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Abstract

Online social media have greatly affected the way in which we communicate with each
other. However, little is known about what are the fundamental mechanisms driving dynami-
cal information flow in online social systems. Here, we introduce a generative model for online
sharing behavior and analytically show, using techniques from mathematical population ge-
netics, that competition between memes for the limited resource of user attention leads to a
type of self-organized criticality, with heavy-tailed distributions of meme popularity: a few
memes “go viral” but the majority become only moderately popular. The time-dependent
solutions of the model are shown to fit empirical micro-blogging data on hashtag usage, and
to predict novel scaling features of the data. The presented framework, in contrast to purely
empirical studies or simulation-based models, clearly distinguishes the roles of two distinct
factors affecting meme popularity: the memory time of users and the connectivity structure
of the social network.

Recent advances in communication technologies and the emergence of social media have made
it possible to communicate rapidly on a global scale. However, since we receive pieces of infor-
mation from multiple sources, this has also made the information ecosystem highly competitive:
in fact, users’ influence and visibility are highly heterogeneous and memes or topics strive for
users’ attention in online social systems. Although several studies have described the dynam-
ics of information flow in popular communication media [1–5], the main factors determining the
observed patterns have not been identified and there is no theoretical framework that addresses
this challenge. Indeed, given the potential for applications—e.g., having more efficient systems to
spread information for safety and preparedness in the face of threats—a better understanding of
how memes (ideas, hashtags, etc.) emerge and compete in online social networks is critical.

To address this problem, we develop a theoretical framework that describes how users choose
among multiple sources of incoming information and affect the spreading of memes on a directed
social network, like Twitter [1–3]. Our probabilistic model, in contrast to other studies [3–7] that

1

http://arxiv.org/abs/1501.05956v1


Figure 1: Schematic of the model. (A) Timeline of users’ actions in a typical realization of
the model. User A is followed by users B and C; arrows between nodes denote the direction
of information transmission. Note that user B also follows many other users, and so his stream
contains more memes than the streams of A or C. At time tAR, user A retweets a previously-seen
meme (with probability 1−µ, given A is active). She chooses the red meme to retweet, by looking
backwards in her stream a distance determined by the memory-time distribution Φ (only memes
that A deemed “interesting” are shown in her stream). Her retweet of the red meme is accepted
as “interesting” (and so inserted into their stream) by each follower of A with probability λ. At
time tCR user C retweets the red meme to his followers, so further increasing the popularity of the
red meme. At time tAI user A innovates (a probability µ event, given A is active) by inventing
the new blue meme and broadcasting it to her followers. (B) Branching process representation
(Sec. S2) of the popularities of the red meme and of the blue meme. Each retweet generates new
branches of the process, as the meme is inserted into the streams of followers of the tweeting user.
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are based on intensive computational simulations to fit to data, allows us to get analytical insights
into the respective roles of the network degree distribution, the memory-time distribution of users,
and the omnipresent competition between memes for the limited resource of user attention. Using
this analysis, we fit the model to hashtag popularities extracted from micro-blogging data, and
predict features of the time-dependent data.

Our model is as follows. In online communication platforms like Twitter, users follow (re-
ceive the broadcasts or “tweets” of) other users. In graph-theoretical terms, these relationships
constitute directed links from the followed node (user) to the follower (Fig. 1) and the network
composed of all users is characterized by an out-degree distribution pk (pk =probability that a
randomly-chosen user has k followers). For simplicity, let us first assume that each user follows,
on average, z others, where z =

∑

k kpk is the mean degree of the network; the general case in
which this assumption is relaxed is addressed in the supplementary materials (SM). Additionally,
each user has a “stream” that records all tweets she receives, time-stamped by their arrival time.
We assume that only a fraction λ of the tweets received are deemed “interesting” by the user,
and only the interesting tweets are considered for possible retweeting by that user. (Here we
use the term “retweeting” in a general sense, to include any reuse of a previously-received meme
such as a hashtag). The activity rate of a user—the average number of tweets that she sends
per unit time—can depend on how well-connected the user is within the social network [3], but
here we describe only the simplest case of homogeneous activity rates (for the general case, see
SM), so that each user sends a tweet, on average, once per time unit (i.e., as a Poisson process
with rate 1). When a user decides, at time t, to send a tweet, she has two options (see Fig. 1):
with probability µ, the user innovates, i.e., invents a new meme, and tweets this new meme to
all followers. The new meme appears in the user’s own stream (it is automatically interesting to
the originating user), and in the streams of all her followers, where it may be deemed interesting
by each follower, independently, with probability λ. If not innovating (with probability 1 − µ),
the user instead chooses a meme from her stream to retweet. The meme for retweeting is chosen
by looking backwards in time an amount tm determined by a draw from the memory-time distri-
bution Φ(tm), and finding the first interesting meme in her stream that arrived prior to the time
t− tm. The retweeted meme then appears in the streams of the user’s followers (time-stamped as
time t), but because it is a retweet, it does not appear a second time in the stream of the tweeting
user. The popularity n of a meme is the number of times it has been tweeted or retweeted; this
quantity depends on the age a of the meme (the time since it was first tweeted) [7].

The model as described is a “neutral model” [8, 9] in the sense that all memes have the
same “fitness” [10]: no meme has an inherent advantage in terms of its attractiveness to users.
Nevertheless, the competition between memes for the limited resource of user attention causes
initial random fluctuations in popularities of memes to be amplified, and leads to popularity
distributions with very heavy tails [11]: heavier, for example, than can be generated by models
of preferential attachment or cumulative advantage type [12–16]. This “competition-induced
criticality” was studied for a zero-memory (Φ(tm) = δ(tm)) version of this model in Ref. [17];
numerical simulation results for a closely related model were first reported in Ref. [3].

