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Abstract. The availability of data from many different sources and fields of
science has made it possible to map out an increasing number of networks
of contacts and interactions. However, quantifying how reliable these data are
remains an open problem. From Biology to Sociology and Economics, the
identification of false and missing positives has become a problem that calls for a
solution. In this work we extend one of the newest, best performing models—due
to Guimerá and Sales-Pardo in 2009—to directed networks. The new methodology
is able to identify missing and spurious directed interactions with more precision
than previous approaches, which renders it particularly useful for analyzing data
reliability in systems like trophic webs, gene regulatory networks, communication
patterns and several social systems. We also show, using real-world networks, how
the method can be employed to help search for new interactions in an efficient
way.
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1. Introduction

The last few years have witnessed many advances in what is today known as network
science. Although the study of networks is not new, the availability of data in many
different fields, ranging from techno-social systems to biological networks, has paved the
way to solve relevant questions that were not accessible just a few years ago due to the lack
of relevant data. It is however evident that we have advanced less in some fundamental
questions, already put forward back in 2001 [1]. One of such challenges is to understand
how models, methods and results of network theory change when one considers different
kinds of links: directed or undirected, weighted or unweighted. Though there are many
good examples of real networks that can be easily treated as undirected [2], probably there
is an even larger number of systems in which links’ directionality and/or weights make a
difference. These systems include gene regulatory networks [3, 4], food webs [5] or some
interaction networks extracted from social media communication patterns [6, 7].

On the other hand, the lack of data quality and complete information about
interactions is a ubiquitous problem in most research areas where the framework of
network modeling is applied. For example, classical social survey methods must deal with
problems like sampling biases [8], or data loss [9, 10], which can compromise network-
level analyses. The problem is even more acute when moving from social to biological
systems like transcriptional regulatory maps, in which the promise of high-throughput
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biochemical techniques of revealing the system backbone (i.e., transcriptomes) has to
deal with the inaccuracy that these methods often show. Microarray essays—the main
tool to quantitatively measure the activity of large amounts of genes in a highly parallel
fashion—constitute a paradigmatic example of a powerful, but sometimes inaccurate or
hardly reproducible technique [11]–[13].

Focusing on the subfield of gene regulatory networks, one additional limitation to
the network approach is the diversity—even conceptual—of the high number of different
techniques used to infer regulatory interactions [14]–[16]. Lastly, the most important issue
is probably the fact that the environmental conditions under which regulatory interactions
take place are, in general, different for each interaction, and for a high proportion of
cases only roughly known. This leads to the paradox that in many cases, reported
regulations [14, 15, 17] identified through very diverse experimental techniques, and under
specific experimental conditions, are rarely similar when links identified through different
experiments are compared.

It is then of utmost importance to develop new ways to assess data reliability
in complex directed networks, especially because most of the efforts up to now have
been directed towards solving the problem in undirected, unweighted graphs [18]–[21],
and there are only few works devoted to address the problem in directed systems
[22, 23]. In this paper, we capitalize on a previous method proposed to study the very
same problem but for undirected systems [24]. Specifically, we generalize the method
proposed by Guimera and Sales-Pardo [24] to the case in which links are directed, like
in a regulatory network. By doing so, we are able to successfully identify missing and
spurious interactions in several real-world networks.

By comparing the performance of our method to that of previous approaches
[22, 23] dealing with directed networks, we obtain, with some exceptions, better results
at predicting missing and spurious interactions, paying the price of greater computational
requirements. This exhaustive comparison allows us to give a general outlook of the
problem of data reliability determination on directed networks, identifying the strengths
and weaknesses of each method. Finally, we test whether the methods can be used to
predict new links in a genome-wide transcriptional regulatory network [14], providing a
robust methodology that could help and guide the experimental search for unnoticed
regulations. Our results indicate that the approach proposed here is also the best
performing method when facing this kind of situation.

2. Results

2.1. Stochastic block models for reliability determination in directed networks

Following [24], let us suppose that we are working on a certain graph whose adjacency
matrix is Ao, which is just an imperfect realization of a certainly ideal, ‘true’ network A
to which we have no access. With X being a certain measurable property of the network,
we will call p(X = x|Ao) the probability that, once observed the graph Ao, X is equal to
x in the ideal system A. Then we have:

p(X = x|AO) =

∫
M

p(X = x|m)p(m|AO) dm (1)
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where p(m|AO) is the probability that m is the model in a class M that gave the
observation AO, and p(X = x|m) stands for the probability of model m to generate
networks in which X = x. It is worth noting that, depending on the way the family
of models M is defined, equation (1) can adopt the form of a sum instead of an integral.
Since the term p(m|AO) is certainly difficult to estimate, we must reformulate the problem
by using the Bayes theorem, to get:

p(X = x|AO) =

∫
M p(X = x|m)p(AO|m)p(m) dm∫

M ′ p(AO|m′)p(m′) dm′
(2)

where p(A0|m) is the probability that m gave AO among all possible adjacency matrices
and p(m) is the a priori probability of model m.

At this point, we need to select a class of models to integrate the former expression.
The main hypothesis that lies beneath this method consists of assuming that the required
family is that of stochastic-blocks-models (SBM). In the case of undirected networks, any
of these SBM can be characterized by a partition P of the set of nodes into blocks, and a
probability matrix Q such that the element Qα,β defines the probability that any of the
nodes belonging to the block α be connected to any of the nodes within block β. Thus, the
probability of two nodes being connected depends only on the blocks these nodes belong
to within the partition P . Note that under these assumptions, Q is symmetric.

