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Current modeling of infectious diseases allows for the study of complex and realistic scenarios that go
from the population to the individual level of description. However, most epidemic models assume that the
spreading process takes place on a single level (be it a single population, a metapopulation system, or a
network of contacts). In particular, interdependent contagion phenomena can be addressed only if we go
beyond the scheme-one pathogen-one network. In this paper, we propose a framework that allows us to
describe the spreading dynamics of two concurrent diseases. Specifically, we characterize analytically the
epidemic thresholds of the two diseases for different scenarios and compute the temporal evolution
characterizing the unfolding dynamics. Results show that there are regions of the parameter space in which
the onset of a disease’s outbreak is conditioned to the prevalence levels of the other disease. Moreover, we
show, for the susceptible-infected-susceptible scheme, that under certain circumstances, finite and not
vanishing epidemic thresholds are found even at the limit for scale-free networks. For the susceptible-
infected-removed scenario, the phenomenology is richer and additional interdependencies show up.
We also find that the secondary thresholds for the susceptible-infected-susceptible and susceptible-
infected-removed models are different, which results directly from the interaction between both diseases.
Our work thus solves an important problem and paves the way toward a more comprehensive description of
the dynamics of interacting diseases.
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I. INTRODUCTION

The problem of how diseases spread has been studied
for a long time [1–8]. In the past few years, due to the
increasing availability of data about transmission patterns,
contact networks, and population mobility, it has become
apparent that we are in a position to develop theoretical and
computational frameworks that will ultimately allow the
forecast of epidemic outbreaks [9–26]. The latter is a
consequence of the increasing availability of new models
that are capable of providing better predictions of real
epidemic scenarios [27]. In particular, we have been able to
identify what ingredients are key to characterizing the
unfolding of a disease outbreak. This is the case of the
structure of the population in the form of networks of
contacts at a local scale [9,17,19,28], or of individual

mobility patterns that facilitate the spreading of diseases in
wider geographical areas [29]. The theoretical implications
of considering these aspects have been thoroughly
addressed [30–33], and at the same time, the amount
and quality of real data that are relevant to epidemic
spreading are constantly increasing [34,35].
In this context, an emergent field of research is the

modeling of coupled spreading phenomena, whether
they are two pathogens or multiple strains of the same
disease that propagate concurrently on the same population
[33,36–39]. Focusing on the two-pathogen scenario, the
complexity of the problem increases because now the natural
history of one of the diseases is affected by the pre-
sence of the second one, typically as a consequence of the
modification of the host’s immune response after infection—
with a plethora of possibilities as given by different
interaction schemes. In addition, the networks of contacts
through which the pathogens spread can vary from one
disease to another. Typical examples of these coupled
spreading phenomena are given by the interaction between
HIV infection and the spreading of certain opportunist
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pathogens [40,41], or the strain-strain interactions of a viral
pathogen like the flu virus [42].
From a theoretical point of view, one of the first works

that considered the above problem from a networked point
of view is from Funk and Jensen [37]. In their work, they
exploited the analogy of the spreading process with a bond-
percolation problem so as to address the issue of epidemic
thresholds in a susceptible-infected-removed (SIR) model.
However, this first work did not consider a framework in
which the temporal evolution of the epidemics could be
studied. Following a similar bond-percolation approach,
Mills et al. [43], motivated by the interaction between
AIDS and tuberculosis, studied two coupled SIR models
where the diseases can spread in both layers at different
rates. Also in this case, due to the static nature of the bond-
percolation approach, the temporal evolution of the dis-
eases cannot be studied. Recently, Marceau et al. presented
a new model [39] aimed at studying the latter aspect, also
within the SIR scheme, using “on-the-fly graphs,” a net-
work generation model they had previously introduced
[44]. In this work, although the temporal evolution of the
system can be monitored, the modeling approach does not
provide information about epidemic thresholds. In addition,
the model cannot be trivially generalized so as to cover
other classical models like susceptible-infected-susceptible
(SIS). Other works have considered the problem by study-
ing the spreading of the diseases as a Markovian process. In
Ref. [45], Sahneh and Scoglio, using two coupled Markov
processes, studied the competition of two epidemics and
found different regions of the parameter space where the
two diseases can coexist. However, the model in Ref. [45]
represents only the specific scenario of two mutually
excluding diseases. It is also worth mentioning that, using
a similar approach, the so-called microscopic Markov-
Chain [25], the specific case in which a disease and an
“awareness” diffusion process coexist has been studied
in Ref. [46].
In this work, we propose a modeling framework, based

on a heterogeneous mean-field (HMF) approximation, for
the spreading of two concurrent diseases that interact
with each other. With this purpose, we analyze in detail
the dynamics of a two-layer system that represents the
networks of contacts on top of which either two coupled
SIS or SIR processes spread. Although we use as a
convenient representation of the system under study a
topology that has recently attracted a lot of attention, i.e.,
the so-called multilayer networks [47,48], we stress that
the main focus is to determine what the effects are of the
complex interplay between the different interaction mech-
anisms considered and the temporal and topological
scales onto the dynamical behavior of the diseases.
Specifically, we explicitly derive the epidemic threshold
of each disease in terms of the parameters that character-
ize their evolution and the topology of the networks
of contacts. Remarkably, we find that the epidemic

thresholds in the SIR case are different from those of
the SIS case, which is a consequence of the emergence of
new mechanisms of interaction and of the transitory
nature of the epidemic outbreaks in the SIR case.
Additionally, different scenarios and limiting cases of
both theoretical and epidemiological interest are scruti-
nized. Finally, results from numerical simulations are
presented to validate our analytical results. Our work,
thus, shows how the different interaction mechanisms
considered can give rise to new phenomenological
insights regarding the dynamics of interacting diseases.

II. MODELING FRAMEWORK

Our purpose in this work is to explore epidemiological
scenarios in which two different infectious diseases simul-
taneously spread through the same host population, and
whose dynamical parameters (i.e., infectiousnesses and
recovery rates) depend, at the level of single individuals, on
whether the agents involved have caught only one of the
diseases or both. In addition, we consider that neither the
mechanisms behind each disease evolution nor the contact
networks through which they spread have to be the same,
and, thus, are considered independently for each disease.
Let us then consider that we have two diseases (disease 1
and disease 2) that spread over two different networks of
contacts: disease 1 propagates over network 1, which has a
mean degree hki ¼ P

k;lPðk; lÞk, while disease 2 propa-
gates over network 2, whose mean connectivity is equal to
hli ¼ P

k;lPðk; lÞl. The composed degree distribution
Pðk; lÞ gives the proportion of nodes (individuals) having
k and l links in networks 1 and 2, respectively [49]. In
what follows, we consider both the SIS and SIR schemes
independently.

A. SIS scenario

As a first step, we consider the baseline scenario in
which the isolated dynamics of each disease, when the
second is absent, is described by a simple SIS scheme. Each
individual belonging to a composed connectivity class
ðk; lÞ can be in four different dynamical states: susceptible
with respect to both diseases SSðk; lÞ, infected of both
IIðk; lÞ, and infected with the first [second] one and still
susceptible to catch the second [first] disease, ISðk; lÞ
[SIðk; lÞ], SSðk; lÞ; ISðk; lÞ; SIðk; lÞ; IIðk; lÞ represent the
proportion of individuals in each disease state within the
composed degree class ðk; lÞ. Thus, we have that SSðk; lÞ þ
ISðk; lÞ þ SIðk; lÞ þ IIðk; lÞ ¼ 1 ∀ðk; lÞ. In addition,
regardless of the connectivities of the nodes involved,
we have eight possible contagion transitions after a contact
(four for each disease). On the other hand, four other
possible transitions correspond to the cases in which
infected individuals go back to the susceptible class.
This amounts to a total of 12 elementary transitions,
schematized as follows (see also Fig. 1):
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ISþ SS⟶
λ1 ISþ IS;

ISþ SI⟶
βa
1
λ1
ISþ II;

II þ SS⟶
βb
1
λ1
II þ IS;

II þ SI ⟶
βa
1
βb
1
λ1
II þ II;

SI þ SS→
λ2 SI þ SI;

SI þ IS⟶
βa
2
λ2
SI þ II;

II þ SS⟶
βb
2
λ2
II þ SI;

II þ IS ⟶
βa
2
βb
2
λ2
II þ II;

IS⟶
μ1 SS;

SI⟶
μ2 SS;

II⟶
η1μ1 SI;

II⟶
η2μ2 IS:

The model thus contains two basic infection probabil-
ities, λ1 and λ2, as well as two basic recovery rates, μ1 and
μ2, one for each disease. In addition, infection probabilities
are affected by scaling factors-the four β’s and combina-
tions of them—in the same way that the recovery rates are
affected by the η’s coefficients, as we explain in detail in
Table I. These parameters describe the interaction of the
diseases through three different effects that are concurrently

taken into account. The first effect is the variation of the
susceptibility of healthy individuals to get infected with one
disease as a consequence of being infected with another.
This mechanism is described by βa1 for the variation of the
infection risk of disease 1 caused by disease 2, and βa2 for
the symmetric case. The second effect is the change of the
spreading capabilities of double-infected individuals with
respect to single-infected ones, which is described by the
parameters βb1 and βb2 for diseases 1 and 2, respectively.
The last effect is the variation of the infectious periods
of double-infected individuals also with respect to single-
infected ones, described by η1 and η2.
Therefore, these parameters exhaustively describe all the

ways in which two diseases can interact according to a SIS
scheme and allow us to isolate the different effects of one
disease on the spreading of the other by making infectious
individuals more efficient spreaders or by making suscep-
tible individuals more prone to get sick. Once we have
defined the whole set of parameters in Table I, we have all
possible transitions between dynamical states well defined
(see Fig. 1).
According to the scheme depicted in Fig. 1 (in which

simultaneous double contagions and recoveries from both
diseases have been explicitly excluded), we can consider
that all individuals within the same composed connectivity
class ðk; lÞ are dynamically equivalent, in order to get a
composed HMF for the dynamical description of both
diseases which neglects, as a first approximation, further
correlations. In this way, the set of differential equations
describing the evolution in time of the four densities
of individuals [SSðk; lÞ; ISðk; lÞ; SIðk; lÞ; IIðk; lÞ] is as
follows:

_SSðk; lÞ ¼ −kλ1θIS1 SSðk; lÞ − lλ2θSI2 SSðk; lÞ − kβb1λ1θ
II
1 SSðk; lÞ − lβb2λ2θ

II
2 SSðk; lÞ þ μ1ISðk; lÞ þ μ2SIðk; lÞ; ð1Þ

_ISðk; lÞ ¼ kλ1θIS1 SSðk; lÞ þ kβb1λ1θ
II
1 SSðk; lÞ − lβa2λ2θ

SI
2 ISðk; lÞ − lβa2β

b
2λ2θ

II
2 ISðk; lÞ − μ1ISðk; lÞ þ η2μ2IIðk; lÞ; ð2Þ

FIG. 1. SIS-SIS interacting diseases model. (left panel) Each of the diseases spreads over a different network. Each individual belongs
simultaneously to each network and can be (or not) infected with each of the diseases (as indicated in the central panel). (right panel) Set
of transitions allowed in the model. The variables ½SSðk; lÞ; ISðk; lÞ; SIðk; lÞ; IIðk; lÞ� represent the densities of individuals of each type
in the system having k neighbors in network 1 and l neighbors in network 2.
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_SIðk; lÞ ¼ lλ2θSI2 SSðk; lÞ þ lβb2λ2θ
II
2 SSðk; lÞ − kβa1λ1θ