A branching process approximation for the model (SM), enables us to understand how the
network structure (via the out-degree distribution pk) and the users’ memory-time distribution
(Φ(tm)) affect the popularity distribution of memes. Defining qn(a) as the probability that a
meme has popularity (total number of (re)tweets) n at age a, the branching process provides
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Figure 2: Numerical simulations of the model, compared with analytical results. (A) Comple-
mentary cumulative distribution functions (CCDFs) for meme popularity at age a: numerical
simulation results (black) on a network with scale-free out-degree distribution (pk ∝ k−γ for
k ≥ 4 with γ = 2.5, mean degree z = 11, N = 105 nodes), compared with asymptotic model re-
sult Eq. S1 (colored curves). The memory-time distribution is Φ = Gamma(kG, θ) with kG = 0.1
and θ = 50, so the mean memory time is T = kG θ = 5. Inset: As main, but for Poisson out-
degree distribution pk (z = 11) and gamma memory-time distribution with kG = 0.1 and θ = 0.5.
(B) Fraction q1(a) of memes that are not retweeted by age a, on the scale-free network of (A)
and for various memory-time distributions Φ(tm) (red = exponential with mean T , blue/green =
Gamma(0.1, 10T )), using Eq. S2. Dashed lines show the T = 5 cases; solid lines represent T = 1.
(C) Mean popularity of memes of age a, for the same cases as in (B), and compared with Eq. 1
(using the numerical Laplace transform inversion described in Sec. S4); inset shows the large-a
behavior. All panels have µ = 0.02 and (except for green curves) λ = 1.
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analytical expressions that determine the probability generating function (PGF) of the popularity
distribution, H(a;x) =

∑

∞

n=1 qn(a)x
n. In the small-innovation limit µ → 0, the model describes a

critical branching process [18,19], for which power-law distributions of popularity (avalanche size)
are expected [20–22]. Although the analytical expressions are somewhat complicated, we can see
the impact of pk and Φ(tm) by focusing on certain features of the distribution. For example, the
fraction of memes that are not retweeted at age a, i.e., those whose popularity remains at n = 1
until at least age a, is given by q1(a) = limx→0H(a;x)/x. The large-age asymptotic behavior of
this quantity can be written explicitly in terms of the network out-degree distribution and the
memory-time distribution (Sec. S2.3). In particular, q1(a) limits to a non-zero value as the age
a tends to infinity, capturing the observed fact that the competition for user attention results
in a substantial fraction q1(∞) of memes being ignored (never retweeted) subsequent to their
birth [1, 2, 23], see Fig. 2B.

The expected (mean) popularity of memes of age a, m(a) =
∑

n nqn(a) = ∂H/∂x|x=1, can
also be found explicitly, up to a Laplace transform inversion:

m̂(s) =
1

s
+

1− µ

s

(λz + 1)Φ̂(s)

λz + µ+ s− (1− µ)λzΦ̂(s)
, (1)

where hats denote Laplace transforms. Strikingly, unlike q1, the mean popularity depends on the
network degree distribution pk only through the mean degree z, implying that the mean popularity
is independent of the finer details of the network structure. The large-age, small-µ asymptotics
of m(a) may be inferred from Eq. (1): this analysis (Sec. S2.5) is valid for ages a with a ≫ T ,
where T =

∫

∞

0 tmΦ(tm)dtm is the mean memory time. We find that m(a) grows approximately

linearly with age a: m(a) ≈ λz+1
Tλz+1a, until ages of order Tλz+1

µ(λz+1) , whereupon m(a) limits to its

a → ∞ value of 1/µ. If the memory-time distribution has significant probability mass at low
values of tm (e.g., the gamma distribution in Fig. 2) then the mean popularity initially grows
faster-than-linearly with age (see Fig. 2C).

Notably, the infinite-age limits of both q1(a) and m(a) are independent of the memory-time
distribution Φ(tm). This property is, in fact, shared by the entire popularity distribution in the
a → ∞ limit, which implies that the large-n asymptotic behavior can be determined using similar
methods as for the zero-memory case in Ref. [17]. We find that if the out-degree distribution pk of
the network has a finite second moment, then the popularity distribution is a truncated power law
with exponent 3/2: qn(∞) ∼ Ae−n/κn−3/2 as n → ∞ (see Sec. S2.6 for explicit expressions for
the constants A and κ; note the exponential cutoff κ limits to ∞ as µ tends to 0). However, if the
network has a heavy-tailed degree distribution, i.e., pk ∝ k−γ with 2 < γ < 3, then the infinite-
age popularity distribution is also power law: qn(∞) ∼ B n−γ/(γ−1) as n → ∞ if µ ≈ 0. Note
the exponent of the power law, γ/(γ − 1), lies between 1.5 and 2, indicating that the popularity
distribution is extremely heavily skewed.

The approach of the popularity distribution to its infinite-age limit, i.e., the behavior for
finite but large ages, is of particular interest for real-world social networks that have pk ∼ Dk−γ

for large k. We focus especially on the case where γ is close to 2, as found for the out-degree
distribution of many real-world social networks. In this case, we show (Sec. S2.7) that for large n
and µ ≈ 0, the probability qn(a) grows approximately linearly with age a for large a, with a slope
that is proportional to the growth rate of the mean popularity m(a). This result implies that the
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Figure 3: Comparison of the model with Twitter hashtags data. (A) CCDFs for popularity of
hashtags at age a (at time a after their first appearance in the dataset). The model CCDFs
(from Eq. S1) are multiplied by 10 for clarity. Model parameters are: λ = 4.5× 10−4, µ = 0.033,
kG = 0.25, θ = 500, with one model time unit corresponding to 0.16 days (B) CCDFs at age a,
each divided by the mean popularity at age a. The data shows a collapse onto a single curve that is
closely matched by the model. (C) The mean popularity of hashtags of age a. (D) The fraction
q1(a) of hashtags that are not retweeted by age a. Here, our basic model with homogeneous
user activity rates does not fit well to the data (red curve), but allowing for heterogeneous user
activity rates improves the fit (blue curve), without compromising the other matches with data
(see Fig. S5).
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ratio qn(a)/m(a) is independent of age a, at least for values of a within the range of validity of the
approximations. As a consequence, we expect that if we rescale the age-a popularity distribution
by dividing by its mean m(a), then the rescaled distributions for different ages should collapse
onto a single curve.

We tested this prediction on a 1-year dataset comprised of the popularities of 1.4×105 hashtags
related to the 2011 15M protest movement in Spain [24,25]. We randomly sampled 8.2×105 users
on Twitter to determine the distribution pk of number of followers, and found pk ∼ Dk−γ for
large k, with γ = 2.13 (Fig. S2). Although the model parameters cannot be directly calculated
from the dataset (Sec. S1), by assuming that the memory time distribution for users is a gamma
distribution [19, 26], Φ = Gamma(kG, θ), Eqs. 1 and S1 enabled us to find model parameters
λ, µ, kG and θ that provide a good fit to the age-dependent mean and the old-age (a → ∞)
distribution of hashtag popularities. Figure 3B demonstrates that the model and data both
exhibit the predicted collapse of age-dependent distributions when scaled by their mean (as fitted
in Fig. 3C). We show in the SM (Sec. S3) that the fit of the model to the observed q1(a) (Fig.
3D) can be improved by including realistic dependence of user activity rates upon the number of
followers [3, 27].