In order to deal with directed networks several possibilities are conceptually feasible.
Here, we propose the following variation of the model. Instead of considering one single
partition P of the nodes’ space, we will consider two partitions, a senders partition Ps

and a receivers partition Pr. Every node i must then belong, independently, to a block
in each partition: i ∈ σi with σi ∈ Ps and i ∈ ρi with ρi ∈ Pr, as sketched in figure 1.
The partitions just take into account the fact that in directed networks, out-going and
incoming links are treated separately. Thus, out-going links of node i will be determined
by block σi to which it belongs in the partition Ps. In turn, and in an independent
way, the in-degree will be given by the block ρi in the other partition Pr in which the
node i is located. Within this scheme, the probability of node i sending a link to node
j is Qσi,ρj . Remarkably, the probability of observing the opposite link is different, and
equal to Qσj ,ρi .

This scheme, while having the virtue of its computational tractability, conceptually
captures the behavior of systems like transcriptional regulatory networks in which the
statistics associated to in-degrees are very different to those regarding out-degrees [14, 15],
being both relatively uncorrelated. This can be easily understood if one considers that the
biochemical properties that define the susceptibility of a protein to be regulated by others
are different to those that make the protein a regulator. While the information that will
ultimately define the identity and the strength of the transcriptional regulations affecting
a protein reside in its promoter region, its eventual ability to bind to the promoters of
other target proteins depends on the presence and identity of a regulator domain within its
protein sequence. Consequently, these two eventual roles of the protein are determined by
DNA sequences that are independent and that, at least in principle, can evolve separately,
both in prokaryotic [25] and eukaryotic cells [26].
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Figure 1. Stochastic block models for directed networks. In this example,
partitions count with two blocks of three and four nodes, respectively. Note that
the number of occupied blocks and the number of nodes within them have to
be the same both in senders and receivers partitions. The partition represented
has a low Hamiltonian, because blocks are large enough and the number of
links between each pair of blocks l0σ,ρ is either close to 0 or to the maximum
possible value in each case rσ,ρ. We have: (lo1,1, r1,1) = (8, 9), (lo1,2, r1,2) = (1, 12),
(lo2,1, r2,1) = (0, 12), (lo2,2, r2,2) = (1, 16). According to this picture, links from
nodes of block 1 ∈ Ps to nodes in block 1 ∈ Pr are much more reliable than
any others: thus, the link 3 → 1 is a prototypical missing link, while the links
3→ 6 and 6→ 7 are prototypical false positives.

2.2. Links reliabilities

Each of the SBM is fully defined by determining the two partitions above and the
probability matrix, hence m = (Ps, Pr,Q). Additionally, we define the reliability of a
certain link i→ j as the probability:

Ri→j = P (Ai,j = 1|Ao). (3)

On the other hand, let us consider a couple of nodes (i, j) so that i ∈ σi in the senders
partition Ps and j ∈ ρj in the receivers partition Pr. The probability of observing a link
from node i to node j in a network generated by our model is:

P (Ai,j = 1|Ps, Pr,Q) = Qσi,ρj . (4)

doi:10.1088/1742-5468/2013/12/P12008 5
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Consequently, the probability of observing the graph Ao as a realization of the same model
is given by the binomial product:

P (AO|Ps, Pr,Q) =
∏

σ∈Ps,ρ∈Pr

Q
lOσρ
σρ (1−Qσρ)

rσρ−lOσρ , (5)

where lOσ,ρ is the number of links observed between nodes placed in σ in Ps, and nodes

placed in ρ in Pr. Regarding rσ,ρ it is the maximum possible value for lOσ,ρ, that is, the
product of the sizes of blocks σ ∈ Ps and ρ ∈ Pr. Substituting the three last expressions
into equation (2), we get, after integration over all possible probability matrices for each
case, that the reliabilities of links are:

Ri→j =
1

Z

∑
Ps∈PS
Pr∈PR

P (Ps, Pr)
lOσi,ρj + 1

rσi,ρj + 2
e−H(Ps,Pr), (6)

with PS and PR standing, respectively, for the spaces of all possible partitions of nodes
as link senders (S) and link receivers (R). Node i belongs to block σi in Ps; while node
j is located in ρj at Pr. Finally, P (Ps, Pr) is here the a priori probability of observing
a subset of models defined by Ps and Pr, under the assumption that once partitions are
fixed, all possible models that one can get by changing the probability matrices are equally
probable. In addition, the partition function Z in the last equation takes the form:

Z =
∑
Ps∈PS
Pr∈PR

P (Ps, Pr)e
−H(Ps,Pr) (7)

and the Hamiltonian function is:

H(Ps, Pr) =
∑
σ∈Ps
ρ∈Pr

[
ln (rσρ + 1) + ln

(
rσρ
lOσρ

)]
. (8)

Up to this point, the scheme of the method is totally analogous to the baseline method
for undirected systems presented in [24]. However, the generalization of the method to
directed networks requires further refinements. More precisely, as detailed in the appendix,
we must adopt here the following hypothesis. Let ~χPx be the vector whose components
are the (ordered) number of nodes present in each of the blocks within partition Px. We
have that

P (Ps, Pr) = constant ∀(Ps, Pr) with ~χPs = ~χPr ,

P (Ps, Pr) = 0 ∀(Ps, Pr) with ~χPs 6= ~χPr .
(9)

Then, the a priori probabilities cancel out in equations (6) and (7)), and thus, the
mathematical forms of these expressions are identical to those given in [24], except for the
fact that here, sums and products are taken over the combination of two partition spaces:
Ps and Pr, with the additional constraint that the only couple of partitions (Ps, Pr) that
computes are those for which ~χPs = ~χPr (see appendix).