IS
1 SIðk; lÞ − kβa1β

b
1λ1θ

II
1 SIðk; lÞ − μ2SIðk; lÞ þ η1μ1IIðk; lÞ; ð3Þ

_IIðk; lÞ ¼ kβa1λ1θ
IS
1 SIðk; lÞ þ lβa2λ2θ

SI
2 ISðk; lÞ þ kβa1β

b
1λ1θ

II
1 SIðk; lÞ þ lβa2β

b
2λ2θ

II
2 ISðk; lÞ − ðη1μ1 þ η2μ2ÞIIðk; lÞ; ð4Þ

where the θ parameters are defined in Table II.
Combining the probabilities θ and defining two new

parameters, σ1¼ λ1ðθIS1 þβb1θ
II
1 Þ and σ2 ¼ λ2ðθSI2 þ βb2θ

II
2 Þ,

we obtain the average probabilities per link for SS nodes to
become infected with disease 1 (σ1) or disease 2 (σ2). This
allows us to rewrite the system of differential equations as

_SSðk; lÞ ¼ −ðkσ1 þ lσ2ÞSSðk; lÞ þ μ1ISðk; lÞ þ μ2SIðk; lÞ;
ð5Þ

_ISðk; lÞ ¼ kσ1SSðk; lÞ − lβa2σ2ISðk; lÞ
− μ1ISðk; lÞ þ η2μ2IIðk; lÞ; ð6Þ

_SIðk; lÞ ¼ lσ2SSðk; lÞ − kβa1σ1SIðk; lÞ
− μ2SIðk; lÞ þ η1μ1IIðk; lÞ; ð7Þ

_IIðk; lÞ ¼ kβa1σ1SIðk; lÞ þ lβa2σ2ISðk; lÞ
− ðη1μ1 þ η2μ2ÞIIðk; lÞ: ð8Þ

Because of the closure relationship, SSðk; lÞ þ ISðk; lÞ þ
SIðk; lÞ þ IIðk; lÞ ¼ 1 ∀ðk; lÞ, only three of these four
equations are linearly independent for each composed
connectivity class ðk; lÞ. Taking this into account, we

next analyze the time evolution of the vector
[ISðk; lÞ; SIðk; lÞ; IIðk; lÞ], since SSðk; lÞ ¼ 1 − ISðk; lÞ−
SIðk; lÞ − IIðk; lÞ.

1. Epidemic thresholds

In order to analyze the most relevant dynamical
properties of the system, we look for the values
[IS�ðk; lÞ; SI�ðk; lÞ; II�ðk; lÞ] that define the stationary
state: ½_IS�ðk; lÞ; _SI�ðk; lÞ; _II�ðk; lÞ� ¼ ð0; 0; 0Þ ∀ðk; lÞ for
the system Eq. (8). In order to do that, we are forced to
consider σ1 and σ2 as additional parameters, although these
two quantities are linear combinations of the other variables
and are ultimately responsible for the coupling among all
connectivity classes. As commonly happens in this kind of
model [6,17], there exists a trivial fixed point of the
dynamics in which there are no infected individuals in
the system: ½II�1ðk;lÞ;II�2ðk;lÞ;II�ðk;lÞ�¼ð0;0;0Þ ∀ðk; lÞ.
This fixed point represents the absorbing state of our
model. In addition, there are other possible fixed points
for which the densities of infected individuals could be
written as a function of the σ parameters: ½II�1ðk; l; σ1; σ2Þ;
II�2ðk; l; σ1; σ2Þ; II�ðk; l; σ1; σ2Þ� ≠ ð0; 0; 0Þ.
It is thus possible to get self-consistent equations for the

variables σ as

σ1 ¼ f1ðσ1; σ2Þ

¼ λ1
hki

X
k;l

Pðk; lÞk½ISðk; l; σ1; σ2Þ þ βb1IIðk; l; σ1; σ2Þ�;
ð9Þ

σ2 ¼ f2ðσ1; σ2Þ

¼ λ2
hli

X
k;l

Pðk; lÞl½SIðk; l; σ1; σ2Þ þ βb2IIðk; l; σ1; σ2Þ�:
ð10Þ

The condition σ1 ¼ f1ðσ1; σ2Þ > 0 implies the existence
of a stable active state for the dynamics of disease 1,

TABLE I. Definition of model parameters.

Parameter Dynamical meaning

λ1 Baseline infectiousness of disease 1
λ2 Baseline infectiousness of disease 2
μ1 Baseline recovery rate of disease 1
μ2 Baseline recovery rate of disease 2
βa1 Variation of disease 1 infectiousness due to the

fact that the susceptible individual exposed
to disease 1 is infected with disease 2

βa2 Variation of disease 2 infectiousness due to the
fact that the susceptible individual exposed
to disease 2 is infected with disease 1

βb1 Variation of disease 1 infectiousness due to the
fact that the spreader is also infected with
disease 2

βb2 Variation of disease 2 infectiousness due to the
fact that the spreader is also infected with
disease 1

η1 Variation of disease 1 recovery rate for individuals
also infected with disease 2

η2 Variation of disease 2 recovery rate for individuals
also infected with disease 1

TABLE II. Definition of parameters θ.

θIS1 ¼
P

k;l
Pðk;lÞkISðk;lÞP
k;l
Pðk;lÞk Probability that a given link

of network 1 points to an IS node

θII1 ¼
P

k;l
Pðk;lÞkIIðk;lÞP
k;l
Pðk;lÞk Probability that a given link

of network 1 points to an II node

θSI2 ¼
P

k;l
Pðk;lÞlSIðk;lÞP
k;l
Pðk;lÞl Probability that a given link

of network 2 points to a SI node

θII2 ¼
P

k;l
Pðk;lÞlIIðk;lÞP
k;l
Pðk;lÞl Probability that a given link

of network 2 points to an II node
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i.e., a state in which disease 1 becomes endemic in the
population. For this situation to take place for disease 2,
the condition σ2 ¼ f2ðσ1; σ2Þ > 0 must be fulfilled. Given
the symmetry between the two expressions in Eq. (10), we
focus only on the analysis of the first equation. In fact, it

can be shown that ∂2fðσ1;σ2Þ
∂σ2

1

< 0 always, which means that,

if we think of the graphical solution of the equation
σ1 ¼ f1ðσ1; σ2Þ, for this nontrivial solution to exist—given
that, obviously, fðσ1 ¼ 0; σ2 ¼ 0Þ ¼ 0—it must be verified

that ½∂fðσ1;σ2Þ∂σ1 �σ1¼0 > 1, as in Ref. [17]. After some algebraic

operations, this condition yields the following expression:

λ1
P

k;lPðk; lÞk2 l2σ2
2
βa
2
βa
1
βb
1
þlσ2½η2μ2βa1þβb

1
ðβa

1
μ1þβa

2
μ2Þ�þμ2ðη1μ1þη2μ2Þ

l2σ2
2
βa
2
η1þlσ2ðη1μ1þη2μ2þβa

2
η1μ2Þþμ2ðη1μ1þη2μ2Þ

μ1hki
> 1; ð11Þ

which allows us to derive the epidemic threshold as

λc1ðσ2Þ ¼ μ1
hkiP

k;lPðk; lÞk2 l2σ2
2
βa
2
βa
1
βb
1
þlσ2½η2μ2βa1þβb

1
ðβa

1
μ1þβa

2
μ2Þ�þμ2ðη1μ1þη2μ2Þ

l2σ2
2
βa
2
η1þlσ2ðη1μ1þη2μ2þβa

2
η1μ2Þþμ2ðη1μ1þη2μ2Þ

: ð12Þ

Looking at the latter expression—which contains the
underlying topologies in a more intricate way than for
the uncoupled, classical case—the threshold dependence
on disease 2’s prevalence via σ2 becomes explicit. If we
evaluate λc1ðσ2 ¼ 0Þ, we recover the classical result
λc1 ¼ μ1hki=hk2i [9,17]. Therefore, in the following we
refer to this baseline case as primary threshold, λc1ð0Þ,
whereas the more general case is referred to as the

secondary threshold, λc1ðσ2Þ (with σ2 > 0). Obviously,
the same stands for the primary [λc2ð0Þ] and secondary
[λc2ðσ1Þ] thresholds of the second disease.
A particular case for the topologies on top of which

both diseases are spreading corresponds to the homo-
geneous mean-field version of the system, i.e., Pðk; lÞ ¼
δðk − koÞδðl − loÞ, for which the last expression can be
rewritten as

λc1 ¼
λ2lo
ko

η1μ1ðβa2ðλ2lo − μ2Þ þ μ1Þ þ η2μ2μ1
μ2ðη2μ2 þ η1μ1Þ þ ðλ2lo − μ2Þ½βa2βa1βb1ðλ2lo − μ2Þ þ βa1β

b
1μ1 þ η2μ2β

a
1 þ βa2β

b
1μ2�

: ð13Þ

An independent derivation of this expression can be
obtained by analyzing the Jacobian matrix of the homo-
geneous mean-field system analogous to Eq. (8), as shown
in Appendix A.

2. Phase diagrams

In order to explore the quality of the threshold prediction
of our model, we designed a Monte Carlo simulation
scheme in which a single state transition is allowed per
individual per time step. First, infected individuals will
eventually spread the disease(s) that they carry. As double
events are not allowed at a single time step, forbidden
double transitions from SS to II are resolved by choosing
the disease that an individual will catch proportionally to
the status of their infected neighbors: the more neighbors
one individual has, say, carrying disease 1, the more likely
the individual will become infected with disease 1 rather
than with disease 2. After the spreading loop is completed
for both diseases, infected nodes that have not suffered any
contagion at the present time step eventually get back to the
susceptible state of the disease(s) they carry. To avoid
forbidden double transitions from the II class to the SS

class, in those cases the only disease the individual is going
to recover from is also chosen stochastically, according
to the probabilities p1 ¼ η1μ1=ðη1μ1 þ η2μ2Þ for the first
disease and p2 ¼ 1 − p1 for the second disease.
We first explore a simple scenario in which we assume

that the dynamical effects of one disease on the other are
totally symmetric. In terms of the parameters of the model,
this implies that βa1 ¼ βa2 ¼ βb1 ¼ βb2 ≡ β and η1 ¼ η2 ≡ η.
In this case, we focus on two opposite scenarios: (i) mutual
enhancement, η < 1 and β > 1, and (ii) mutual impairment,
η > 1 and β < 1. In the case of mutual enhancement,
individuals who are infected with the second disease spread
and become infected with disease 1 more easily than those
who are not (this is because β > 1). In addition, since also
η < 1, individuals infected with disease 1 remain so for
longer times if they are also infected with the second
disease. These two effects imply that the appearance of
disease 2 in the system enhances the spreading capabilities
of disease 1. The reciprocal situation is also true, as the
interaction between the two diseases is symmetric. Finally,
in the case of mutual impairment, the effects on the
infectiousness and recovery rates are the opposite, and
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so the appearance of one of the diseases at a certain
prevalence impairs the spreading of the other disease. In
Figs. 2 and 3, we represent the prevalence of each disease as
a function of the baseline infectiousnesses ðλ1; λ2Þ for a

given set of parameters after the introduction of infection
seeds in the order shown. The networks through which
diseases spread are, for this first case, two uncorrelated
Erdös-Renyi (ER) graphs.