In summary, despite its simplicity, the model matches the empirical popularity distribution
of hashtags on Twitter remarkably well; this is consistent with random-copying models of human
decision-making [28] where the quality of the product—here, the “interestingness” of the meme—is
less important than the social influence of peers’ decisions [29]. The generalization of the model (as
shown in the SM) to incorporate (i) heterogeneous user activity rates and (ii) a joint distribution
pjk of the number of users followed j and the number of followers k, remains analytically tractable
and confirms the robustness of our main finding: that competition between memes for the limited
resource of user attention induces criticality in the vanishing-innovation limit, giving power-law
popularity distributions and epochs of linear-in-time popularity growth. We believe that the
analytical results and potential for fast fitting to data will render this a useful null model for
further investigations of the entangled effects of memory, network structure, and competition on
information spread through social networks [30].
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S1 Further information on Figures 2 and 3

For the numerical simulation results in Fig. 2 of the main text, we generate configuration-model
directed networks with prescribed out-degree distribution pk. Each one of N users (nodes) is
assigned a random number k (drawn from the distribution pk) of out-links (links to followers).
The identities of the k followers are chosen uniformly at random from the set of all users; in
the N → ∞ limit, this gives a Poisson in-degree distribution pj which, for sufficiently large z,
gives similar results to using the in-degree distribution pj = δj,z, i.e., assuming every user follows
exactly z others [17].

The large-a, large-n, µ = 0 asymptotics of the popularity distribution are determined (see
derivation in Sec. S2.7) from the Laplace transform of a probability generating function (PGF),
which is given (under the assumptions of the main text—pj = δj,z and homogeneous user activity
rates—and for networks with the scale-free out-degree distribution pk ∼ Dk−γ as k → ∞ ) by

Ĥ(s;x) =
1

s



1−
λz
(

s+ λz + Φ̂(s)
)

(γ − 1)(1 − x)Φ̂(s)

(s+ λz)
(

s+ λz − λzΦ̂(s) + (γ − 1)λD
1

γ−1 [Γ(1− γ)]
1

γ−1 (1− x)
γ−2
γ−1 Φ̂(s)

)



 ,

(S1)
where Γ is the gamma function. Inversion of this transform, as described in Sec. S4, gives the
colored curves plotted in Fig. 2A. The corresponding expression for the case where pk has finite

8



0 100 200 300
0

50

0 10 20 30
0.3

0.4

0.5

0.6

0.7

0.8

0.9

age a

q 1(a
)

 

 

Φ Exp, T=5, λ=1
Φ Gamma, T=5, λ=1
Φ Gamma, T=1, λ=1
Φ Exp, T=1, λ=1
Φ Gamma, T=1, λ=0.1

0 5 10
0

5

10

15

age a

m
ea

n 
po

pu
la

rit
y

0 100 200 300
0

50A B

Figure S1: As panels B and C of Fig. 2 of the main text, but for a network with Poisson out-degree
distribution (mean degree z = 11). As in Fig. 2, both panels have µ = 0.02 and (except for green
curves) λ = 1.

second moment (e.g., a Poisson out-degree distribution, as in the inset of Fig. 2A) is given by
Eq. (S60).

Under the assumptions of the main text, the fraction q1(a) of memes that have not been
retweeted by age a has the following large-a asymptotic behavior (see Sec. S2.3 for derivation):

q1(a) ∼
λz + µ

λz + µ+ (1− µ)C(a)

∞
∑

k=0

pk

[

1− λ+ λ
λz + µ

λz + µ+ (1− µ)C(a)

]k

, (S2)

where C(a) is the cumulative distribution function for memory times: C(a) =
∫ a
0 Φ(tm) dtm. The

results in Figs. 2B and 2C are specific to networks with the scale-free out-degree distribution
pk = Dk−γ for k ≥ 4 (and pk = 0 for k < 4), with exponent γ = 2.5. Figure S1 shows
the corresponding results for networks with a Poisson out-degree distribution (e.g., Erdös-Rényi
directed graphs) with mean degree z matching that of the scale-free networks in Fig. 2. The
age-dependence of q1(a) in Fig. S1A is qualitatively similar to that of Fig. 2B, but note that the
limiting value as a → ∞ is different in the two cases: using Eq. (S2) (with C(∞) = 1) we obtain
q1(∞) = 0.50 for the scale-free case with λ = 1, whereas q1(∞) = 0.37 for the Poisson network.
In contrast, the mean popularity shown in Fig. S1B is essentially identical to that of Fig. 2C:
this is because the mean popularity given by Eq. (1) of the main text depends only on the mean
degree z of the network, which is the same in both the scale-free and Poisson networks.

The data plotted in Fig. 3 gives the popularity of 1.4× 105 hashtags related to the 2011 15M
protest movement in Spain, that were tracked over the 1-year period from March 2011 to March
2012 [24, 25]. In Fig. 3 we use all hashtags for which we have at least 200 days of data; each
curve in Fig. 3A shows the popularity distribution for all hashtags which have the same age (to
the nearest day). The model parameter λ and the memory-time distribution Φ(tm) cannot be
directly estimated from the data because in cases where users receive multiple copies of the same
meme (hashtag) prior to retweeting it, it is impossible to tell which of received memes “caused”
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the retweet1. Therefore, we instead use the analytical results of the model (Eqs. (1) and (S1)) to
find parameter values that fit the model to the statistical characteristics of the data, see Fig. 3.

The data does, however, provide an upper bound on the value of the innovation probability µ.
Recall that µ is defined as the probability that a tweeted meme (hashtag) is an innovation, i.e.,
that the hashtag has never before appeared in the system. Each innovation event thus increases
by one the number of distinct hashtags that appear in the dataset, whereas a non-innovative
(copying) tweet will instead increase the number of copies of a hashtag that is already present in
the dataset. We can therefore calculate an upper bound on the empirical innovation probability
from the ratio

µ̃ =
number of distinct hashtags used in the dataset

total number of hashtags tweeted by users
=

322799

5886837
= 0.055. (S3)

Note this upper bound is consistent with the parameter value of µ = 0.033 used in Fig. 3. The
reason why Eq. (S3) gives an upper bound rather than an exact value for µ is the finite size of
the dataset: the data collection started at a specific point in time and so any hashtags that are in
fact copied from tweets received prior to the start date will be erroneously counted as “distinct
hashtags” in the estimate, thus leading to an overestimate of the true innovation probability.