Nevertheless, the reliabilities sums have always the form of a canonical ensemble
average, which allows us to use again a Metropolis algorithm to sample among all the
possible pairs of partitions compatible with the condition ~χPs = ~χPr , those yielding to
smaller Hamiltonians and thus contributing the most to the sum (see appendix). When the
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sampling finishes, we recover the reliabilities of all possible directed links in the network
despite their directionality—obviously, in general Ri,j 6= Rj,i. Moreover, by ranking the
links one can test which are the more reliable ones, no matter whether a given link was
observed in our graph Ao or not. This is what we do in the following sections.

2.3. Method accuracy

In order to check the performance of our approach, we perform a series of tests on top of
different networks as in [24]. To this end, we use six well-known directed networks (see
appendix): a social network of radio calls among a closed set of operators [27], a network
of hyperlinks in an on-line glossary [28, 29], the trophic webs of Narragansett bay [30] and
the Everglades [31], the cell-fate determination gene network of flower development of
Arabidopsis thaliana thaliana and the regulatory network among transcription and sigma
factors of Mycobacterium tuberculosis [14].

Assuming that these networks are error-free, we randomly remove a certain proportion
of links. Then, we run our algorithm and rank the links reliabilities as coming out
of the algorithm. We define the accuracy of the method when it comes to identify
missing interactions as the probability that removed links are assigned a higher reliability
ranking—i.e., they are false negatives—as compared to those that are true negatives.
On the contrary, to test whether the method is able to identify spurious interactions
accurately, we randomly add a proportion of links between nodes which are already senders
and receivers in the original network. As before, link reliabilities are computed and the
ordered ranking is used to check the accuracy of the method, which in this case is given by
the (mean) probability that spurious interactions—now they are like false positives—are
ranked lower than true links.

In order to evaluate the performance of our method, we compare its accuracy with
two of the latest (and to the best of our knowledge the only two dealing with directed
networks) alternative approaches to the problem, due to Zhang et al [23] and Kim and
Leskovec [22], respectively.

Results of the accuracy tests are shown in figure 2. In the left panels, we have
represented the accuracy of the methods regarding the identification of missing links,
and in the right panels, we show the accuracies related to spurious links. Black series
correspond to the SBM-based algorithm presented here, red data series correspond to the
method in [23] and green series to the KronEM algorithm developed in [22].

As we can see, on the one hand, the SBM-based method systematically outperforms
that of Zhang et al, except for the case of the social network of radio calls, for which the
performance of the latter is slightly better, mainly regarding the prediction of spurious
links. In fact, a deeper analysis of the two methods, as we discuss next, shows that they
give highly correlated outcomes. On the other hand, the SBM-based approach outperforms
the KronEM algorithm in eight panels, and underperforms it in three. In the last case—
spurious links in the glossary network—both methods perform very similarly.

2.4. Alternative methods: Zhang’s approach

According to the first of these alternative methods, due to Zhang et al [23], the reliability
of a link is thought to be proportional to the number of bi-fans (graph formed by two
senders and two receivers each one of which receives a link from each sender [33]) in which

doi:10.1088/1742-5468/2013/12/P12008 7
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Figure 2. Method accuracy in the detection of missing (left) and spurious
interactions (right) in six directed networks, according to the four methods
explored in the text. The first two networks (radio calls and glossary) lack
self-loops by construction, and hence, it makes no sense to generalize Zhang’s
approach there. For the same reason, self-links are not allowed as spurious
interactions for these two networks. Not shown error bars are smaller than symbol
size or line thickness.

each link participates. Similarly, the reliability of a nonexisting link can be evaluated as
the number of bi-fans that would be generated by adding the absent interaction. The so
evaluated scores are integers and obviously have no absolute probabilistic interpretation;
nevertheless, pairs of nodes can be ranked by their scores and, in this sense, it is a useful
tool for missing and spurious link identification also.

In order to understand in depth the relationship between SBM and Zhang’s method,
let us recall some technical details of our approach. As thoroughly explained in the
appendix, in the Metropolis algorithm used by the SBM-based method, the partitions
that give lower Hamiltonians and thus mostly contribute to the reliability sums are those
that find a better compromise between two conflicting constraints. The first of these
constraints is that blocks in the partitions have to be as large as possible. The second
constraint forces the number of links loσ,ρ existing between any pair of blocks σ ∈ Ps and
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Table 1. Correlations between SBM-based reliabilities and Zhang scores. To
obtain these correlation coefficients we calculate the average SBM-based
reliabilities of all pairs of nodes sharing a common Zhang score. The Pearson
coefficients represented show the existence of correlations between the scores and
the averaged reliabilities. For the calculations, we have considered the generalized
Zhang scores, which also take into account the degenerated bi-fans in figure 3.