FIG. 3. Reciprocally impaired spreading. Dynamical parameters: μ1 ¼ μ2 ¼ 0.75, βa1 ¼ βb1 ¼ βa2 ¼ βb2 ¼ 0.8, η1 ¼ η2 ¼ 1.3.
Networks: Erdös-Renyi graphs: N1 ¼ N2 ¼ 5000 agents, hki ¼ 7, hli ¼ 8. The color maps represent the prevalence levels of
disease 1 (upper panels) and disease 2 (lower panels) at different stages of the Monte Carlo simulations. As in Fig. 2, we successively
introduce three infectious seeds ðIS; SI; ISÞ ¼ ð0.005; 0.005; 0.005Þ and plot the stationary prevalences after each fluctuation in the
three columns of the figure. As can be seen, the reintroduction of the third seed of infection 1 in the system does not affect the prevalence
levels, as global stability is reached after the second stage.

FIG. 2. Reciprocally enhanced spreading. Dynamical parameters: μ1 ¼ μ2 ¼ 0.75, βa1 ¼ βb1 ¼ βa2 ¼ βb2 ¼ 1.3, η1 ¼ η2 ¼ 0.8.
Networks: Erdös-Renyi graphs: N1 ¼ N2 ¼ 5000 agents, hki ¼ 7, hli ¼ 8. The color maps represent the prevalence levels of disease
1 (upper panels) and disease 2 (lower panels) at different stages of the Monte Carlo simulations. (a),(d) Step 1: stationary levels after the
initial introduction of an infection seed of disease 1 (ϵIS ¼ 0.005). (b),(e) Step 2: once stage 1 is completed, an infection seed of disease
2 (ϵSI ¼ 0.005) is introduced, and stationarity is recovered. (c),(f) Step 3: after stage 2, an additional seed of infection 1 is reintroduced
(ϵIS ¼ 0.005), and the stationary prevalences plotted. Dashed lines and solid lines represent, respectively, primary and secondary
thresholds predicted by the model.
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For the case of mutual enhancement (Fig. 2), given our
set of parameters, the analytically obtained curves for the
secondary threshold remain below the primary thresholds,
leading to the appearance of two regions in the plane
ðλ1; λ2Þ, for which it is verified that λc1ðσ2Þ < λ1 < λc1ð0Þ
and λc2ðσ1Þ < λ2 < λc2ð0Þ, respectively. The dynamical rel-
evance of these regions is that within them the appearance
of an outbreak of one of the diseases is conditional to the
previous installation of the other infection in the system.
In this way, we observe that, after an initial seed of IS
individuals, disease 1 does not become endemic in the
region λc1ðσ2Þ < λ1 < λc1ð0Þ [Fig. 2(a)], but then, after the
outbreak of the second disease in the network, the same
seed leads disease 1 to become endemic in that same region
[Fig. 2(c)], as predicted by our model. Regarding the
conjugate region in which λc2ðσ1Þ < λ2 < λc2ð0Þ, we see
in Fig. 2(e) that disease 2 directly becomes endemic after
the introduction of an infection seed SI due to the fact that,
previously, disease 1 was already introduced in the system.
The situation for the mutual impairment case is the

opposite, and the secondary thresholds remain, in this case,
above the primary ones. So, in this scenario, we have two
more relevant regions in which λc1ð0Þ < λ1 < λc1ðσ2Þ and
λc2ð0Þ < λ2 < λc2ðσ1Þ, respectively. In Fig. 3, we show the
behavior of the system under these conditions. In Fig. 3(a),
we see how disease 1 becomes endemic after the intro-
duction of an initial seed above its primary threshold. Then,
after introducing a seed of disease 2, as shown in Fig. 3(b)
for the area comprised between λc1ð0Þ and λc1ðσ2Þ, the

prevalence of disease 1 vanishes. In other words, in that
region, the introduction of disease 2 makes it possible for
the system to recover from disease 1. If we look at the
behavior of the second disease in the region in which
λc2ð0Þ < λ2 < λc2ðσ1Þ, we see how the disease is unable to
become endemic as a consequence of the fact that the first
disease has already been introduced in the system. This
situation suggests that, as has already been addressed in the
context of computational sciences [50], the introduction of
an infectious agent designed to immunize its host with
respect to another, more harmful infection might be a
conceptually feasible option to reduce the prevalence of
the latter, or even to eradicate it. This has also been recently
reported in the context of multistrain diseases, in which
more than one strain of the same disease competes for the
host population [33,45].
Once the dynamics of the model has been exhaustively

characterized when the diseases spread over homogeneous
networks, we move on and explore the influence of degree
heterogeneity on the dynamics. To this end, we also
perform intensive numerical simulations in an analogous
way, but using scale-free (SF) graphs of the same size as
before with different exponents. In Fig. 4, we represent the
final prevalence for each disease in two configurations:
reciprocally enhanced diseases, Figs. 4(a) and 4(c), and
impaired spreading, Figs. 4(b) and 4(d). In both cases,
network 1 [γ ¼ 2.7, Figs. 4(a) and 4(b)] has a greater
power-law exponent than network 2 [γ ¼ 2.5, Figs. 4(c)
and 4(d)]. As can be seen, for both diseases and for both

FIG. 4. (a),(c) Reciprocally enhanced spreading with βa1 ¼ βb1 ¼ βa2 ¼ βb2 ¼ 1.3, η1 ¼ η2 ¼ 0.8, represented at the final stationary
state. (b),(d) Reciprocally impaired spreading βa1 ¼ βb1 ¼ βa2 ¼ βb2 ¼ 0.8, η1 ¼ η2 ¼ 1.3, also at the final state. Scale-free networks are
generated using the uncorrelated configuration model with N1 ¼ N2 ¼ 5000 agents, hki ¼ 4.00, and hli ¼ 5.11. The figure represents
the final prevalence of (a),(b) disease 1 and (c),(d) disease 2 in each case.
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configurations, secondary thresholds are closer to primary
ones than in the case of homogeneous networks.

3. System sizes and epidemic thresholds: General case

In the previous sections, we described the baseline cases
in which none of the dynamical parameters vanish, and
both networks are, in each case, of the same kind—ER or
uncorrelated SF graphs. A relevant theoretical question
remains unanswered, i.e., how the epidemic thresholds
behave when the system size grows and eventually reaches
the thermodynamic limit. Regarding this question, we
present an exhaustive analysis in Appendix B, in which
we show the conditions that lead to having vanishing
small secondary thresholds as a function of the underlying
topologies and some of the dynamical parameters; note,
however, that this question is of interest from a theoretical
viewpoint, as, strictly speaking, all real systems are finite
and, thus, an effective epidemic threshold exits. In addition,
our approach is based on a HMF approximation, and that
means that influences of dynamical correlations on the
analysis are neglected.
The results show that the secondary epidemic threshold

associated with any of the diseases that is spreading over
a scale-free network with 2 < γ ≤ 3 vanishes at the
thermodynamic limit, regardless of the topology of the
network on top of which its conjugate disease propagates
and regardless of the values of the dynamical parameters.
In an analogously robust way, power laws with γ > 3—or
homogeneous degree distributions—yield finite, nonvan-
ishing secondary thresholds at the thermodynamic limit,
regardless of the conjugate topologies or parameter values,
with some exceptions.
The relevance of this result relies on the fact that the

model predicts the same behavior for the epidemic thresh-
olds in heterogeneous and homogeneous networks as
compared with HMFmodels of uncoupled (single) diseases
that spread over simple networks. In addition, our analysis
shows that the eventual vanishing of the epidemic thresh-
olds for infinite systems is determined only by the topology
of the network under consideration rather than by any
possible coupling with another disease that spreads over
any other possible conjugate network within our model
framework. However, there is an exception to this general
behavior that is meaningful from an epidemiological view-
point. This is the case when both diseases spread over two
highly and positively correlated scale-free networks with
composed degree distribution Pðk; lÞ ¼ δðk − lÞαk−γ ,
where δ stands for the Kronecker δ function and α is a
normalization constant. In that situation, if we focus, for
example, on disease 1, there exist two different interaction
schemes of interest for which we recover finite epidemic
thresholds λc1 > 0 at the thermodynamic limit even for
scale-free graphs with 2 < γ ≤ 3: (i) Case 1: Individuals
infected with disease 2 become immune to infection by
disease 1. βa1 ¼ 0; ðβa2; βb2; βb2Þ are free parameters. (ii) Case

2: If βa1 ≠ 0, individuals infected with both diseases cannot
cause contagion of disease 1: βb1 ¼ 0. In addition, disease 1
cannot cause total immunity to disease 2: βa2 ≠ 0. βb2 is a
free parameter.
To illustrate this situation, we take as an example a

particular case of the first scheme, a mutual cross-immunity
scenario given by βa1 ¼ βa2 ¼ 0. In order to point out the
role of interlayer degree correlations on this effect, we can
directly compare the expression for the threshold when
both networks are totally correlated with the analogous
expression derived from an uncorrelated combined degree
distribution:

Pðk; lÞ ¼ δðk − lÞαk−γ → λc1ðσ2Þ ¼ μ1
hkiP

kα
1

k2−γ
μ2

kσ2þμ2

;

ð14Þ

Pðk; lÞ ¼ αk−γl−Γ → λc1ðσ2Þ ¼ μ1
hkiP

k;lα
1

k2−γ
1
lΓ

μ2
lσ2þμ2

:

ð15Þ

In Fig. 5, we represent the values predicted by these
expressions for different network sizes, when γ ¼ Γ ¼ 2.5.
As we see in Fig. 5(a), for uncorrelated networks, regard-
less of the value of σ2, the threshold continuously decreases
as we increase network sizes. The result thus shows that the
existence of a coupling with another disease present in the
system with a certain prevalence proportional to σ2 does not
play any role, since the degree heterogeneities are still the
main reason leading to the vanishing of the threshold at the
thermodynamic limit. This picture turns out to be remark-
ably different when we introduce positive, strong correla-
tions between the two networks. In that case, as we see in
Fig. 5(b), the appearance of the second disease, charac-
terized by a certain prevalence level σ2 > 0, implies a
sudden change in the behavior of the threshold, which no
longer vanishes, even when N → ∞.
The influence of degree correlations between networks

for this case of full cross-immunity becomes evident also
at finite sizes, since the differences between primary and
secondary thresholds, as seen in Fig. 6, are also greatly
amplified. Another eventually relevant effect that can be
observed in Fig. 6 is that the transition that takes place at
the epidemic threshold is much sharper in the case of
correlated networks. All the previous results point out that
the worst scenario for the spreading of a disease when
it interacts with a second one that confers immunity to
the former corresponds to the case in which there is a
correlation between heterogeneous networks of contacts.
This finding is essentially equivalent to what was found
previously in Ref. [37]; what show here is that the effect
comes to revert the vanishing threshold at the thermody-
namic limit for a disease spreading on top of scale-free
networks. In addition, it is not needed that the second
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disease causes total immunity against the first for this effect
to be present.
Remarkably, all these “pathological” cases can be

identified without abandoning HMF descriptions.
Beyond HMF, the behavior of epidemic thresholds varies
with respect to mean-field predictions as a consequence of
dynamical correlations [20,51]. Here, however, we identify

that the interactions between diseases can modify the size
scaling of thresholds from the classical mean-field picture
without the need of dynamical correlations, which, for
certain cases, remarkably modify the whole picture at the
thermodynamic limit, even in annealed networks in which
adjacency matrices are only fixed on average, and so,
dynamical correlations do not exist.

