
ulated by the binding factor under study are registered and
compared between wild type and mutant strains. In this
way, if these different levels of regulator activity yield sig-
nificantly different target expression measures, one might
assume that the regulator is actually acting on the target.

The main advantage of the latter approach is that the
sign and strength of the interaction can be determined.
However, the analysis cannot distinguish direct regula-
tory interactions from indirect influences regulator-target
mediated by secondary regulatory pathways. Nonetheless,
as it can be seen in Table 1, this second kind of meth-
ods is responsible for the characterization of an important
fraction of the links in our systems. Therefore, a relevant
question is whether or not the appearance of indirect,
spurious links (as if they were real interactions) might sup-
pose a systematic error responsible of topological bias at a
global level.

These hypothetical spurious interactions should appear
connecting nodes for which a secondary regulation path-
way exists, and its sign should be the same of that sec-
ondary route (see Figure 3). So, in our networks, we can
identify those “suspicious” links (SLs) connecting nodes
for which some secondary via has been already regis-
tered, and verify for sign coherence. We will restrict our
analysis to those secondary pathways formed by a two-
links cascade. The question is how we can know whether
this subset of suspicious links presents a higher rate of
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Table 1 Well and poorly characterized links

E.coli B.subtilis M.tuberculosis

BA 914 499 726

TELC 1272 856 1290

WCLs 656 323 191

PCLs 1044 262 1344

Number of links reported based upon binding assays (BA) or target expression
levels comparison (TELC). Well characterized links (WCLs) are those characterized
at least by one methodology of each group (for an exhaustive list of the
experimental methods in each group see [18]). Poorly characterized links (PCLs)
are reported under methodologies that can not be considered within neither of
the two main groups (too generic methods, orthologies based deductions,
absence of experimental support etc.). Whilst B.subtilis and E.coli are relatively
well characterized systems, in order to get enough statistics for the M.tuberculosis
case, we consider identification of consensus sequences as binding proofs.

spurious links than on average. Indeed, among the topo-
logically suspicious links, only those that are characterized
by at least one technique of each methodological cate-
gory –henceforth referred to as well-characterized links
(WCLs)–, can safely be considered as non-suspicious
direct regulations.

Therefore, the idea is to compare the proportion of well
characterized interactions within and outside the subset
of topologically suspicious links using Fisher‘s exact test

Figure 3 Schematic representation of suspicious links. In the
figure, arrows represent activations and right angles inhibitions.
Dotted lines correspond to the links that are topologically suspicious,
i.e., those for which a secondary regulatory pathway mediated by a
third gene is registered and whose sign is coherent. For example, the
link connecting nodes 1 and 2 is considered suspicious because of
the existence of the pathway 1 to 3 and 3 to 2. The same happens for
the link between nodes 3 and 4. In both cases, the condition that the
product of the two links making the secondary pathway should
coincide with that of the link being considered as suspicious is
verified. In this sense, we have also included a case in which the latter
condition does not hold: the edge linking node 1 to node 5 is not
suspicious because although a two-nodes cascade connecting the
same nodes exists, (i.e. 1 to 3 and 3 to 5) it is not sign coherent.

(see Table 2). As it can be seen, suspicious links system-
atically present a slightly lower proportion of WCLs than
non-suspicious links, which could be associated to ran-
dom fluctuations with respect to the average values with
probabilities lower than 2% in each of the systems, being
remarkably lower in the case of the TRN of E.coli.

This indicates that suspicious links constitute a topo-
logically defined subset of interactions which is systematic
and significantly less reliably characterized than on aver-
age in all the systems under study. This observation is
in agreement with the hypothesis that insufficient exper-
imental methods of transcriptional regulation inference
can suppose the systematical observation of topologically-
biased spurious links. The problem addressed here seems
to critically affect the characterization of the activity of
sigma factors. In fact, when we reconstruct the networks
under study by considering only transcription factors as
regulators and exclude sigma factors, the whole picture
significantly changes. Indeed, the percent of suspicious
links which are better characterized is even greater than
the background, both for B.subtilis (45.0% vs 42.2%) and
for E.coli (46.0% vs 43.1%). For the case of M.tuberculosis,
the analysis can be hardly conclusive due to the loss of
statistics after sigma factors removal (no well character-
ized link is located within the set of suspicious interac-
tions, now, less than 100 in the whole signed network).
These findings, put together, suggest that characteriza-
tion of sigma factor regulons is more sensitive to the
aforementioned issues.