Network
Pearson
coefficient

Radio calls 0.912
Glossary 0.917
Narragansett bay 0.904
Everglades 0.850
A. thaliana 0.920
M. tuberculosis 0.943

ρ ∈ Pr to be either close to the maximum (i.e. equal to rσρ, the maximum possible value
given the size of the blocks) or to the minimum. Hence, given a certain partition, the
bigger the quotient r = (loσi,ρj + 1)/(rσiρj + 2), the bigger the reliability of the link i→ j
will be. In the partition depicted in figure 1, for example, for the absent link 3→ 1, we
have r = (8+1)/(9+2) = 9/11, while, for the link 3→ 6, r = (1+1)/(12+2) = 2/14. The
example is relevant because it evidences that a pair of nodes with a high link-reliability
between them also tends to form a high number of bi-fans, as is the case of pairs of nodes
between blocks 1 ∈ Ps and 1 ∈ Pr. The reason is that, to have a high reliability, the number
of links between the blocks involved has to be saturated, or nearly saturated, (i.e. loσi,ρj
near to rσiρj) and that, additionally, as has been said before, blocks tend to be as large as
possible.

To show that this relationship between both methods exist, we have calculated the
correlation coefficients between Zhang scores and SBM-based reliabilities. The results,
given in table 1, for the six networks analyzed show a high correlation between the outcome
of both methods: links with high Zhang scores tend to have high SBM-based reliabilities
and vice versa. In order to perform an additional test, we can calculate the probability of
any pair of nodes (i, j) to co-occur in a common block either at the senders partition:

Pσi=σj =
1

Z

∑
Ps∈PS
Pr∈PR

P (Ps, Pr)δ(σi − σj)e−H(Ps,Pr) (10)

or at the receivers partition:

Pρi=ρj =
1

Z

∑
Ps∈PS
Pr∈PR

P (Ps, Pr)δ(ρi − ρj)e−H(Ps,Pr) (11)

where δ stands for the Kronecker delta function. For the same pair of nodes (i, j) we
calculate the number of bi-fans that are generated with nodes i and j playing the
receivers roles N rec

bf (i, j), and we can compare it with the expected number of bi-fans
that they would generate at random in a network of N nodes given their in-degrees
kin(i) and kin(j). This expected value is N rec

bf |exp(i, j) = kin(i)kin(j)/N , and the deviation
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Table 2. Bi-fans tend to aggregate around pairs of receivers sharing common
blocks. ∆rec

bf (i, j) is the difference between the number of bi-fans in which
nodes (i, j) participate as receivers N rec

bf (i, j) and the expected value of the
same quantity N rec

bf |exp(i, j) = kin(i)kin(j)/N in the null case. Positive values of
∆rec

bf (i, j) mean that nodes (i, j) have more common in-neighbors than expected
at random. In this table we show that receiver pairs with greater coexistence
probabilities Pρi=ρj

have greater ∆rec
bf (i, j) on average. The p-values stand for

the probability of the mean value of ∆rec
bf (i, j) for the first population (pairs

(i, j) with Pρi=ρj
≤) being equal to or greater than the mean of the second

population. We can repeat the exercise to test the correlation between Pσi=σj

and the deviation of the number of bi-fans generated by receivers couples
∆send

bf (i, j) = N send
bf (i, j) − N send

bf |exp(i, j); the results are very similar; with all
p-values under 20% and 4 out of 6 under 5%. Degenerated bi-fans have also been
taken into account.

Network
〈∆rec

bf (i, j)〉 for
Pρi=ρj

≤ 0.5
〈∆rec

bf (i, j)〉 for
Pρi=ρj

> 0.5 p-value

Radio calls 5.42± 0.37 10.30± 2.37 1.20× 10−4

Glossary (1.80± 0.85)× 10−1 (3.12± 1.61)× 10−1 2.25× 10−1

Narragansett
bay

(4.47± 1.10)× 10−1 1.63± 0.26 < ×10−5

Everglades 6.85± 0.58 31.09± 2.94 < ×10−5

A. thaliana (−5.11± 3.75)× 10−1 2.28± 1.60 8.48× 10−2

M.
tuberculosis

(3.31± 1.1)× 10−2 (1.40± 0.64)× 10−1 7.63× 10−3

of the observed number of bi-fans coming from nodes (i, j) and the expected value is
∆rec

bf (i, j) = N rec
bf (i, j)−N rec

bf |exp(i, j). To test whether bi-fans tend to be formed by couples
of receivers that share a common block in the senders partition, we calculate the average
of ∆rec

bf (i, j) for those receiver couples having a co-occurrence probability Pρi=ρj ≤ 0.5, and
we compare it to the same quantity averaged on couples with Pρi=ρj > 0.5. The results of
this test, given in table 2, show that in most networks a larger probability of coexistence
at receivers’ partitions comes together with a higher number of bi-fans formed by the
couple of receivers.

After these observations, the reasons behind Zhang’s method performance could be
reinterpreted as a simple consequence of the existence of an underlying block structure.
Under this assumption, the mapping between both methods allows us to overcome one
of most clear limitations in [23], i.e. its inability to evaluate self-loop reliabilities (a self-
loop never joins a bi-fan). Once we have seen that the appearance of bi-fans around
highly reliable links can be rooted in the underlying block structure, we notice that
the structures sketched in figure 3 are, from the perspective of stochastic block models,
absolutely identical. Recalling the example partition in figure 1, the ‘pure’ bi-fan formed
by nodes (1, 2, 4, 5), appears as a consequence of links saturation between blocks 1 ∈ Ps
and 1 ∈ Pr, just in the same way that the degenerated structure formed by nodes (1, 2, 4)
does. Thus, what we propose here is a variation of Zhang’s method in which degenerated
bi-fans are treated in the same way that ‘pure’ are, and therefore counted when it comes to
evaluate the scores, even when they violate one of the main requirements of the original
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Figure 3. Bi-fan degeneration. From a ‘pure’ bi-fan (upper graph), if the identity
of one—or both—of the couples sender–receiver coincides, we obtain these motifs,
that we call degenerated bi-fans.

approach of Zhang et al [23]. The last four rows of figure 2 show results obtained for
networks that contain self-loops. As can be seen, the generalization of the method has
little impact on the food webs because of their low number of self-loops, while in the
regulatory networks analyzed, in which self-loops are more frequent, the generalized
method noticeably outperforms the original proposal of Zhang, thus supporting our
hypothesis.