FIG. 6. Effect of degree correlations between the two scale-free networks on the steady prevalence levels. Dynamical parameters:
μ1 ¼ μ2 ¼ 0.75, βa1 ¼ βa2 ¼ 0. The rest of the parameters are irrelevant, as no II individual will appear in the system. (a),(c) Final
prevalence of diseases 1 and 2, respectively, for uncorrelated scale-free networks: Pðk; lÞ ¼ PðkÞPðlÞ ¼ αk−γl−γ . (b),(d) Final
prevalence of diseases 1 and 2, respectively, for fully correlated scale-free networks: Pðk; lÞ ¼ αδðk − lÞk−γ . In both cases, γ ¼ 2.5.
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B. SIR scenario

In the previous sections, we presented the behavior of
systems of interacting diseases that spread according to a
SIS scheme, thus leading, above the epidemic threshold,
to stationary, endemic states with a prevalence greater than
zero. In the following, we explore the case of transient,
interacting epidemic phenomena.
In order to do so, we can extend the framework and

describe the dynamics of two SIR epidemics interacting
among them. In classical, noninteracting systems—either
homogeneous or heterogeneous—the resemblance of both
types of models translates into a strong mathematical
symmetry between them that yields identical expressions
for the epidemic thresholds under mean-field descriptions
(i.e., when neglecting the effects of dynamical correla-
tions). In this section, we see the way in which part of this
symmetry is broken as a consequence of the interacting
nature of the epidemic processes.

1. Mathematical description

In this case, the first new aspect to note is that not just the
condition of being infected with one disease can modify
subjects’ susceptibility to the conjugate infection, but also
whether they have been infected and have recovered. For
instance, this might represent situations in which some kind
of immunological memory is acquired after the first
infection—for example, partial immunity in front of other
strains is gained after suffering an influenza infection,
especially if both are phylogenetically close enough [52].
This new phenomenology translates into the need of
introducing new parameters (see Table III) describing

new eventual interactions and transitions, as shown in
Fig. 7. The system of equations describing the dynamics
is now

_SSðk; lÞ ¼ −ðkσ1 þ lσ2ÞSSðk; lÞ; ð16Þ

_ISðk; lÞ ¼ kσ1SSðk; lÞ − βa2lσ2ISðk; lÞ − μ1ISðk; lÞ; ð17Þ

_SIðk; lÞ ¼ lσ2SSðk; lÞ − βa1kσ1SIðk; lÞ − μ2SIðk; lÞ; ð18Þ

_IIðk; lÞ ¼ βa1kσ1SIðk; lÞ þ βa2lσ2ISðk; lÞ
− ðη1μ1 þ η2μ2ÞIIðk; lÞ; ð19Þ

_RSðk; lÞ ¼ μ1ISðk; lÞ − ϕa
2lσ2RSðk; lÞ; ð20Þ

_SRðk; lÞ ¼ μ2SIðk; lÞ − ϕa
1kσ1SRðk; lÞ; ð21Þ

_RIðk; lÞ ¼ ϕa
2lσ2RSðk; lÞ þ η1μ1IIðk; lÞ − ζ2μ2RIðk; lÞ;

ð22Þ

_IRðk; lÞ ¼ ϕa
1kσ1SRðk; lÞ þ η2μ2IIðk; lÞ − ζ1μ1IRðk; lÞ;

ð23Þ

where all the parameters and variables that were present
in the SIS formulation retain their original meaning, with
the nuance that now σ1 and σ2 have an extra term related to
the appearance of classes IR and RI:

σ1 ¼ λ1ðθIS1 þ βb1θ
II
1 þ ϕb

1θ
IR
1 Þ;

σ2 ¼ λ2ðθSI2 þ βb2θ
II
2 þ ϕb

2θ
RI
2 Þ; ð24Þ

FIG. 7. Set of transitions allowed in the double SIR-SIR model.
Yellow, contagion processes; blue, recovery processes.

TABLE III. Parameters describing the influence of R classes on
the conjugate infection.

New
parameter Dynamical meaning

ϕa
1 Variation of disease 1 infectiousness due to the fact

that the susceptible individual exposed to disease
1 has been infected and recovered from disease 2

ϕa
2 Variation of disease 2 infectiousness due to the fact

that the susceptible individual exposed to disease
2 has been infected and recovered from disease 1

ϕb
1 Variation of disease 1 infectiousness due to the fact

that the spreader has been infected and recovered
from disease 2

ϕb
2 Variation of disease 2 infectiousness due to the fact

that the spreader has been infected and recovered
from disease 1

ζ1 Variation of disease 1 recovery rate for individuals
that have been infected and recovered from
disease 2

ζ2 Variation of disease 2 recovery rate for individuals
that have been infected and recovered from
disease 1
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where θIR1 is the probability of a link of network 1 pointing
to an IR node and θRI2 is the probability of a link of network
2 pointing to a node in the RI state.

2. Epidemic thresholds

In order to characterize the epidemic threshold of disease
2, we need to study the dynamics of the system around
any point in which no infected individual of disease 2 has
yet been introduced and so ½SIðk; lÞ; IIðk; lÞ; RIðk; lÞ� ¼
ð0; 0; 0Þ ∀ðk; lÞ, as well as θSI2 ¼ θII2 ¼ θRI2 ¼ 0. Around
such a disease-free point, either fixed or not, it is trivial

to see that all the partial derivatives of classes
SIðk; lÞ; IIðk; lÞ and RIðk; lÞ with respect to the rest of
dynamic classes vanish. This makes the subset of variables
fSIðk; lÞ; IIðk; lÞ; RIðk; lÞg locally autonomous around
that point, and so, its linearization might serve us to address
the stability inversion yielding the emergence of the
epidemic threshold.
In addition, the dimensionality of the system can be

greatly reduced if we write the equations driving the time
evolution of the probabilities θSI2 , θII2 , and θRI2 as follows:

_θSI2 ¼
P

k;lPðk; lÞl _SI
hli ¼ hl2SSi

hli λ2ðθSI2 þ βb2θ
II
2 þ ϕb

2θ
RI
2 Þ − βa1

hkli
hli θSI2 λ1ðθIS1 þ βb1θ

II
1 þ ϕb

1θ
IR
1 Þ − μ2θ

SI
2 ;

_θII2 ¼
P

k;lPðk; lÞl _II
hli ¼ hkli

hli θSI2 βa1λ1ðθIS1 þ βb1θ
II
1 þ ϕb

1θ
IR
1 Þ þ hl2ISi

hli βa2λ2ðθSI2 þ βb2θ
II
2 þ ϕb

2θ
RI
2 Þ − ðη1μ1 þ η2μ2ÞθII2 ;

_θRI2 ¼
P

k;lPðk; lÞl _RI
hli ¼ hl2RSi

hli ϕa
2λ2ðθSI2 þ βb2θ

II
2 þ ϕb

2θ
RI
2 Þ þ η1μ1θ

II
2 − ζ2μ2θ

RI
2 ; ð25Þ

where we substitute hklSIi by hkliθSI2 , an approximation
that is valid around the point ½SIðk; lÞ; IIðk; lÞ; RIðk; lÞ� ¼
ð0; 0; 0Þ∀ðk; lÞ. Obviously, as happened for fSIðk; lÞ;
IIðk; lÞ; RIðk; lÞg, all of the partial derivatives of θSI2 ,
θII2 , and θRI2 with respect to variables unrelated to θSI2 ,
θII2 , and θ

RI
2 vanish, which allows us to study the stability of

the system with respect to disease 2 by linearizing the

system: ð _θSI2 ; _θII2 ;
_θRI2 Þ ¼ fðθSI2 ; θII2 ; θ

RI
2 Þ. The correspond-

ing Jacobian matrix J can be calculated this way, and, by

evaluating the condition J ¼ 0 for stability shift, the

epidemic threshold takes its final value:

λc2ðhl2SSi;hl2ISi;hl2RSi;σ1Þ

¼ ðη2μ2þη1μ1Þðμ2hliþβa1σ1hkliÞζ2μ2hli
ðη2μ2þη1μ1Þ½ζ2μ2hlihl2SSiþϕa

2ϕ
b
2hl2RSiðμ2hliþβa1hkliσ1Þ�þðβb2ζ2μ2þϕb

2η1μ1Þ½βa1hkliσ1hl2SSiþβa2ðμ2hliþβa1hkliσ1Þhl2ISi�
;

ð26Þ

which depends on the initial prevalence of disease 1
via σ1, hl2ISi, hl2RSi [and hl2SSi]. In the case of having
nonconcurrent outbreaks, we have that the second
disease arrives at the system after the outbreak of the first
disease has come to an end. In that case, we have that
ISðk; lÞ ¼ 0 and RSðk; lÞ ¼ R1

∞;k;l ∀ðk; lÞ, where R1
∞;k;l is

the fraction of recovered individuals at the end of an
outbreak of disease 1 alone, in the composed degree class
ðk; lÞ. In such a case, the problem is much simpler, as
σ1 ¼ hl2ISi ¼ 0 and hl2SSi ¼ hl2i − hl2R1

∞;k;li, and the
threshold reads as

λc2ðhl2i; hl2R1
∞;k;liÞ ¼

μ2hli
hl2i þ ðϕa

2
ϕb
2
−ζ2Þ

ζ2
hl2R1

∞;k;li
: ð27Þ

Obviously, if disease 1 has not yet appeared in the system,
the threshold for disease 2 becomes λc2 ¼ μ2hli

hl2i , as in the

classical, noninteracting HMF case [19]. As is done for the
SIS model, we refer to the latter expression as the primary
threshold of disease 2, in counterposition to the secondary
threshold of Eq. (26).
A remarkable property of the threshold for the SIR

scenario is that its dependence on the dynamical state of the
conjugate disease is more complex than in the SIS case.
Specifically, once an outbreak of one influencing infection
is unfolding, the epidemic thresholds of the other disease
may vary with time in nontrivial ways, depending on the
nature and intensity of the different interaction mechanisms
present. Figure 8 shows results from numerical simulations
illustrating the previous phenomenology and the agreement
with the analytical thresholds. Specifically, each panel
represents the case in which the infection seed of the
second disease is introduced in different moments for each
topology, coinciding with different stages of the outbreak
of disease 1: early phases [Fig. 8(a), SF; Fig. 8(c), ER), the
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outbreak’s peak [Fig. 8(b), SF], and at the end of the
outbreak [Fig. 8(d), ER]. As we see, regardless of the
topology, the parameters’ values or the moment of appear-
ance of the infection seed, our model adequately foresees
the epidemic threshold and its variations with time. As in
the SIS case, the influence of the interactions on the
epidemic threshold is smaller in the case of scale-free
networks, due to the smaller values of the primary thresh-
olds in that case [in fact, primary thresholds have not been
represented in Figs. 8(a) and 8(b) for the sake of clarity,
because its values λ12c ¼ 0.00316 virtually overlap the
secondary thresholds].