To sample the out-degree distribution pk of the Twitter network, we randomly selected 8.2×105

Twitter user ids and recorded the number of followers k of each user. The measured mean number
of followers is z = 703, but the distribution pk is heavy-tailed. The complementary cumulative
distribution function (CCDF) of the k values is shown in Fig. S2, along with the line D/(γ−1)k1−γ

with D = 240 and γ = 2.13 that corresponds to an out-degree distribution with tail scaling as
pk ∼ Dk−γ as k → ∞ [31]. We use these values of D, γ and z in Eq. (S1) to produce the model
results in Fig. 3A and 3B (using numerical inversion of the Laplace transformed PGF, see Sec. S4
for details).

S2 Derivation and analysis of model equations

In this section we derive the equations for the branching process approximation of the model, and
use asymptotic methods to understand how the results depend on the parameters of the model.

S2.1 Derivation of governing equations

We begin by considering a somewhat more general setting for the model than that described in the
main text, and we derive the equations for the branching process approximation in this general
case; the specialization to the case considered in the main text will then be straightforward.
In particular, we allow here for a more general network structure, and for heterogeneous user
activity rates, while in the main text we specialize to networks described by only their out-degree
distribution pk and we assume all users have equal activity rates.

1Note that the branching process approximation remains accurate in cases where multiple copies of a meme are
received at different (well-separated) times. The approximation also works well on networks that are non tree-like,
including those that contain a substantial fraction of reciprocal links, see Sec. S4 of [17].
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Figure S2: CCDF for the number of followers k of a random sample of 8.2 × 105 Twitter users.
The straight line corresponds to an out-degree distribution with tail scaling as pk ∼ Dk−γ as
k → ∞, with D = 240 and γ = 2.13 (xmin = 1.1× 104, fitted as described in [31]).

S2.1.1 Description of the generalized model

The network structure is defined by the joint probability pjk that a randomly-chosen node (user)
has in-degree j (i.e., follows j other Twitter users) and out-degree k (i.e., has k followers), but the
network is otherwise assumed to be maximally random (a configuration model directed network).
The mean degree of the network is z =

∑

j,k kpjk =
∑

j,k jpjk. For the special case of the main
text, we assume all users follow z others, so pjk can be replaced with δj,zpk, where δj,z is the
Kronecker delta and pk is the out-degree distribution.

Each user has a “stream” that records all tweets received by the user, time-stamped by their
arrival time. We assume that only a fraction λ of the tweets received are deemed “interesting” by
the user, and only the interesting tweets are considered for possible retweeting by that user. The
activity rate of a user—the average number of tweets that she sends per unit time, i.e., the rate of
the Poisson process that describes her tweeting activity—is, in the general case, assumed to depend
on her in-degree j and out-degree k (her “(j, k)-class” for short); this assumption is supported by
empirical evidence from Twitter, see Fig. 6 of [27]. The user activity rates βjk give the relative
activity levels of users in the (j, k) class; the rates are normalized so that

∑

jk βjkpjk = 1. If
there are N users in the network, this rate implies that an average of N tweets are sent in each
model time unit. For the description in the main text (except in Fig. 3D), we specialize to the
case where all user activity rates are equal: βjk = 1.

When a user decides, at time t, to send a tweet, she has two options (refer to Fig. 1 of the main
text): with probability µ, the user innovates, i.e., invents a new meme, and tweets this new meme
to all followers. The new meme appears in the user’s own stream (it is automatically interesting to
the originating user), and in the streams of all her followers (where it may be deemed interesting

11



Figure S3: Schematic for the derivation of the PGF equations, see Sec. S2.1.2. (A) The stream
of user A, showing only memes that were deemed interesting by user A; each color represents a
different meme. At time t, user A decides to retweet a meme from the past, and looks back to
time r, where she finds meme M (colored red). She sends this meme to her followers (not shown);
each follower independently deems the meme interesting with probability λ. Also shown is a later
retweet event, which also copies meme M . (B) The retweet tree for meme M , seeded at time τ .
Each retweet by user A of meme M generates a new branch on this tree; each branch can also
generate further retweets by followers of A, these subtrees are denoted by squares. (C) Schematic
depiction of Eqs. (S9) and (S17).

by each follower, independently, with probability λ). If not innovating (with probability 1−µ), the
user chooses a meme from her stream to retweet. The meme for retweeting is chosen by looking
backwards in time an amount tm determined by a draw from the memory-time distribution Φ(tm),
and finding the first interesting meme in her stream that arrived prior to the time t − tm. The
retweeted meme then appears in the streams of the user’s followers (time-stamped as time t), but
because it is a retweet, it does not appear a second time in the stream of the tweeting user. The
popularity n(a) of a meme is the total number of times it has been tweeted or retweeted by age
a, i.e., by a time a after its first appearance (when it was tweeted as an innovation).

S2.1.2 Derivation of the PGF equations

We define Gjk(τ,Ω;x) as the probability generating function (PGF) for the size of the “retweet
tree”, as observed at time Ω, that grows from the retweeting of a meme that entered, at time
τ ≤ Ω, the stream of a (j, k)-class user, see Fig. S3B. To obtain an equation for Gjk, we consider
the stream of a random (j, k)-class user (called “user A”) with a meme M that entered the

12



stream at time τ (either by innovation, or because it was received from a followed user and
deemed interesting by A), see Fig. S3A.

The likelihood that meme M is retweeted in the future depends on how quickly other tweets
enter the stream of user A. In fact, meme M can be considered to “occupy” the stream for a
time interval ℓ stretching from τ until the time τ + ℓ when the next interesting meme enters the
stream of user A. New memes enter the stream as a Poisson process at the constant rate2

rjk = jβλ+ µβjk, (S4)

so the occupation time ℓ of meme M—the time it occupies the stream of user A—is an exponen-
tially distributed random variable with PDF

Pocc(ℓ) = rjk exp (−rjkℓ) . (S5)

We note in passing that the mean occupation time

〈ℓ〉 =
∫

∞

0
ℓ Pocc(ℓ) dℓ =

1

jβλ+ µβjk
(S6)

is, for small innovation probabilities µ, inversely proportional to j, the number of users followed.
Thus, a user who follows many others experiences tweets entering his stream at a higher rate than
a lower-j user (compare the streams of users B and C in the schematic Fig. 1). Consequently, the
high-j user is less likely to see (and so to retweet) a given meme than a low-j user. This aspect
of the model clearly reflects empirical data, see Fig. 3 of [32] for example.