2.5. Alternative methods: KronEM algorithm

Instead of Zhang’s approach—essentially based on local topological information—the so-
called Kronecker expectation–maximization (KronEM) algorithm [22] is based on a family
of stochastic network models. These models have two main ingredients: a Kronecker matrix
built after the expansion of a low-dimensional matrix θ verifying θi,j ∈ (0, 1)∀(i, j) via
Kronecker multiplication by itself, and a bijection of the node set Σ : i→ σ(i). In order
to describe a network of N nodes, if we are working with a matrix θ of dimensions n× n
(typically n = 2), we will need to iterate the Kronecker product k times, wit k being
the lowest integer higher than logn(N). Once done so, the matrix elements θki,j—always
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Table 3. Computational time required for generating one single reliability rank
using the SBM approach. In each case, 1000 partitions are sampled.

Network Nodes Time (s)

Radio calls 44 155
Glossary 67 113
Narragansett bay 32 50
Everglades 69 218
A. thaliana 15 2
M. tuberculosis 65 302

verifying θki,j ∈ (0, 1) ∀(i, j)—can be interpreted as link reliabilities; more precisely, the

matrix entry θkσ(i),σ(j) is the probability assigned to the link i→ j.
It is worth noting that, as exposed before, the so-constructed Kronecker probability

matrix has—unless N is an integer power of n—more rows than nodes exist in the network.
This situation is used in [22] to make inferences on what they call ‘the hidden part of the
graph’, i.e. the part of the graph artificially described by the surplus of rows of the matrix
θk. However, the adaptation of the algorithm to the problem that we face here is trivial,
and allows us to focus only on the ‘real part’ of the graph (as already done in [22], section
4.3).

The algorithm proposed in [22] to determine link reliabilities is based on finding,
among all possible Kronecker models able to describe a certain network of adjacency
matrix Ai,j, one that maximizes the overall likelihood:

P (A|Σ, θ) = ΠAi,j=1(θ
k
σ(i),σ(j))ΠAi,j=0(1− θkσ(i),σ(j)) (12)

and, as can be shown from [22] such a maximization is feasible on computational time
of the order of the number of nodes. The computational requirements, as can be seen
in table 3, are heavier for the SBM approach, as was already determined in [22] for the
undirected version of the algorithm presented here.

The reason for this situation does not come from the behavior of the elemental step of
our Metropolis algorithm itself, which indeed scales with the number of occupied blocks
(i.e., at most, with the number of nodes as well). Most of the time requirements of our
algorithm come from the amount of iterations needed for uncorrelating two subsequent
partitions in the sampling procedure. These decorrelated intervals depend in not trivial
ways not only on the number of nodes, but also on the number of links and, in general,
on the topology of the graph. This behavior explains the inexact correlations between
computational times and system sizes in table 3.

The KronEM algorithm does not present, in principle, these problems. The reason
is that although both approaches are model-based Bayesian methods, while the SBM
approach bases its predictions on recovering a whole ensemble of stochastic models, the
KronEM algorithm aims at simply picking one optimal model to optimize the likelihood.
This situation, while having the virtue of reducing the computational requirements of a
single run, makes the prediction of the algorithm more volatile, and sensitive to initial
conditions as was already admitted in [22].

doi:10.1088/1742-5468/2013/12/P12008 12

http://dx.doi.org/10.1088/1742-5468/2013/12/P12008


J.S
tat.M

ech.(2013)
P

12008

Data reliability in complex directed networks

2.6. Guiding experiments

Once we have tested the general performance of the SBM-based method when compared
to KronEM, Zhang’s, and generalized Zhang’s approaches, we discuss their application in
an important and specific domain, that of transcriptional regulatory networks. In this field
of research, computational data reliability tools could help mitigate either the relatively
poor quality and reduced size of some networks available [34, 35] or to integrate vast
amounts of information coming from high-throughput experimental techniques.

On the other hand, there are several organisms—even relevant pathogens—for
which the whole transcriptional map is not at hand, despite the fact that having the
network would help in the search for new drug targets or vaccines. This is the case
of the transcriptional regulatory network of Mycobacterium tuberculosis. The bacillus of
tuberculosis, responsible of one of the most threatening diseases worldwide, is probably
one of the bacteria whose transcriptome has been best studied in recent years [14, 36, 37].
In 2008 the transcriptional regulatory network of the pathogen consisted of 782 genes and
937 interactions [36], but the last updated version, published in 2011, contains as many
as 1624 genes and 3212 interactions [14]. Moreover, the updated version also added 357
new links between some of the 782 genes that were reported in 2008.

All the aforementioned facts, together with the running costs of experiments, are
calling for methods that could optimize the search of new interactions. To test whether
and to what extent our algorithm could contribute to cure new datasets and guide the
experimental search of new transcriptional relations and regulators, we perform a simple
exercise with the M. Tb datasets of 2008 and 2011. Specifically, we check whether the
appearance of the 357 links in the 2011 compilation that connects pairs of genes already
integrated in the 2008 network could have been inferred from the analysis of the 2008
network itself.