III. CONDITIONS FOR DISEASE ENHANCEMENT
AND IMPAIRMENT

Finally, it is interesting to analyze which combinations of
parameters give raise to situations in which there is either
enhancement or impairment of the diseases, as well as some
other cases in which both effects are possible. This can be
done for both the SIS and the SIR scenarios by studying
the sign of the difference between the primary and the
secondary thresholds.
For the SIS case, if we focus, for example, on the second

disease, we have

(a)

(b) (d)

(c)

FIG. 8. Epidemic thresholds in the SIR-SIR interacting epidemic model. Upper panels: Temporal evolution of disease 1, in a scale-free
(SF, left) and in an Erdos-Renyi (ER, right) network: I1 ¼

P
k;lPðk; lÞðISk;l þ IIk;l þ IRk;lÞðtÞ, R1 ¼

P
k;lPðk; lÞðRSk;l þ

RIk;l þ RRk;lÞðtÞ. Disease 1 enhances the spreading of disease 2 in both cases, but still is not influenced by the second
infection. Lower panels: Total number of individuals affected by disease 2 as a function of λ2 in each network: R∞

2 ¼
limt→∞

P
k;lPðk; lÞðSRk;l þ IRk;l þ RRk;lÞðtÞ. Dynamical parameters: (a),(b) scale-free network: N ¼ 5000, hki ¼ 4.00,hli ¼ 5.11,

λ1 ¼ 0.02 μ1 ¼ μ2 ¼ 0.05, βa2 ¼ βb2 ¼ ϕa
2 ¼ ϕb

2 ¼ 1.3 η2 ¼ ζ2 ¼ 0.8; (c),(d): Erdos-Renyi network: N ¼ 5000, hki ¼ 7,hli ¼ 8,
λ1 ¼ 0.02 μ1 ¼ μ2 ¼ 0.05, βa2 ¼ βb2 ¼ 3, ϕa

2 ¼ ϕb
2 ¼ 1.2, η2 ¼ 0.33, ζ2 ¼ 0.8. As before, in both cases, disease 1 is not influenced by

disease 2, and so βa1 ¼ βb1 ¼ ϕa
1 ¼ ϕa

1 ¼ η1 ¼ ζ1 ¼ 1.
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λc2ðσ1Þ − λc2ð0Þ ¼
X
k;l

Cðk; lÞσ1½βa1ðη2 − βa2β
b
2Þkσ1

þðη2 − βa2β
b
2Þμ2

þðη1ð1 − βa2Þ þ βa1ðη2 − βb2ÞÞμ1�; ð28Þ

where Cðk; lÞ is always positive. In this sense, λc2ðσ1Þ −
λc2ð0Þ > 0 implies that disease 1 is reducing the epidemic
threshold of disease 2, thus, enhancing its spreading. In
the opposite case, λc2ðσ1Þ − λc2ð0Þ < 0, disease 1 causes the
secondary threshold for disease 2 to be bigger than the
primary one, hence, impairing its spreading. As we see,
the condition yielding one or the other case involves a
complex combination of the parameters. However, it is
trivial to show that, provided that βa2 > 1, βb2 > 1, and
η2 < 1, disease 1 enhances disease 2 spreading for any
value of σ1 greater than zero. We call this scenario coherent
enhancement, because all the interaction mechanisms
contribute to enhance the spreading of disease 2. In a
similar way, if βa2 < 1, βb2 < 1, and η2 > 1, the interaction
has the opposite sign regardless of σ1, and we have a
situation of coherent impairment. Noticeably, if none of
these conditions is fulfilled, there exists the possibility
that the sign of the influence that disease 1 exerts on the
spreading of disease 2 depends on its prevalence via σ1
(see below). In Fig. 9, we represent λc2ðσ1Þ − λc2ð0Þ for
different parameter combinations that cover all possible
phenomenologies.
For the SIR case, the proliferation of dynamical classes

and the possibility that other mechanisms (i.e., those

including R individuals) carry the interaction between both
diseases makes the equivalent expression more complex,
but still derivable as

λc2ðhl2SSi; hl2ISi; hl2RSi; σ1Þ − λc2ðhl2i; 0; 0; 0Þ
¼ C0fμ2hliðη1μ1 þ η2μ2Þ⋅ðζ2βa1σ1hklihl2i þ ζ2μ2hlihl2ISi þ ½ζ2μ2hli − ϕa

2ϕ
b
2ðμ2hli þ βa1hkliσ1Þ�hl2RSiÞ

− hliμ2ðϕb
2η1μ1 þ βb2ζ2μ2Þðβa1σ1hklihl2SSi þ βa2ðμ2hli þ βa1σ1hkliÞhl2ISiÞg; ð29Þ

where C0 is always positive too.
As noted previously, in the interacting SIR model, once

an outbreak of one disease has started, the temporal
dependence of the epidemic threshold of the second
infection depends on the dynamic state of the system as
well as on the parameter values that account for the
mechanisms of interaction that are present in the system
and their intensities. In such a case, if the interaction
between the diseases is mediated by the class R (i.e., being
recovered from one disease is what causes subjects’
dynamics with respect to the other infection to be altered,
and so β and η parameters are equal to 1), the density of
individuals belonging to the R class is a monotonically
increasing function of time. This trivially implies that, in
general, the closer the epidemic process for one disease is
to its end, the deeper its impact on the conjugate one.
However, if it is the I class, the one that carries the

interaction, it is easy to see that an interaction will take
place if and only if the outbreak of disease 2 happens within
a time window that, at least partially, overlaps with that
characterizing the outbreak of disease 1. In such a situation,
the interaction between the two diseases is a transitory
property of the system, and the shift in the epidemic
threshold crucially depends on the temporal co-occurrence
of the outbreaks of both diseases.
A similar time-dependent shift of the epidemic thresh-

olds can also take place in the SIS model, for example, for
the thresholds of disease 2, if the difference λc2ðσ1Þ − λc2ð0Þ
changes its sign during an outbreak of disease 1, as a
consequence of the evolution of σ1. This is the scenario
given by the green curves and the red curves in Fig. 9.
However, it is worth noting that such combinations of
parameters are somehow pathological, as they imply
the appearance of diverse noncoherent mechanisms of

FIG. 9. Relative variation of epidemic threshold of disease 2
as a function of σ1 for different parameter sets. Black line:
Coherent enhancement of disease 1 over disease 2: λ1 ¼ 0.2,
μ1 ¼ μ2 ¼ 0.3, βa2 ¼ βb2 ¼ βa1 ¼ βb1 ¼ 1.1, η1 ¼ η2 ¼ 0.9. Blue
line: Coherent impairment of disease 1 over disease 2: λ1 ¼ 0.2,
μ1 ¼ μ2 ¼ 0.3, βa2 ¼ βb2 ¼ βa1 ¼ βb1 ¼ 0.9, η1 ¼ η2 ¼ 1.1. Red
line: λ1 ¼ 0.2, μ1 ¼ 0.4, μ2 ¼ 0.2, βa2 ¼ βb2 ¼ 1.5, βa1 ¼ 4,
βb1 ¼ 0.5, η1 ¼ 0.4, η2 ¼ 2. Green line: λ1 ¼ 0.2, μ1 ¼ 0.4,
μ2 ¼ 0.2, βa2 ¼ 0.5, βb2 ¼ 1.5, βa1 ¼ 4, βb1 ¼ 0.5, η1 ¼ 0.4,
η2 ¼ 1. The networks are two Erdös-Renyi graphs: N1 ¼ N2 ¼
5000 agents, hki ¼ 7, hli ¼ 8.
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interaction (i.e., one disease simultaneously enhances
subjects’ susceptibility to disease but, at the same time,
it reduces their infectiousness) that are epidemiologically
less plausible. On the contrary, in the SIR framework,
this transitoriness is an intrinsic property of the system
when the infected class is responsible for influencing
the dynamics of the conjugate disease. This transitory
nature of the interactions constitutes an essential differ-
ence between the double SIR model with respect to
the SIS one, which is at the root of the remarkable
difference between their corresponding thresholds and
the richer phenomenology of two interacting SIR-like
processes.

IV. CONCLUSIONS

In this work, we propose a composed HMF model to
describe the simultaneous spreading of two diseases over
the same population but driven by independent mecha-
nisms of transmission taking place on different networks
of contacts. Within this framework, we thoroughly study
extensions of the SIS and SIR models, where the
parameters defining the infectious and recovery transi-
tions of one disease depend on the state of each node with
respect to the conjugate disease, in this way establishing a
coupling between both diffusion processes. Our modeling
approach presents different advantages with respect to
previous models [36–39], as it simultaneously allows
analytical derivations of the epidemic thresholds and
an approximate description of the temporal evolution
of the system, in addition to providing a way to isolate
the effects on spreading dynamics of each possible
interaction mechanism, such as variations of infectivity,
susceptibility, or infectious periods. In addition, it enables
us to solve the two paradigmatic modeling scenarios
(SIS and SIR), identifying relevant differences between
the two cases that arise as a consequence of disease
interactions.
The model we present and analyze, even if it is based on

a HMF and so constitutes a first approximation to the
problem that neglects dynamical correlations among nodes,
is able to identify novel phenomena qualitatively different
from what is found on HMF descriptions of noninteracting
systems. First, our model foresees different thresholds for
SIR and SIS models, which arises from the asymmetry
between the interaction mechanisms that take place under
both models. Additionally, in what regards size scaling of
epidemic thresholds, at least in the SIS case, we identify
some relevant situations that yield threshold dependences
on the network’s size that are different from what is found
in HMF models for single diseases. At this point, it is worth
mentioning that asymmetries between SIS and SIR critical
properties [20,51], or a different behavior with respect to
that predicted by the HMF for epidemic thresholds [24],
have also been identified in the context of single diseases

spreading over one network, if the HMF approach is
abandoned.
The situation here is qualitatively different, as all these