To determine the size of trees originating from meme M , we consider that trees observed at
a time Ω ≥ τ must be created by the retweeting by user A, at some time(s) between τ and Ω,
via looking back in her stream to a time r, where r lies between τ and min(τ + ℓ,Ω) (i.e., r lies
within the time interval where meme M occupies the stream). Let’s consider a time interval of
(small) length dr, centered at time r, and calculate the size of trees that are seeded by a retweet
based on a lookback into this interval, from a time t, with t > r, see Fig. S3. In each dt interval
centered at time t, a tree will be seeded with probability3

Pseed = (1− µ)βjkΦ(t− r) dr dt, (S7)

and will grow to a tree with size distribution (at observation time Ω) generated by4

Rk(t,Ω;x) = x [1− λ+ λG(t,Ω;x)]k , (S8)

2User A follows j users, each of which is assumed to tweet at the average rate β =
∑

jk
k
z
βjkpjk. Each meme

sent by these j users is deemed interesting by A with probability λ, so the rate at which interesting memes enter
the stream of user A is jβλ. Moreover, user A innovates at a rate µβjk, which gives the second term of Eq. (S4).
If either an incoming tweet or an innovation event occurs, a new meme is inserted into the stream of user A, and
the occupation time of meme M is ended.

3The βjk factor is the probability that that user acts; the 1 − µ factor is for the user copying (retweeting)
rather than innovating, and Φ(t− r) dr dt is the probability that the copying is from the specified dr-interval to the
dt-interval.

4There are k followers of user A, each of whom may deem the tweet “uninteresting” with probability 1 − λ, or
consider it “interesting”—and accept it into their stream—with probability λ. The factor of x counts the increase
in popularity due to the tweet event.
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where

G(t,Ω;x) =
∑

j,k

j

z
pjkGjk(t,Ω;x) (S9)

is the PGF for the sizes of trees originating from the successful insertion at time t of a meme
(that is deemed interesting) into the stream of a random follower.

To calculate the total size of the tree seeded by copying from the dr-interval, we must add the
sizes of trees that are copied into all times t with t > r. Since each copying event is independent,
the total tree size is generated by

J(r;x) =
Ω
∏

t=r

[1− Pseed + PseedRk(t,Ω;x)] . (S10)

Taking logarithms of both sides of this equation and expanding to first order in dt gives

log J =

Ω
∑

t=r

log [1− (1− µ)βjkΦ(t− r) dr dt(1−Rk(t,Ω;x))]

≈ −(1− µ)βjk

Ω
∑

t=r

Φ(t− r) dr dt(1−Rk(t,Ω;x))

→ −(1− µ)βjk dr

∫ Ω

r
Φ(t− r)(1−Rk(t,Ω;x)) dt as dt → 0, (S11)

so J(r;x) can be written as

J(r;x) = exp

[

−(1− µ)βjk dr

∫ Ω

r
Φ(t− r)(1−Rk(t,Ω;x)) dt

]

. (S12)

Recall that J(r;x) is the PGF for trees seeded by copying from time r. To obtain the total size of
all children trees of meme M , we must consider trees seeded at all possible times r from τ to the
time min(τ + ℓ,Ω) that marks the end of the occupation of user A’s stream by meme M . Each dr
time interval again independently generates trees with sizes distributed according to Eq. (S12),
so the PGF for the total size is found by multiplying together copies of the J(r;x) function for
each dr time interval, thus:

Psize(ℓ) =

min(τ+ℓ,Ω)
∏

r=τ

J(r;x)

= exp



−(1− µ)βjk

min(τ+ℓ,Ω)
∑

r=τ

dr

∫ Ω

r
Φ(t− r)(1−Rk(t,Ω;x)) dt





→ exp

[

−(1− µ)βjk

∫ min(τ+ℓ,Ω)

τ
dr

∫ Ω

r
dτ Φ(t− r)(1−Rk(t,Ω;x))

]

as dr → 0.

(S13)
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Combining probabilities, by integrating over all possible occupation times ℓ, gives

Gjk(τ,Ω;x) =

∫

∞

0
Pocc(ℓ)Psize(ℓ) dℓ (S14)

and combining Eqs. (S5), (S9) and (S13) yields an integral equation for G:

G(τ,Ω;x) =
∑

jk

j

z
pjk

∫

∞

0
dℓ
(

jβλ+ µβjk
)

exp
[

−
(

jβλ+ µβjk
)

ℓ
]

×

× exp

[

−(1− µ)βjk

∫ min(τ+ℓ,Ω)

0
dr

∫ Ω

r
dtΦ(t− r)(1− x [1− λ+ λG(t,Ω;x)]k)

]

.

(S15)

Next, we note that G(τ,Ω;x) depends only on the difference Ω − τ that defines the age of the
meme M at the observation time Ω. We therefore write G(τ,Ω;x) = G(Ω − τ ;x), which enables
the change of variables a = Ω− τ , r̃ = r − τ , τ̃ = Ω− τ to yield

G(a;x) =
∑

jk

j

z
pjk

∫

∞

0
dℓ
(

jβλ+ µβjk
)

exp
[

−
(

jβλ+ µβjk
)

ℓ
]

×

× exp

[

−(1− µ)βjk

∫ min(ℓ,a)

0
dr̃

∫ a−r̃

0
dτ̃ Φ(a− r̃ − τ̃)(1− x [1− λ+ λG(τ̃ ;x)]k)

]

.

(S16)

The popularity of a meme, as observed at time Ω, that is seeded by a single tweet (e.g., by
an innovation) at time τ may be calculated in a similar way to the derivation of Eq. (S16); the
generating function is of the form

H(τ,Ω;x) =
∑

j,k

βjkpjkRk(τ,Ω;x)Gjk(τ,Ω;x), (S17)

where βjkpjk represents the probability that the seed tweet originates from a (j, k)-class user, Rk

is the PGF for the trees generated from the followers of the user, and Gjk is the PGF for the size
of the retweet-tree of the meme (see Fig. S3C). Introducing the age a of the meme as before and
defining qn(a) as the probability that an age-a meme has popularity n, we have the PGF

H(a;x) =

∞
∑

n=1

qn(a)x
n, (S18)

which is given by

H(a;x) =
∑

jk

βjkpjkx [1− λ+ λG(a;x)]k
∫

∞

0
dℓ
(

jβλ+ µβjk
)

exp
[

−
(

jβλ+ µβjk
)

ℓ
]

×

× exp

[

−(1− µ)βjk

∫ min(ℓ,a)

0
dr̃

∫ a−r̃

0
dτ̃ Φ(a− r̃ − τ̃)(1− x [1− λ+ λG(τ̃ ;x)]k)

]

.