To simulate the way in which our method could help to identify these new interactions,
let us suppose that we are interested in a certain gene of the 2008 network and we look
for undiscovered regulations it might receive from any of the regulators already present in
the network in 2008—obviously excluding those that had been already found to regulate
its activity at the moment. If no biological clue is available about what regulators are
the more likely candidates to act on our gene, we are forced to experimentally try, one
after another, all the possibilities. If the result of some of these experiments is positive,
and so the interactions exist, we will identify them at a linear rate, as represented in gray
in figure 4, panel (a). In the same figure, the black curve represents the rate at which
all these novel interactions are detected when the possible targets are checked according
to their reliabilities calculated using the SBM approach. As can be seen, the SBM-based
method greatly enhances the rate at which new links are discovered, with respect to the
random case but also, to a lower extent, with respect to KronEM and Zhang’s algorithms.

If the situation is the opposite, and we are interested in unveiling new links coming
from any of the regulators of the network in 2008, the rate at which targets of the new
links could be experimentally found is represented in figure 4, panel (b), when choosing
the candidates according to their SBM-based reliabilities, according to the alternative
methods and when the order is random. In this case, the performance of SBM and Zhang’s
methods slightly outperforms KronEM, which is not better than the random procedure.
These differences, though moderate, in practice could represent saving time and resources.
In fact, starting from the regulators (figure 4, panel (b)) and aiming at finding 50% of
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Figure 4. Mycobacterium tuberculosis transcriptional regulatory network update
analysis. Black: SBM-based seek. Red: Zhang’s scores. Blue: generalized Zhang’s
scores. Green: KronEM algorithm. Gray: random seek. (a) Proportion of
regulators checked versus proportion of new links found, when focusing on targets
receiving the new links. (b) Regulator-based search: proportion of targets checked
versus proportion of new links found, when focusing on regulators sending the new
links. In the insets, the Z-score of the methods’ performance is computed, when
compared to the random procedures, whose error bars (σ = 1) are represented
in gray. As can be seen, all three methods outperform the random procedure,
mostly at the first stages, and more remarkably in the case of the target-based
search (panel (a)).

the new targets, one has to seek the 39% of the targets with the highest SBM-based
reliabilities in each case. This implies that the SBM-based method uses 78% of the time
and resources needed if the identification is made randomly. Going back to the results
shown in figure 4, panel (a), that case produces even better results: to find the 50% of the
regulations received by a target gene, one must only seek a 20% of the total of regulators.
Therefore, the SBM-based method remarkably outperforms the random search by using
as little as 40% of the resources spent in the null case, but also the search orderings based
on the alternative methods.

3. Conclusions

We have proposed an extension of the method in [24] to determine link reliabilities in
directed networks. This opens the path to the potential application of our technique
for the detection of missing and spurious interactions in systems as important as food
webs, transcriptional regulatory networks or certain social networks, all of which are
directed networks. A related and interesting problem that however remains to be explored
is whether reliability rankings are correlated with significance measures [38]–[40] of the
links identified. For instance, a genuine question is whether finding a highly ranked but
lowly significant link is worth the computational cost involved in the calculation. We leave
this kind of question for future works.
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The accuracy and robustness of the method has been tested exhaustively on networks
of different sizes and topological properties. Results of intensive numerical simulations
have shown that missing and spurious interactions can be detected successfully, with
higher precision than previous approaches in most cases. In addition, we have numerically
shown that the method can be used to guide the experimental search for missing links,
as the reliability ranking resulting from the application of the algorithm to an incomplete
network provides a very good guideline for experimental tests that eventually lead to the
discovery of new interactions in a highly efficient way. This potentiality has important
implications for our current efforts to map out transcriptional regulations, particularly in
cases such as that of Mycobacterium tuberculosis, where experimental laboratory protocols
are very slow and expensive. At a conceptual level, this exercise makes explicit the ability
of our method to predict real, arbitrarily correlated errors in complex directed networks,
rather than randomly generated missing or spurious interactions.

On the other hand, after an exhaustive comparison of our method with the method
proposed in [23], we have been able to provide a rationale for the latter approach: when
the topology of a real system can be successfully described by a block model, bi-fans
systematically appear around highly reliable links. In addition, the mapping between both
methods makes immediate the generalization of Zhang’s approach to deal with self-loops.
This generalization enhances the performance of the original algorithm when self-loops
are statistically relevant, as happens in some gene regulatory networks (see figure 2 lower
row).

Our SBM-based model has however an important limitation. It is prohibitively costly
in terms of computational time for large systems, and for sure much more expensive than
Zhang’s approach, or even than single runs of the KronEM algorithm. Therefore, the
method proposed here is mainly aimed at relatively small systems. For larger networks,
Zhang’s generalized method, whose outcomes are highly correlated to our approach in
small systems, can be used as a low-cost resource. The KronEM algorithm, in turn,
represents an intermediate solution, both in terms of computational expenses and method
accuracy and consistency. This kind of situation in which there is a price to pay for
reaching more accurate tools also appears when facing other problems such as community
detection in networks [41].