divergent results with respect to classical HMF models of
single diseases do not arise as a consequence of consid-
ering any dynamical correlation but as a consequence of
disease-disease interactions. This has two relevant impli-
cations. On the one hand, deviations from HMF results
on epidemic thresholds on single diseases identified as a
consequence of considering dynamical correlations are of
quantitatively residual relevance, precisely because, at the
epidemic threshold, those correlations tend to vanish
and, there, HMF models perform consistently well [24].
Instead, in our case, differences between SIS and SIR
thresholds, for example, are completely different, as they
may even depend on conceptually different interaction
mechanisms. On the other hand, HMF is exact when
dealing with annealed networks [20], and so, on these
type of networks, which lack, by definition, dynamical
correlations, both SIS-SIR asymmetries and eventually
anomalous threshold dependences with size that we have
identified in this work constitute phenomena not found
before.
In addition, for the first time, the modeling framework

we propose here allows one to isolate the independent
effects of the different mechanisms of interaction that can
determine the critical properties of the model. On the one
hand, this allows us to foresee that, in a SIS model, certain
interaction schemes may yield to the effects of one disease
on another disease of different sign as a function of the
prevalence levels of the former. On the other hand, for the
SIR model, we also discuss how the interaction between
the two diseases and the different dynamical classes give
rise to a richer phenomenology. In particular, we show that,
due to the transitory nature of the SIR spreading processes,
the moment at which the interaction of the two diseases is
made effective might greatly determine the values of the
epidemic threshold of the disease whose course is modified
by the other disease.
Further advances in the field should address the

influences of dynamical correlations between nodes on
the spreading of interacting epidemics. This constitutes
a truly conceptual challenge as, for example, pairwise
descriptions of the disease dynamics [51] should trans-
form into quadruplet-based descriptions, as, in this case,
dynamical correlations go beyond the dynamical state
of neighbors in a network, but comprise both dynamical
states on the two networks involved, which multiplies the
complexity of the description.
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APPENDIX A: EPIDEMIC THRESHOLDS ON
REGULAR NETWORKS

In the particular case in which both networks are regular
graphs, an independent derivation of the epidemic thresh-
old can be obtained by a linear stability analysis. In this
case, for which Pðk; lÞ ¼ δðk − koÞδðl − loÞ, the dynamics
can be described by the following system of four equations:

_SS ¼ −koλ1SS · IS − loλ2SS · SI − koβb1λ1SSII − loβb2λ2SS · II þ μ1ISþ μ2SI;

_IS ¼ koλ1SS · ISþ koβb1λ1SS · II − loβa2λ2SI · IS − loβa2β
b
2λ2IS · II − μ1ISþ η2μ2II;

_SI ¼ loλ2SS · SI þ loβb2λ2SS · II − koβa1λ1IS · SI − koβa1β
b
1λ1SI · II − μ2SI þ η1μ1II;

_II ¼ koβa1λ1IS · SI þ loβa2λ2IS · SI þ koβa1β
b
1λ1SI · II þ loβa2β

b
2λ2IS · II − ðη1μ1 þ η2μ2ÞII;

one of which is linearly dependent of the rest. Thus, we
analyze only the system constituted by the last three
equations and use s ¼ 1 − IS − SI − II. In order to per-
form a linear stability analysis, we first linearize the
system around the equilibrium point and we calculate
the Jacobian to get

J ¼

��������

λ1ko − μ1 0 koβb1λ1 þ η2μ2

0 λ2lo − μ2 loβb2λ2 þ η1μ1

0 0 −ðη1μ1 þ η2μ2Þ

��������
; ðA1Þ

which, taking advantage of the fact that the Jacobian
itself is just the product of the elements in the diagonal,
yields the stability conditions detailed in Table IV.
Looking carefully at the results shown in Table IV, we

first recognize the appearance of a couple of critical values
for the infectiousnesses λc1i and λc2i which are referred to in
the following as the primary thresholds of their respective
diseases, just as in the general case described in the main
text. These threshold values stand for the minimum values
of the infectiousnesses that yield epidemic outbreaks after
the introduction of infinitesimal seeds of infected individ-
uals of each disease in an initially healthy population.
Therefore, the condition λ1 > λc1i must be verified in
order to have an epidemic outbreak for the first disease
once an infinitesimal seed ðIS; SI; IIÞ ¼ ðϵ; 0; 0Þ has been

introduced on a system being at the disease-free fixed point
ðIS; SI; IIÞ ¼ ð0; 0; 0Þ. On the other hand, the condition λc2i
plays an equivalent role for the second disease with respect
to a seed ðIS; SI; IIÞ ¼ ð0; ϵ; 0Þ.
The fixed point ðIS; SI; IIÞ ¼ ð0; 0; 0Þ is, strictly speak-

ing, not the only possible disease-free fixed point in our
model. Another two partially disease-free fixed points
can exist: a first fixed point in which disease 1 is installed
in the system at a certain prevalence π1 while disease 2 is
absent ðIS;SI;IIÞ¼ðπ1;0;0Þ and its cognate ðIS; SI; IIÞ ¼
ð0; π2; 0Þ, for which there is no individual infected with
disease 1. As we show, the stability of these fixed points
depends on the prevalence fractions π1 and π2, which
are the stationary proportions of sick individuals of each
disease:

π1 ¼
λ1ko − μ1

λ1ko
; ðA2Þ

π2 ¼
λ2lo − μ2

λ2lo
: ðA3Þ

Considering Eqs. (A2) and (A3), we study the stability of
the first fixed point ðIS; SI; IIÞ ¼ ðπ1 ¼ λ1ko−μ1

λ1ko
; 0; 0Þ as a

function of λ1: the Jacobian, around this fixed point, takes
the following form:

TABLE IV. Linear stability analysis of the fixed point ðIS; SI; IIÞ ¼ ð0; 0; 0Þ.
Eigenvalue Eigenvector ðIS; SI; IIÞ Stability condition (epidemic threshold)

ξ1 ¼ λ1ko − μ1 ~ψ1 ¼ ð1; 0; 0Þ λ1 < λc1i ¼ μ1=ko
ξ2 ¼ λ2lo − μ2 ~ψ2 ¼ ð0; 1; 0Þ λ2 < λc2i ¼ μ2=lo
ξ3 ¼ −ðη1μ1 þ η2μ2Þ ~ψ3 ¼

�
− η2μ2þβb

1
λ1ko

ðλ1ko−μ1Þþðη1μ1þη2μ2Þ ;−
η1μ1þβb

2
λ2lo

ðλ2lo−μ2Þþðη1μ1þη2μ2Þ ; 1
�

Always stable
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J ¼

������������

ðμ1 − λ1koÞ ðμ1 − λ1koÞ
�
1þ βa2

λ2lo
λ1ko

�
βb1λ1ko þ η2μ2 þ ðμ1 − λ1koÞ

�
βb1 þ 1þ βa2β

b
2
λ2lo
λ1ko

�

0 ðλ2lo − μ2Þ þ ðμ1 − λ1koÞ
�
λ2lo
λ1ko

þ βa1

�
βb2μ1

λ2lo
λ1ko

þ η1μ1

0 ðλ1ko − μ1Þ
�
βa2

λ2lo
λ1ko

þ βa1

�
ðλ1ko − μ1Þβa2βb2 λ2lo

λ1ko
− ðη1μ1 þ η2μ2Þ

������������
: ðA4Þ

By solving the equation derived from imposing that
J ¼ 0, we obtain the values of the parameters leading to
stability inversion. As can be seen by the naked eye,
ðμ1 − λ1koÞ is the eigenvalue ξ1 associated with the eigen-
vector ~ψ1 ¼ ð1; 0; 0Þ, and the condition ξ1 ¼ 0 again yields

the same condition λ1 ¼ μ1=ko, thus, defining the threshold
of the classical SIS model. Regarding the other two eigen-
values, ξ2 and ξ3, the result is more cumbersome. Despite
that, the vanishing of the 2 × 2 determinant of the right-hand
inferior corner of the Jacobian matrix [Eq. (A4)] yields

λ2 ¼ λc2ii ¼
λ1ko
lo

η2μ2½ðβa1ðλ1ko − μ1Þ þ μ2� þ η1μ1μ2
μ1ðη1μ1 þ η2μ2Þ þ ðλ1ko − μ1Þ½βa1βa2βb2ðλ1ko − μ1Þ þ βa2β

b
2μ2 þ η1μ1β

a
2 þ βa1β

b
2μ1�

; ðA5Þ

to which the general expression presented in the main
text for the epidemic threshold reduces when Pðk; lÞ ¼
δðk − koÞδðl − loÞ. The agreement between numerical
simulations and the analytic expression of the threshold
presented here is accurate only when λ1ko ≃ μ1, and the
reason is easily understood. We compare the reaction of the
system to the introduction of a small seed of SI individuals
when both diseases are absent [ðIS; SI; IIÞ ¼ ð0; 0; 0Þ, case
1] or when the first disease was already installed in the
system [ðIS; SI; IIÞ ¼ ðπ1; 0; 0Þ, case 2]. As we argued in
the preceding sections, the epidemic threshold is different
in each case, and the reason is simply the presence, in the
second case, of a fraction π1 of IS of individuals for which
the infectiousness and recovery rates for disease 2 are
different with respect to the rest of the individuals. As a

consequence, the mean values of the dynamical parameters
averaged over the whole population hλ2i and hμ2i are
different in both cases and will yield different values for the
epidemic thresholds. Thus, in order to accurately evaluate
the secondary threshold for disease 2, it is essential to know
with enough precision the prevalence π1 corresponding
to a single SIS model, as a function of λ1. The problem
arises from the fact that, precisely, the derivation of
Eq. (A5) explicitly assumes that the bijection between
π1 and λ1 is governed by the mean-field stationary
expression [Eq. (A2)], which is precise only when
λ1ko ≃ μ1 [25]. In fact, a way to rebuild a more accurate
secondary threshold curve can be achieved if, from
Eq. (A2), we substitute λ1 as a function of π1, and then
introduce the so-obtained expression into Eq. (A5) to get

λc2iiðπ1Þ ¼
1

lo

η2μ2ðβa1 μ1π1
ð1−π1Þ þ μ2Þ þ η1μ1μ2

ð1 − π1Þðη1μ1 þ η2μ2Þ þ π1ðβa1βa2βb2 μ1π1
ð1−π1Þ þ βa2β

b
2μ2 þ η1μ1β

a
2 þ βa1β

b
2μ1Þ

; ðA6Þ

which allows one to directly evaluate the threshold as a function of π1 rather than of λ1. Thus, by introducing in Eq. (A6) the π1
values obtained from the simulations instead of the theoretical prediction of the mean field [Eq. (A2)],, we recover the curves
for the secondary threshold represented with red lines in Figs. 2 and 3, in quantitative agreement with results from simulations.
Obviously, the same arguments stand for the secondary threshold of the first disease, which obeys the following expression:

λc1iiðπ2Þ ¼
1

ko

η1μ1ðβa2 μ2π2
ð1−π2Þ þ μ1Þ þ η2μ2μ1

ð1 − π2Þðη2μ2 þ η1μ1Þ þ π2ðβa2βa1βb1 μ2π2
ð1−π2Þ þ βa1β

b
1μ1 þ η2μ2β

a
1 þ βa2β

b
1μ2Þ

: ðA7Þ

When the networks are heterogeneous, this reformulation of the threshold curves as a function of π1 or π2 cannot be done
straightforwardly, as no analytical bijection λ1ðπ1Þ or λ2ðπ2Þ can be reached. The best we can do is to use a numerically built-
up relationship λ1ðθ1Þ [or λ2ðθ2Þ] and introduce it into the general expression for the threshold. Although the accuracy of the
curves for the secondary threshold is very satisfactory in Fig. 4, we identify this effect to be the source of the slight divergence
between the analytical and numerical secondary thresholds shown in Fig. 6.
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APPENDIX B: VANISHING CONDITIONS FOR
EPIDEMIC THRESHOLDS

Here, we provide a systematic analysis of the behavior of
the secondary threshold in our model for large scale-free
networks. In particular, we inspect whether the coupling

between the spreading of the two diseases in the terms
described in our model can modify the classical, single-
disease scheme, and, if so, under what conditions. The
epidemic threshold for the first disease in our model
reads as

λc1ðσ2Þ ¼ μ1
hkiP

k;lPðk; lÞ k
2l2σ2

2
βa
2
βa
1
βb
1
þlk2σ2½η2μ2βa1þβb

1
ðβa

1
μ1þβa

2
μ2Þ�þk2μ2ðη1μ1þη2μ2Þ

l2σ2
2
βa
2
η1þlσ2ðη1μ1þη2μ2þβa

2
η1μ2Þþμ2ðη1μ1þη2μ2Þ

; ðB1Þ

and we have to address its behavior in the limit N → ∞. Substituting sums by integrals in Eq. (B1), one gets

lim
N→∞

λc1ðσ2Þ ¼ lim
ðkmax;lmaxÞ→∞

μ1

R kmax
kmin

R lmax
lmin

Pðk; lÞkdkdlR kmax
kmin

R lmax
lmin

Pðk; lÞ k2l2σ22βa2βa1βb1þlk2σ2½η2μ2βa1þβb
1
ðβa

1
μ1þβa

2
μ2Þ�þk2μ2ðη1μ1þη2μ2Þ

l2σ2
2
βa
2
η1þlσ2ðη1μ1þη2μ2þβa

2
η1μ2Þþμ2ðη1μ1þη2μ2Þ dkdl

: ðB2Þ

To study the behavior of the threshold in the thermody-
namic limit, we present an analysis that is essentially based
on the following result, whose proof is an exercise of
elementary algebra that we present for the sake of com-
pleteness in the Appendix C. Given two polynomials PðkÞ,
QðkÞ, we have that

���� lim
kmax→∞

Z
kmax

kmin

PðkÞ
QðkÞdk

����¼∞↔degðQÞ−degðPÞ≤1: ðB3Þ

Focusing on scale-free connectivity distributions, we dis-
tinguish two different scenarios in this section: uncorrelated
layers and totally correlated layers. In the first case,
both networks present a scale-free distribution in which
the connectivity of a node in a layer is essentially
independent of its degree on the other layer, in such a
way that the composed connectivity distribution verifies
Pðk; lÞ ¼ Cok−γl−Γ. Instead, in the second case, although
both layers are also scale-free networks, the degree of any

given node in both layers is forced to be the same.
Therefore, nodes that are hubs in a layer are also hubs
in the other layer, and the composed degree distribution
is Pðk; lÞ ¼ Coδðk − lÞk−γ . In addition, we assume that
both γ and Γ exponents are rational; hence, we can write
γ ¼ w=x and Γ ¼ y=z, with ðw; x; y; zÞ ∈ N. By addressing
these two opposite scenarios, our aim is to characterize the
difference, in terms of the spreading dynamics, between
the coupling of two diseases that spread by independent
means—that is, through different networks of contacts—
and the coupling of two related diseases—or variations of
the same disease—that spread following the very same
mechanisms and, thus, they do so over highly correlated
networks of contacts.

1. Uncorrelated scale-free layers

If we substitute Pðk; lÞ ¼ Cok−γl−Γ into Eq. (B2), we
can factorize the double integrals into independent terms:

lim
N→∞

λc1ðσ2Þ ¼ lim
ðkmax;lmaxÞ→∞

μ1

R kmax
kmin

k1−γdk
R lmax
lmin

l−ΓdlR kmax
kmin

k2−γdk
R lmax
lmin

l2σ2
2
βa
2
βa
1
βb
1
þlσ2½η2μ2βa1þβb

1
ðβa

1
μ1þβa

2
μ2Þ�þμ2ðη1μ1þη2μ2Þ

lΓ½l2σ2
2
βa
2
η1þlσ2ðη1μ1þη2μ2þβa

2
η1μ2Þþμ2ðη1μ1þη2μ2Þ� dl

: ðB4Þ

The condition for the numerator to diverge is γ≤2∨Γ≤1.
These conditions are verified by networks whose mean
connectivity diverges in the thermodynamic limit. For this
reason, networks with those small exponents are neither
reasonable systems to be used to describe any information
diffusion process over them nor are they found in real
systems. Taking this into account, we restrict our analysis
to the more epidemiologically relevant scenario in which
γ > 2 and Γ > 2, although our reasoning is generalizable to
any value of the exponents.
Thus, in the scenario γ > 2 and Γ > 2, the numerator

always remains finite and the only phenomenon of interest

that could be found is an eventual vanishing of the threshold
due to a divergence in the denominator—

R
Dðk; lÞdkdl in

what follows. Dðk; lÞ can be factorized to give Dðk; lÞ ¼
D1ðkÞD2ðlÞ, which allows us to factorize the integral, as can
be seen from Eq. (B4). The integral in k,

R
D1ðkÞdk will

diverge if and only if γ ≤ 3, but the integral in l,
R
D2ðlÞdl,

might independently diverge under some conditions. That
situationwould suppose the vanishing of the threshold of the
first disease as a consequence of its coupling to the second
disease rather than to internal, dynamical, or topological
features. To find out the conditions for

R
D2ðlÞdl to diverge,

we make the following change of variable:
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m ¼ l1=z; ðB5Þ
so as to change the dependence of the denominator Dðk; lÞ ¼ D1ðkÞD2ðlÞ in Eq. (B4) to Dðk;mÞ ¼ D1ðkÞD2ðmÞ:

lim
N→∞

λc1ðσ2Þ ¼ lim
ðkmax;lmaxÞ→∞

μ1

R kmax
kmin

k1−γdkR kmax
kmin

k2−γdk
R l1=zmax

l1=zmin

fm2zσ2
2
βa
2
βa
1
βb
1
þmzσ2½η2μ2βa1þβb

1
ðβa

1
μ1þβa

2
μ2Þ�þμ2ðη1μ1þη2μ2Þgzmz−1

my½m2zσ2
2
βa
2
η1þmzσ2ðη1μ1þη2μ2þβa

2
η1μ2Þþμ2ðη1μ1þη2μ2Þ� dm

: ðB6Þ

The last expression has the advantage that the argument of the integral inm,D2ðmÞ is just the quotient of two polynomials, and
thus, its behavior in the limit lmax → ∞ is governed by Eq. (B3) and depends only on the difference of degrees of the
denominator and the numerator. If

D2ðmÞ ¼
Z

l1=zmax

l1=zmin

fm2zσ22β
a
2β

a
1β

b
1 þmzσ2½η2μ2βa1 þ βb1ðβa1μ1 þ βa2μ2Þ� þ μ2ðη1μ1 þ η2μ2Þgzmz−1

my½m2zσ22β
a
2η1 þmzσ2ðη1μ1 þ η2μ2 þ βa2η1μ2Þ þ μ2ðη1μ1 þ η2μ2Þ�

dm ¼
Z

l1=zmax

l1=zmin

PðmÞ
QðmÞ dm;

ðB7Þ

we have that—in the general case in which none of the β
and η parameters vanish—degðQÞ − degðPÞ ¼ 1þ y − z,
and hence, the conditions for D2ðmÞ to diverge are

lim
ðkmax;lmaxÞ→∞

Z
l1=zmax

l1=zmin

PðmÞ
QðmÞ dm

¼ ∞ ↔ y − zþ 1 ≤ 1 ↔ Γ ¼ y=z ≤ 1: ðB8Þ

Therefore, in the region of interest γ > 2 ∧ Γ > 2, the
integral in m:

R
D2ðmÞdm does not diverge, and so, the

threshold does not vanish. It is worth noticing that
the condition Γ < 1 does not guarantee the vanishing of
the threshold, as it also causes the numerator to diverge.
Expression (B8) is valid for the case in which none of the β
and η parameters of the model vanish. If this is not the case,
i.e., if some of the infectiousness variations β do vanish—
the rest of the parameters cannot do that within a realistic
epidemiological framework, the degrees of the numerator
and the denominator in Eq. (B7) could vary. In Table V, we
systematically address all possible combinations of null

parameters and the composed conditions yielding a vanish-
ing threshold for each case.
Once again, we see that, whatever the interacting scheme

between both diseases is, the denominator always remains
finite provided that Γ > 2. In conclusion, if no degree
correlation is introduced between layers, and for realistic
systems characterized by double power laws verifying
γ > 2 ∧ Γ > 2, the behavior of the thresholds in the
thermodynamic limit is essentially the same as the behavior
of the uncoupled systems: the threshold associated with
the first disease vanishes if and only if the exponent of its
own network verifies γ ≤ 3, whatever the exponent of the
second network. The coupling will introduce, in general,
only a finite prefactor. The symmetric situation obviously
stands for the threshold of the second disease.