(S19)
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S2.2 Criticality of the branching process

A branching process may be classified by the expected (mean) number ξ of “children” of each
“parent”: if this number (called the “branching number”) is less than 1, the process is subcritical
and if ξ is greater than 1 the process is supercritical. Critical branching processes, with an average
of exactly one child per parent, give rise to power-law distributions of tree-sizes and of durations
of growth cascades [20,22]. Here we demonstrate that the general process derived in Sec. S1 is a
critical branching process in the limit of vanishing innovation µ → 0.

We identify the “parent” in the process as a meme that was accepted into the stream (i.e.,
deemed interesting) of a (j, k)-class user at time τ : see, for example, meme M in the stream of
user A, as shown in Fig. S3. The “children” of this meme are the retweets of it that are accepted
into the streams of the followers of A at any time t > τ . The PGF for the number of children of
meme M is derived by following the same steps as in Sec. S2.1.2, but replacing Rk by (1−λ+λx)k:
each power of x then counts a successful insertion of meme M into the stream of one of the k
followers of A. The resulting PGF, for a meme of age a, is (cf. Eq. (S15))

Kjk(a;x) =

∫

∞

0
dℓ Pocc(ℓ)×

× exp

[

−(1− µ)βjk

∫ min(ℓ,a)

0
dr̃

∫ a−r̃

0
dτ̃ Φ(a− r̃ − τ̃)(1− [1− λ+ λx]k)

]

=

∫

∞

0
dℓ Pocc(ℓ) exp

[

−(1− µ)βjk(1 − [1− λ+ λx]k)

∫ min(ℓ,a)

0
C(a− r̃)dr̃

]

, (S20)

where C(t) =
∫ t
0 Φ(tm)dtm is the cumulative distribution function for memory times. The expected

(mean) number of children for a meme in the (j, k)-class stream is determined from the PGF in
the usual way, by differentiating with respect to x and evaluating at x = 1, thus:

ξjk =
∂Kjk

∂x

∣

∣

∣

∣

x=1

. (S21)

In the limit of large ages, a → ∞, we use the fact that C(∞) = 1 to obtain

ξjk ∼ (1− µ)βjkλk

∫

∞

0
ℓ Pocc(ℓ) dℓ as a → ∞

=
(1− µ)βjkλk

jβλ+ µβjk
. (S22)

Averaging over all (j, k) classes, the effective branching number ξ of the process is the expected
number of children of a meme that is accepted into the stream of a random follower:

ξ =
∑

j,k

j

z
pjkξjk

→
∑

j,k

j

z
pjk

βjkλk

jβλ
= 1 as µ → 0 (S23)
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(recall that β ≡∑j,k
k
zβjkpjk).

Thus, we have shown that the branching process underlying the model is critical when µ = 0.
The occupation time of a meme in a users’ stream is due to the competition between neutral-
fitness memes for the limited resource of user attention; this competition ensures that the mean
number of successful retweets (children) generated during the finite occupation time of the meme
is precisely one, and so induces the power-law distributions of cascade sizes that are characteristic
of critical branching processes [20,22].

S2.3 An explicit expression for q1(a)

The value q1(a) is the probability that a meme, once created via an innovation event, is not
retweeted by the time it reaches age a. This probability may be calculated explicitly using
Eq. (S19):

q1(a) = lim
x→0

H(a;x)

x
,

=
∑

j,k

βjkpjk [1− λ+ λG(a; 0)]k
∫

∞

0
dℓ Pocc(ℓ) exp

[

−(1− µ)βjk

∫ min(ℓ,a)

0
C(a− r̃)dr̃

]

,

(S24)

with G(a; 0) given, from Eq. (S16), by

G(a; 0) =
∑

j,k

j

z
pjk

∫

∞

0
dℓ Pocc(ℓ) exp

[

−(1− µ)βjk

∫ min(ℓ,a)

0
C(a− r̃)dr̃

]

, (S25)

and C(a) is the cumulative distribution function for memory times. If we consider the large-age
limit, a → ∞, than we can approximate the integral of the cumulative distribution function as

∫ min(ℓ,a)

0
C(a− r̃)dr̃ ≈ ℓC(a) (S26)

and the integral over ℓ can be calculated to give the large-a approximation

q1(a) ∼
∑

jk

βjkpjk
jβλ+ µβjk

jβλ+ µβjk + (1− µ)βjkC(a)
[1− λ+ λG(a; 0)]k , (S27)

with

G(a; 0) ∼
∑

jk

j

z
pjk

jβλ+ µβjk

jβλ+ µβjk + (1− µ)βjkC(a)
. (S28)

In the simplified case pjk = δj,zpk and βjk ≡ 1, Eqs. (S27) and (S28) reduce to Eq. (S2), as used
in Figs. 2B and 3D.

The a = ∞ limit of q1(a) gives the fraction of memes that are never retweeted, and so have
popularity n = 1 forever5. The value of q1(∞) is obtained from Eqs. (S27) and (S28) by setting

5Recall that the popularity n of a meme is set to 1 when it is first tweeted (i.e., at birth); subsequent retweets
(if any) increase the value of n above 1.
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C(a) to its a → ∞ limit of 1. The approach of q1(a) towards the value q1(∞) depends, through the
CDF C(a), on the tail of the memory-time distribution Φ. If the distribution Φ is heavy-tailed,
there is a non-negligible probability that a meme may be retweeted even if a very long time has
elapsed since its birth.

S2.4 Distribution of response times

It is worth noting that all agents in the model have constant activity rates, so that the actions
of each individual agent constitute a Poisson process. A Poisson process is characterized by an
exponential distribution of inter-event times, where each event corresponds to an innovation or a
retweeting action. This assumption is contrary to studies such as [19,33–35], where heavy-tailed
distributions of inter-event times are examined. Despite this, in our model the memory-time
distribution Φ(tm) directly influences the waiting times (or “response times”) between the receipt
of a specific meme, and the retweeting of it. Indeed, if Φ(tm) is a heavy-tailed distribution, then
a meme received by a given user at time τ will be retweeted by that user at a time t (with t ≫ τ)
with probability proportional to6 Φ(t − τ). Therefore, a heavy-tailed memory distribution gives
rise to a heavy-tailed waiting-time distribution for individual memes, despite the fact that the
activity of each individual user is described by a Poisson process (cf. the heavy-tailed waiting-time
distributions found in empirical studies of email correspondence [36, 37]). It is clearly important
to distinguish between the distributions of inter-event times (for actions of users) and of the
waiting times experienced by individual memes: the model assumes each user has exponentially-
distributed inter-event times, but it can nevertheless produce heavy-tailed distributions of waiting
times for memes to be retweeted.