Alternatively, if more accuracy is required, we believe that the SBM-based method
presented in this paper could also be applied to subgraphs, overcoming in this way the
size limitations. For instance, one can try to partition the whole system first by using one
of the many algorithms available for community detection and then apply the reliability
technique only to the detected communities. This kind of solution will be explored in
future work.
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Appendix. Some relevant aspects regarding the methodology

A.1. Phase space

In [24], the mathematical form of the Hamiltonian, in the undirected model is, as said
before, equivalent to (8), except for the fact that there is only a partition family to sum
over. Let us write it as:

Hu(P ) =
∑
α<β

[
ln (rαβ + 1) + ln

(
rαβ
lOαβ

)]
. (A.1)

The restriction α < β (both blocks belonging to the partition P ) appears only in order
not to sum each term of the sum twice. Let us inspect the two different terms:

H1u(P ) =
∑
α<β

ln (rαβ + 1) (A.2)

H2u(P ) =
∑
α<β

ln

(
rαβ
lOαβ

)
. (A.3)

The first term depends, essentially, on how ‘concentrated’ the partition is. Briefly, it is
minimal when the nodes tend to concentrate in a small number of blocks. In the case
of having all the nodes on the same block, equation (A.2) gives ln(1 + N(N − 1)/2),
where N is the number of nodes, which is approximately equal to 2 ln(N) when N is
large enough. Instead, if we have the opposite situation in which each node is assigned
to a different block, then H1 = N(N − 1) ln(2)� 2 ln(N). Thus, the term H1u minimizes
when the partitions are compact, and maximizes in the opposite case. As for the second
term, the picture is the opposite. The presence of the combinatory number implies that,
to minimize H2u, the partitions of nodes should be a kind of ‘straight fit’ for the links
connecting blocks: given any two random blocks α and β, there should be a number of links
between the blocks near to the maximum—the product of the block sizes, i.e. rα,β—or to
the minimum (i.e. no link between the blocks). Thus, if we aim at getting the minimum
of this term alone, one must go to the segregated partition in which each node belongs to
a different block, for which the term directly vanishes.

Therefore, minimizing the Hamiltonian implies finding a compromise between
aggregation and segregation of nodes into blocks, as the two terms have clear opposite
effects, and no one of the extreme situations is globally convenient. How does this picture
change when we move to the bipartite scheme? The addition of new degrees of freedom
to the system generates an undesirable situation in which, if we perform a Metropolis
algorithm letting freely evolve the two partitions, we will reach a situation in which in the
Ps space, all nodes gather together into a single block, while in the Pr space we will get a
split into as many blocks as nodes are. The reason is that, for the system, this configuration
is globally stable, because the two Hamiltonian terms, under this configuration, reach
values that are far away from the possible maximum. However, in this case, the final
configuration is absolutely uninformative.

The above problem comes from the fact that the system is not constrained enough
and it is allowed to adopt partitions in each one of the subspaces with very different
degrees of aggregation. Thus, we should impose a further constraint so that the system
can only adopt couples of partitions with the same aggregation state (i.e. ~χPs = ~χPr), the
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stable state. This will allow us to get partitions that give rise to minimum Hamiltonians
being at the same time fully informative and having a compromise at intermediate levels
of aggregation between link assignments and block sizes. In this case, the algorithm will
be qualitatively analogous to that of the undirected case.

A.2. Metropolis algorithm

In order to perform our Metropolis algorithm, we start by assigning, at random, each
node to one block, for example in the space Ps. Then we copy the partition generated
to Pr. To ensure independence between the partitions but always verifying the constraint
~χPs = ~χPr , we proceed to randomize the partition Pr by iteratively changing the block of
couples of nodes (also chosen randomly) a high enough number of times. In this way, the
blocks numbered equally in both partitions contain the same number of nodes. Thus, at
each Metropolis step, we choose a couple of nodes belonging to the same block in both the
partitions Ps and Pr and we try to change both at the same time to the same destination
block (each one on its own partition). To ensure that any couple of nodes has the same
probability of being chosen, we proceed as follows: we start by choosing randomly one
node n1 in one partition. Then we move it to the twin block containing the very same
node n1 in the complementary partition. Inside this twin block, we randomly choose the
second node to move, n2. After the nodes n1, n2 are selected and tentatively moved, we
recalculate H and accept the move if H(t+ 1) < H(t). As usual, if the Hamiltonian raises
up, we accept the move with probability P = e(H(t)−H(t+1)) in the standard case. Such
an algorithmic scheme guarantees an ergodic exploration of the phase space, and ensures
without problems detailed balance. In this way, after a certain transient, the Hamiltonian
reaches its equilibrium value and at that point, we start the sampling procedure, taking
care that two consecutive samples are uncorrelated enough.

A.3. Technical aspects

While the method does not raise any problem when analyzing systems of small size (let us
say N < 200 nodes and E < 1000 links approx.), as those studied in section 2, for larger
networks, there sometimes appear some conceptual problems that can make the sampling
procedure more difficult. First, it has been observed that the amplitude of oscillations of
stationary Hamiltonians, in general, increases with the size of the network analyzed. This
range can be near 1000 Hamiltonian units for systems of less than 2000 nodes, such as
those of E. coli [15] or M. tuberculosis [14] transcriptional regulatory networks. Since the
distribution of the Hamiltonians is qualitatively normal around the average value (results
not shown), the higher the amplitude of the oscillation is, the lower the proportion of
samples that will contribute significantly to the sum is (let us say, those with H, at
most, 10 units greater than the minimum). This problem, when it comes to analyzing big
networks, will force us to get a too high number of samples to get a minimum amount
of relevant ones. The latter can be prohibitive in terms of computational time (recall, in
addition, that the computational time of a single Metropolis step also increases with the
size of the system).