2. Totally correlated scale-free layers

If we consider the case in which Pðk; lÞ ¼
Coδðk − lÞk−γ, where γ ¼ w=x with ðw; xÞ ∈ N, the epi-
demic threshold reads as

lim
N→∞

λc1ðσ2Þ ¼ lim
ðkmax;lmaxÞ→∞

μ1

R kmax
kmin

k1−γdkR kmax
kmin

k2σ2
2
βa
2
βa
1
βb
1
þkσ2½η2μ2βa1þβb

1
ðβa

1
μ1þβa

2
μ2�Þþμ2ðη1μ1þη2μ2Þ

kγ−2½k2σ2
2
βa
2
η1þkσ2ðη1μ1þη2μ2þβa

2
η1μ2Þþμ2ðη1μ1þη2μ2Þ� dk

; ðB9Þ

hence, we do not recover the factorization of the denominator previously observed. Instead, after changing the variable to
m ¼ k1=x, we get the following expression:

lim
N→∞

λc1ðσ2Þ ¼ lim
ðkmaxÞ→∞

μ1

R kmax
kmin

k1−γdkR k1=xmax

k1=xmin

fm2xσ2
2
βa
2
βa
1
βb
1
þmxσ2½η2μ2βa1þβb

1
ðβa

1
μ1þβa

2
μ2Þ�þμ2ðη1μ1þη2μ2Þgxmx−1

mw−2x½m2xσ2
2
βa
2
η1þmxσ2ðη1μ1þη2μ2þβa

2
η1μ2Þþμ2ðη1μ1þη2μ2Þ� dm

: ðB10Þ

In this expression, the numerator diverges for γ ≤ 2. In turn, the denominator,
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DðmÞ ¼
Z

k1=xmax

k1=xmin

fm2xσ22β
a
2β

a
1β

b
1 þmxσ2½η2μ2βa1 þ βb1ðβa1μ1 þ βa2μ2Þ� þ μ2ðη1μ1 þ η2μ2Þgxmx−1

mw−2x½m2xσ22β
a
2η1 þmxσ2ðη1μ1 þ η2μ2 þ βa2η1μ2Þ þ μ2ðη1μ1 þ η2μ2Þ�

dm ¼
Z

k1=xmax

k1=xmin

PðmÞ
QðmÞ dm;

ðB11Þ

diverges, according to Eq. (B3), if and only if degðQÞ−
degðPÞ ≤ 1. In the general case in which none of the β
parameters vanish, we have that degðQÞ − degðPÞ ¼
w − 3xþ 1, and thus,

lim
N→∞

λc1ðσ2Þ ¼ 0 ↔ γ ≤ 3: ðB12Þ

As in the previous case, different combinations of null β
parameters can change this result, as can be seen in
Table VI. Here, the phenomenology is remarkably different
for all the cases in which at least one of the two variations of
disease 1 infectiousness, βa1 or βb1, cancels [except for the
case βa2 ¼ βb1 ¼ 0 but βa1 ≠ 0, for which Eq. (B12) also
stands]. In those cases, θ > 0 guarantees that, provided that
γ > 2, no threshold vanishing is observed in the thermo-
dynamic limit, even when the exponent is within the
interval 2< γ≤3. In the case in which βa1¼βb1¼βa2¼0,
the situation will be reciprocal, and thus, the epidemic
threshold of the second disease will not vanish either
for γ > 2.

APPENDIX C: PROOF OF Eq. (B3)

Given two polynomials PðkÞ, QðkÞ, we have to prove
that

���� lim
kmax→∞

Z
kmax

kmin

PðkÞ
QðkÞ dk

���� ¼ ∞ ↔ degðQÞ − degðPÞ ≤ 1:

ðC1Þ

First, we have that, if degðPÞ ≥ degðQÞ, the integral
diverges, as the argument of the integral can be expressed
in that case as

PðkÞ
QðkÞ ¼ CðkÞ þ P0ðkÞ

Q0ðkÞ; ðC2Þ

with degðP0Þ < degðQ0Þ and degðCÞ ≥ 0. When substitut-
ing the last expression into Eq. (B3), the integral in CðkÞ
automatically diverges. Therefore, to prove this result for
the case in which degðPÞ < degðQÞ, we consider the
general decomposition of QðkÞ:

QðkÞ ¼ Qo

Yi�
i¼1

ðk − aiÞni
Yj�
j¼1

ðk2 þ bjkþ cjÞmj; ðC3Þ

whereQo is a constant, kmin > 0, and b2j − 4cj < 0 ∀j. The
values i� and j� stand for the number of different elemental
factors of first and second order, respectively. So, the
degree of the polynomial reads as follows:

degðQÞ ¼
Xi�
i¼1

ni þ 2
Xj�
j¼1

mj; ðC4Þ

where ni and mj denote the multiplicity of each of the
factors of first and second order, respectively. The factori-
zation of QðkÞ yields the following decomposition of the
quotient PðkÞ=QðkÞ into partial fractions:

TABLE VI. Divergence conditions for
R
D2ðmÞdm for disease

1. Case 2: Totally correlated scale-free layers Pðk; lÞ ¼
Coδðk − lÞk−γ , γ ¼ ðw=xÞ.
ðβa1; βb1; βa2Þ
parameters

degðQÞ − degðPÞ in
DðmÞ ¼ PðmÞ=QðmÞ

Divergence
condition

ðβa1; βb1; βa2Þ w − 3xþ 1 γ ≤ 3

ðβa1; βb1; 0Þ
ðβa1; 0; 0Þ
ð0; βb1; βa2Þ w − 2xþ 1 γ ≤ 2

ðβa1; 0; βa2Þ
ð0; βb1; 0Þ
(0,0,0)

ð0; 0; βa2Þ w − xþ 1 γ ≤ 1

TABLE V. Divergence conditions for
R
D2ðmÞdm for disease 1.

Case 1: Uncorrelated scale-free layers Pðk; lÞ ¼ Cok−γl−Γ,
γ ¼ ðw=xÞ, Γ ¼ ðy=zÞ.
ðβa1; βb1; βa2Þ
parameters

degðQÞ − degðPÞ in
D2ðmÞ ¼ PðmÞ=QðmÞ

Divergence
condition

ðβa1; βb1; βa2Þ y − zþ 1 γ ≤ 3 ∨ Γ ≤ 1

ðβa1; βb1; 0Þ
ðβa1; 0; 0Þ
ð0; βb1; βa2Þ yþ 1 γ ≤ 3 ∨ Γ ≤ 0

ðβa1; 0; βa2Þ
ð0; βb1; 0Þ
(0,0,0)

ð0; 0; βa2Þ yþ zþ 1 γ ≤ 3 ∨ Γ ≤ −1
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Z
kmax

kmin

PðkÞ
QðkÞ dk ¼

Xi�
i¼1

Xni
n¼1

Z
kmax

kmin

Ai;n

ðkþ aiÞn
dkþ

Xj�
j¼1

Xmj

m¼1

Z
kmax

kmin

Bj;mkþ Cj;m

ðk2 þ bjkþ cjÞm
dk; ðC5Þ

where the coefficients Ai;n; Bj;m; Cj;m have to be calculated by expanding this expression into a single fraction and
comparing the coefficients of the numerator obtained with those of P0ðkÞ ¼ PðkÞ=Qo. With the aim of understanding the
conditions that make these partial integrals diverge, we analyze them term by term. The first sum yields logarithmic and
rational functions:

Xi�
i¼1

Xni
n¼1

Z
kmax

kmin

Ai;n

ðkþ aiÞn
dk ¼

Xi�
i¼1

Ai;1 ln

�
kmax þ ai
kmin þ ai

�
þ

Xi�
i¼1jni>1

Xni
n¼2

−Ai;n

ðn − 1Þ
�

1

ðkmin þ aiÞn−1
− 1

ðkmax þ aiÞn−1
�
; ðC6Þ

and, in the limit kmax → ∞, only the logarithmic term diverges:

lim
kmax→∞

Xi�
i¼1

Xni
n¼1

Z
kmax

kmin

Ai;n

ðkþ aiÞn
dk ¼

Xi�
i¼1

Ai;1 lnðkmaxÞ þ ϑ; ðC7Þ

where ϑ stands for a finite term, negligible when compared to lnðkmaxÞ. On the other hand, the second sum in Eq. (C5) can
be rewritten as

Xj�
j¼1

Xmj

m¼1

Z
kmax

kmin

Bj;mkþCj;m

ðk2 þ bjkþ cjÞm
dk¼

Xj�
j¼1

Xmj

m¼1

Bj;m

2

Z
kmax

kmin

2kþ bj
ðk2 þ bjkþ cjÞm

dkþ
�
Cj;m −Bj;m

2

�Z
kmax

kmin

dk
ðk2 þ bjkþ cjÞm

dk:

ðC8Þ
In turn, the integrals in the first sum of Eq. (C8) can be easily solved:

Xj�
j¼1

Xmj

m¼1

Bj;m

2

Z
kmax

kmin

2kþ bj
ðk2 þ bjkþ cjÞm

dk ¼
Xj�
j¼1

Bj;m

2
ln
ðk2max þ bjkmax þ cjÞ
ðk2min þ bjkmin þ cjÞ

þ
Xj�

j¼1jmj>1

Xmj

m¼1

Bj;m

2

�
1

k2min þ bjkmin þ cj
− 1

k2max þ bjkmax þ cj

�
; ðC9Þ

and, again, when taking the limit kmax → ∞, only the logarithmic terms diverge:

Xj�
j¼1

Xmj

m¼1

Bj;m

2

Z
kmax

kmin

2kþ bj
ðk2 þ bjkþ cjÞm

dk ¼
Xj�
j¼1

Bj;m

2
lnðk2maxÞ þ ϑ ¼

Xj�
j¼1

Bj;m lnðkmaxÞ þ ϑ: ðC10Þ

Finally, we have to analyze the last integrals in Eq. (C8). After the following linear transformation,

v ¼ 2kþ bjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4cj − b2j

q ; ðC11Þ

we can rewrite

�
Cj;m − Bj;m

2

�Z
kmax

kmin

dk
ðk2 þ bjkþ cjÞm

¼
�
Cj;m − Bj;m

2

��
cj −

�
bj
2

�
2
	
1=2−m Z ð2kmaxþbjÞ=

ffiffiffiffiffiffiffiffiffiffiffi
4cj−b2j

p
ð2kminþbjÞ=

ffiffiffiffiffiffiffiffiffiffiffi
4cj−b2j

p 1

ðv2 þ 1Þm dv; ðC12Þ

and, although it is not possible to write an explicit solution for the integrals of the form
R
1=ðv2 þ 1Þm, integrating by parts,

we get

Z
1

ðv2 þ 1Þm dv ¼ v
ð2m − 2Þðv2 þ 1Þm−1 þ

2m − 3

2m − 2

Z
dv

ðv2 þ 1Þm−1 ; ðC13Þ

DYNAMICS OF INTERACTING DISEASES PHYS. REV. X 4, 041005 (2014)

041005-20



which allows us to solve the integrals, yielding the
appearance of rational and arctangent terms, none of which
diverge in the limit kmax → ∞. Thus, only logarithmic
terms from Eqs. (C7) and (C10) contribute to the diver-
gence of the initial limit of Eq. (B3), which can finally be
rewritten as follows:

���� lim
kmax→∞

Z
kmax

kmin

PðkÞ
QðkÞdk

����¼ lnðkmaxÞ
����
Xi�
i¼1

Ai;1þ
Xj�
j¼1

Bj;m

����þϑ:

ðC14Þ
Thus, recalling that jϑj ≪ lnðkmaxÞ stands for finite terms,
the only requisite for the limit to diverge is that

�Xi�
i¼1

Ai;1 þ
Xj�
j¼1

Bj;m

�
≠ 0; ðC15Þ

which is precisely the coefficient of the monomial of
degree equal to deg degðQÞ − 1 in the numerator
P0ðkÞ ¼ PðkÞ=Qo, as can be easily shown after grouping
the partial fractions in Eq. (C5) into a single fraction.
Therefore, we have demonstrated the initial statement: the
condition for the integral in Eq. (C1) to diverge is that
degðP0Þ ¼ degðPÞ ≥ degðQÞ − 1.
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