In particular, if the memory-time distribution Φ(tm) is a Gamma(kG, θ) distribution [35] as
used in Fig. 3 of the main text, i.e., Φ(tm) = 1

Γ(kG)θkG
tkG−1
m exp (−tm/θ), then Φ(tm) is approxi-

mately power-law for memory times tm with tm ≪ θ, with an exponential cutoff at larger times.
The corresponding waiting-time distribution shows a similar scaling in this range; for the param-
eters used in Fig. 3 (kG = 0.25, θ = 80 days) the waiting-time distribution scales as t−0.75

m for
tm ≪ θ, similar to the slow decay noted in empirical response times for Twitter users in Fig. 5
of [32].

S2.5 Mean popularity

The age dependence of the mean popularity (i.e., the expected number of tweets/retweets for a
meme of age a) is given by

m(a) =

∞
∑

n=1

n qn(a) =
∂H(a;x)

∂x

∣

∣

∣

∣

x=1

. (S29)

6The exact relation depends on how long the meme occupies the stream of the user.
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Differentiating (S19) and setting x = 1 yields an integral equation for m(a):

m(a) =
∑

jk

βjkpjk

{

1 + λkmG(a) + (1− µ)βjk

∫

∞

0
dℓ
(

jβλ+ µβjk
)

exp
[

−
(

jβλ+ µβjk
)

ℓ
]

×

×
∫ min(ℓ,a)

0
dr̃

∫ a−r̃

0
dτ̃ Φ(a− r̃ − τ̃) [1 + λkmG(τ̃)]

}

, (S30)

where mG(a), defined by mG(a) =
∂G(a;x)

∂x

∣

∣

∣

x=1
, is the solution of the integral equation found by

differentiating Eq. (S16):

mG(a) =
∑

jk

j

z
pjk

∫

∞

0
dℓ
(

jβλ+ µβjk
)

exp
[

−
(

jβλ+ µβjk
)

ℓ
]

×

× (1− µ)βjk

∫ min(ℓ,a)

0
dr̃

∫ a−r̃

0
dτ̃ Φ(a− r̃ − τ̃) [1 + λkmG(τ̃ )] . (S31)

The order of the time integrals may be swapped using the identity
∫

∞

0
dℓ

∫ min(ℓ,a)

0
dr̃ =

∫ a

0
dr̃

∫

∞

r̃
dℓ, (S32)

and the resulting ℓ integral can be performed explicitly:
∫

∞

r̃
(jβλ+ µβjk)e

−(jβλ+µβjk)ℓdℓ = e−(jβλ+µβjk)r̃. (S33)

As a result, the expressions (S30) and (S31) can be written as double convolution integrals. Taking
Laplace transforms, Eq. (S30) then becomes

m̂(s) =
1

s
+ zβλm̂G(s) + (1− µ)Φ̂(s)

∑

j,k

β2
jkpjk

1
s + λkm̂G(s)

jβλ+ µβjk + s
, (S34)

where hats denote Laplace transforms, e.g.,

Φ̂(s) ≡
∫

∞

0
e−stΦ(t)dt, (S35)

and with m̂G(s) given explicitly from the Laplace transform of Eq. (S31):

m̂G(s) =
(1− µ)Φ̂(s)

∑

j,k
j
zpjk

βjk

jβλ+µβjk+s

s
[

1− (1− µ)λΦ̂(s)
∑

j,k
j
zpjk

kβjk

jβλ+µβjk+s

] . (S36)

If we specialize now to the case considered in the main text, where βjk ≡ 1 for all (j, k) classes,
and pjk = δj,zpk, we obtain the simpler expression

m̂G(s) =
(1− µ)Φ̂(s) 1

zλ+µ+s

s
[

1− (1− µ)λΦ̂(s) z
zλ+µ+s

] . (S37)

Substituting for m̂G into the simplified version of Eq. (S34) yields Eq. (1) of the main text.
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S2.5.1 Large-age asymptotics of mean popularity

To consider the large-age asymptotics of m(a), we replace Φ̂(s) by the first two terms of its small-s
expansion:

Φ̂(s) ≈ 1− sT as s → 0, (S38)

where T =
∫

∞

0 tmΦ(tm)dtm is the mean memory time. We consider ages such that a ≫ T
and using approximation (S38) in Eq. (S37) yields a rational function of s with inverse Laplace
transform

m(a) ∼ 1 +
1− µ

µ

(

1− 1 + T (λz + 1)

1 + Tλz(1− µ)
e
−

µ(λz+1)
1+Tλz(1−µ)

a
)

as a → ∞. (S39)

Setting a = ∞, we immediately obtain the steady-state value of the mean popularity, m(∞) =
1/µ.

Although Eq. (S39) is a large-a asymptotic result, we may expand the exponential term about
a = 0 provided that the argument of the exponential remains small. This is valid for ages a that
obey the constraint

a ≪ 1 + Tλz(1− µ)

µ(λz + 1)
, (S40)

which is consistent with the earlier assumption a ≫ T if the innovation probability µ is sufficiently
small. Indeed, taking the µ → 0 limit of (S39), the function m(a) grows linearly with a for ages
in this range:

m(a) ∼ λz + 1

Tλz + 1
a. (S41)

S2.6 Infinite-age limit of popularity distribution

In the infinite-age (steady-state) limit a → ∞, we assume G(a;x) → G∞(x), independent of a,
and use the fact that

∫

∞

0 Φ(t) dt = 1 in Eq. (S16) to obtain

G∞(x) =
∑

jk

j

z
pjk

∫

∞

0
dℓ
(

jβλ+ µβjk
)

exp
[

−
(

jβλ+ µβjk
)

ℓ
]

×

× exp
[

−(1− µ)βjkℓ(1− x [1− λ+ λG∞(x)]k)
]

. (S42)

Calculating the ℓ integral then gives the equation satisfied by G∞(x):

G∞(x) =
∑

jk

j

z
pjk

jβλ+ µβjk

jβλ+ βjk − (1− µ)βjkx [1− λ+ λG∞(x)]k
. (S43)

Similarly, the infinite-age limit for H is given in terms of G∞ by

H∞(x) =
∑

jk

βjkpjk

(

jβλ+ µβjk
)

x [1− λ+ λG∞(x)]k

jβλ+ βjk − (1− µ)βjkx [1− λ+ λG∞(x)]k
. (S44)

Note that these steady-state equations are independent of the memory distribution function Φ.
Accordingly, the asymptotic analysis approach used in [17] to obtain the large-n behavior of the
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popularity distribution qn(∞) may also be applied here: this is based on writing x = 1 − w and
G∞ = 1−φ(w) and analyzing the small-w, small-φ asymptotics of Eqs. (S43) and (S44). We refer
to [17] for details, and here summarize the main results for the case βjk ≡ 1, pjk = δj,zpk that is
considered in the main text.