Here we propose an alternative procedure that can be implemented when the networks
under study are too large and computational resources do not allow a full exploration
of the phase space. The alternative is as simple as discarding all the samples with
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Figure A.1. Coherence of ranks defined as the proportion of reliabilities that
preserve ordering in successive realizations obtained with diverse sampling
strategies: Panel (a) black bars: standard sampling procedure. Blue bars:
threshold sampling. We have set γ = 2. See the text for further details. Red
bars: relative coherence of standard sampling ranks versus threshold sampling
ranks (γ = 2). Panel (b) black bars: standard sampling procedure. Red bars:
relative coherence of standard sampling ranks versus hot-threshold sampling
ranks (T = 2, γ = 2). Blue bars: hot-threshold sampling. (T = 2, γ = 2.) See
the text and appendix for details.

H < 〈Hstat〉 − γ · σHstat , where γ is a coefficient that can be chosen depending on the
computational time we require and the number of samples we are looking for. This
resource, although in principle could limit the performance of the method, does not affect
it significantly, as shown in figure A.1, panel (a).

The black bars in figure A.1, panel (a), show the consistency of the standard method of
sampling without any threshold. We define this consistency as the proportion of reliability
pairs Ri,j Rk,l whose relative ordering is preserved in successive reliability ranks obtained
with the same method. Moreover, in red bars, the comparison is made between a rank
obtained with the standard procedure and another rank for which only the samples that
lie over a threshold 〈Hstat〉 − γσHstat have been preserved and considered (here, γ = 2).
Finally, the bars in blue show the internal consistency of the threshold method, that
is, the mean proportion of reliability pairs whose order is conserved when we compare
pairs resulting from two independent rankings generated using the threshold criterion.
As can be seen, the three measures, for the six systems shown, are consistently high and
quantitatively similar between them, thus providing evidence that the threshold method
could help in situations where the required computational time is prohibitively large if we
aim at getting enough samplings. This kind of procedure has been used for the analysis of
the transcriptional regulatory network update represented in figure 4, considering 10 000
partitions with Hamiltonians greater than 〈Hstat〉 − γσHstat with γ = 2.
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There is an additional problem that generally appears when the networks have high
mean connectivities, or, strictly speaking, when the mean connectivity is of the order of
half the number of total possible links in the network, that is, in a directed network, N2/2.
In these cases, the information stored in the adjacency matrix is high, and so, with the
number of constraints being high, the dependency of the Hamiltonian on the partitions
defines a rough energy landscape that sometimes can become difficult to deal with. This
situation can lead the system to fall into a local minimum after the thermalization process,
and get trapped there. Thus, once arriving at the stationary state, if the basin of that local
minimum is small, we will observe that the system is not able to uncorrelate sufficiently,
and thus, even if its energy is small enough to consider it an acceptable minimum, our
sampling will be very poor. One solution to this issue would be that of parallelizing the
algorithm starting each parallel process from a random initial configuration. In this way,
the process will ideally reach independent minima and thus the sampling would be N
times richer, with N being the number of parallel processes.

If the above solution is not possible, the strategy would be to introduce a
pseudotemperature T > 1 in the Metropolis algorithm, just to ensure the system is able to
abandon local minima and explore the whole configurational space looking for other ones.
The adoption of this strategy has the problem that, the higher is the temperature, the
higher is also the oscillation of amplitudes of the stationary Hamiltonian, and therefore
the application of a threshold might also be needed.

In figure A.1, panel (b), we show the consistency of our method when the above
strategy is implemented (using T = 2) in combination with a threshold criterion to select
the samples, accepting only those with H > 〈Hstat〉 − 2σHstat . Though these operations,
again, could compromise the quality of our sampling, we found that the consistency of
the ranks generated with the method (figure A.1, panel (b), red bars) compared to those
generated by the standard procedure is higher than 85%. In turn, when we check, the
internal consistency of the ranks generated with the method is even better and could be
greater than that reached with standard sampling.

A.4. Network models

• Killworth–Bernard radio calls network. In their work [27], the authors asked 44 radio
operators (nodes) to rank from 0 to 9 the frequency they had used to call the rest of
operators during the last month. We have reconstructed our network by assigning a
link when the rank associated to it was greater than 1, which produces 400 connections.
Dataset available at [29].

• Graph theory glossary network. This network is constructed based upon an on-line
glossary of definitions of technical terms about graph theory [28]. In the network, each
node represents one concept; and a link points from one concept to another if the latter
is linked in the definition of the former. The network has 67 nodes (5 of the 72 terms
in the glossary are not connected to any other) and 122 links (114 unidirectional links
and 4 reciprocal interactions). No self-link is allowed since a defined concept cannot
be used in its own definition. Dataset available in [29].

• Narragansett bay trophic web. The system [30] originally contained 220 interactions
between 35 nodes. We have removed the links involving the nodes associated with
input, output and respiration fluxes, in order to take into consideration only the
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trophic relationships between organisms. The effective size of our system is, thus, 32
nodes and 158 links. Dataset available in [29].

• Everglades trophic web. The network described in [31] contains 69 nodes and 916
interactions. It describes the trophic interactions of the Everglades ecosystem in the
wet season. Dataset available in [29].

• Arabidopsis thaliana flower development cell-fate determination network. The network
contains 15 networks and 37 interaction among the genes that control cell fate during
the process of flower development of the model plant Arabidopsis thaliana [32].

• Mycobacterium tuberculosis transcriptional regulatory backbone. From the whole
genome-wide network compiled in [14], we have extracted the subnetwork that
connects the transcription and sigma factors. The dataset analyzed is the giant
component of that network, and contains 65 genes and 130 interactions.
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