Another issue of interest is whether this experimental
bias is topologically relevant. More precisely, we ques-
tion if this systematic error could quantitatively affect
motif statistics in our systems. The key is that these spuri-
ous interactions could recurrently transform some motifs
into others, and more precisely, focusing on most promi-
nent motifs in number of appearances, this would suppose
the systematic, spurious transformation of three-nodes
cascades (triad 3) into coherent feedforward loops (triad
7). To test the robustness of the TSPs to the presence of
spurious links, we delete in each network a fraction of
partially characterized suspicious links up to the point in
which the proportion of WCLs among them is compa-
rable to the average background level. This suppose the
removal of 324 suspicious links in the TRN of E.coli, 59
in the TRN of B.subtilis and 114 for the M. tuberculo-
sis case. The links to be deleted are randomly chosen
within the set of partially characterized suspicious links.
Finally, we recalculate the Zscores of all the motifs and
compare TSPs with their original values. The results of
this process are shown in Table 3, where it can be seen
that the statistical significance of cascades and feedfor-
ward loops are systematically affected. The interesting fact
is that, after the correction, cascades are yet significantly
underrepresented while feedforward loops as a whole (i.e.
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Table 2 Statistics of suspicious links

E.coli B.subtilis M.tuberculosis

WCLs No WCLs WCLs No WCLs WCLs No WCLs

SLs 104 628 43 188 11 252

No SLs 552 1285 280 774 180 2141

Ho p value < 10−17 Ho p value < 0.007 Ho p value < 0.019

Null hypothesis Ho assumes that the proportion of WCLs is the same for SLs or no-SLs. Only signed links are considered.

independently of the signs) continue to appear much more
frequently than expected by random. Obviously, the Zscore
associated to the other triads also varies. But the striking
point is that, after normalization, in all the systems the
effect of the correction on the TSPs are very limited, as
we can see in Figure 4. So, the conclusion is that this kind
of systematic error, although modifying the absolute val-
ues of motifs’ Zscores, does not affect their ratios that are
recovered after normalizing the TSPs.

Conclusions
As we have shown here, sources of unreliability can be of
diverse nature: from the often unjustified lack of details in
link attributes to the lack of key interactions, whose inclu-
sion radically modify motifs’ TSPs. As a matter of fact,
our first finding convincingly shows that data incomplete-
ness could exert a relevant influence on the topological
characterization of the mesoscale in prokaryotic TRNs.
More precisely, we have shown how a complete knowl-
edge of link attributes (directions and signs) can yield
richer mesoscale structures in TRNs. Secondly, we have
also shown that a mere updating of the interactions that
make up a TRN in which key regulatory interactions are
incorporated, radically modifies previous results based
on the analysis of motifs appearances. In fact, some of
the previous conclusions do not hold anymore. We have
observed that prokaryotic TRNs show motifs significance
profiles very similar to those belonging to multicellu-
lar, developmental TRNs, signal transduction and neural
systems. Finally, experimental mischaracterization of the
links has also been studied, and yet, we have found that
its influence on motifs statistics is reduced. These results
suggest that the evolutionary interplay between topology

Table 3 Variation in Zscores

E.coli B.subtilis M.tb.

Cascade (original) −4.7 ± 0.2 −6.9 ± 0.4 −2.2 ± 0.1

Cascade (corrected) −2.9 ± 0.4 −6.9 ± 0.8 −1.1 ± 0.3

FFL (original) 4.7 ± 0.2 6.9 ± 0.4 2.2 ± 0.1

FFL (corrected) 2.5 ± 0.7 7.0 ± 0.8 1.1 ± 0.3

Changes in the Zscores of cascades and feed-forward loops (FFLs) due to
systematic mischaracterization of Sls.

and dynamics is more similar between regulatory systems
of multicellular and unicellular organisms than expected.

Transcriptional Regulatory Networks have been
increasingly studied during the last several years.
Nowadays, however, their characterization can only
be considered provisional, as they consist of incom-
plete annotations of often heterogeneous and unreliable
experimental evidences, computational inferences and
theoretical predictions. While working with still incom-
plete networks could be of valuable help to uncover
unknown biochemical pathways, there are situations in
which reliable conclusions cannot be obtained. Moreover,
we don’t even know when the latter is the case. Accuracy
and robustness of the results thus require us to be able
to assess what results are dependent on the noisy and

Figure 4 Changes in prokaryotic TSPs due to systematic
experimental mischaracterization of links. Original systems
present a lower proportion of WCLs than the background in the set of
links that connect nodes for which a secondary coherent regulatory
pathway has been registered. In corrected networks, the proportion
of WCLs is paired to background levels by randomly deleting poorly
characterized interactions. This, however, do not affect the TSPs
significantly.
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uncertain nature of some annotated links. This is crucial
if deep biological implications are to be claimed.

Methods
We find the community structure of the networks stud-
ied using the modularity concept introduced by Newman
[14]. To perform these costly calculations we have used
a mixture of heuristics, including extremal optimization
and Newmans fast algorithm, as implemented in [22]. On
the other hand, the statistical significance of motifs has
been calculated as it is customarily done [6,7]. Finally, for
an exhaustive list of the experimental methods that have
been categorized in different groups, see http://cosnet.bifi.
es/researchlines/systems-biology/data.
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