• Case 1: pk has finite second moment
The large-n scaling of the popularity distribution is given by a power-law with exponential
cutoff:

qn(∞) ∼ An−
3
2 e−

n
κ as n → ∞, (S45)

where the prefactor A is7

A =
z(λz + 1)

λz + µ

[

2π

(

〈

k2
〉

(2 + λz − µ)

λz + µ
− z

)]

−
1
2

(S46)

and the cutoff κ is

κ =
2λ2(1− µ)2

µ2(λz + 1)2

[

〈

k2
〉

(2 + λz − µ)

λz + µ
− z

]

. (S47)

Note that κ is proportional to 1/µ2 for small µ, so in the limit of vanishing innovation
probability the exponential cutoff tends to infinity and the power-law part of the popularity
distribution extends to all n.

• Case 2: pk ∼ Dk−γ as k → ∞, with γ between 2 and 3
Immediately taking the µ → 0 limit, we find in this case that the popularity distribution
has a power-law form with exponent γ/(γ − 1) lying between 3/2 and 2:

qn(∞) ∼ B n−
γ

γ−1 as n → ∞ (S48)

with prefactor B given by

B = −(λz + 1)
(DΓ(1 − γ))−

1
γ−1

λΓ
(

1
1−γ

)

[

(λz)2
∞
∑

n=1

nγ−1

(λz + 1)n+1

]

−
1

γ−1

. (S49)

S2.7 Large-a, large-n asymptotics of popularity distribution

Next we consider how the popularity distribution qn(a) behaves for large, but finite, ages. We are
particularly interested in the case where the out-degree distribution of the social network is scale-
free, as we seek to understand the “parallel” CCDFs observed at various ages in the empirical
data of Fig. 3A of the main text.

7The values of A, κ and B reported here are not identical to those reported in [17]; this is because of the
approximations made in the analysis of [17]. However, the differences are of order 1/(λz), and so are negligible in
the case λz ≫ 1 that is considered in [17].
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Restricting ourselves to the case βjk ≡ 1, pjk = δj,zpk and taking the µ → 0 limit, Eq. (S16)
becomes

G(a;x) =
∑

k

pk

∫

∞

0
dℓ λze−λzℓ×

× exp

[

−
∫ min(ℓ,a)

0
dr̃

∫ a−r̃

0
dτ̃ Φ(a− r̃ − τ̃)(1− x [1− λ+ λG(τ̃ ;x)]k)

]

. (S50)

Writing x = 1 − w and G(a;x) = 1 − φ(a;w), we note that the argument of the exponential
function vanishes when w = 0 and φ = 0, and so we consider the small-w, small-φ asymptotic
behavior by expanding the exponential term to first order in its argument:

φ(a;w) ≈
∫

∞

0
dℓ λze−λzℓ

∫ min(ℓ,a)

0
dr̃

∫ a−r̃

0
dτ̃ Φ(a− r̃ − τ̃)(1 − (1− w)

∑

k

pk [1− λφ(τ̃ ;w)]k).

(S51)
We note that retaining only the first-order term in the expansion of the exponential is an ap-
proximation. We will estimate the accuracy of this “one-term expansion” by comparing the
infinite-age limit determined under the approximation with the corresponding exact values as
given in Sec. S2.6.

For the case of a scale-free out-degree distribution with pk ∼ Dk−γ as k → ∞, the asymptotic
form of the summation term in Eq. (S51) is given by [17]

1− (1− w)
∑

k

pk [1− λφ]k ∼ λzφ− Cφγ−1 + w + o(w,φ) as w → 0, φ → 0, (S52)

with the constant C given by C = λγ−1DΓ(1 − γ). Applying the integral-swapping trick of
Eq. (S32) allows the right hand side of Eq. (S51) to be expressed as a double convolution integral.
Laplace transforming then yields

φ̂(s;w) =
1

λz + s
Φ̂(s)L

[

λzφ− Cφγ−1 + w
]

, (S53)

where L denotes the Laplace transform operation applied to the term in square brackets. In the
a → ∞ limit, this equation is satisfied by the steady-state solution

φ(∞;w) = C
−

1
γ−1w

1
γ−1 , (S54)

as can be verified using the final value theorem for Laplace transforms. We note that the corre-
sponding expression for φ(∞;w) as calculated from the steady state Eq. (S43) has a additional
multiplicative factor of F (λz, γ) that is absent in Eq. (S54), where the function F (ζ, γ) is defined
by

F (ζ, γ) =

[

ζ2
∞
∑

n=1

nγ−1

(ζ + 1)n+1

]

−
1

γ−1

, (S55)

see Fig. S4. If λz ≫ 1, then F (λz, γ) ≈ 1 and the one-term expansion gives results that are very
close to the exact values (at least in the infinite-age limit a → ∞). Moreover, even if λz is not
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Figure S4: The function F (ζ, γ), as defined in Eq. (S55), for values of γ close to 2. The highlighted
points are the parameter values that are relevant to Fig. 2 (λz = 11, γ = 2.5) and to Fig. 3
(λz = 0.32, γ = 2.13). In all cases of interest the values of F are close to 1, and so we conclude
that the one-term expansion used in Eq. (S51) gives a good estimate of the exact steady-state
solution.

large (e.g., λz = 0.32 for the model fit in Fig. 3), the values of F (λz, γ) can still be close to unity
if γ is sufficiently close to 2.

To consider small deviations from the steady state, we define g(a;w) by

φ(a;w) = φ(∞;w) (1− g(a;w)) (S56)

with g(a;w) → 0 as a → ∞. Assuming that g is sufficiently small to allow the use of the linearizing
approximation

(1− g)γ−1 ≈ 1− (γ − 1)g, (S57)

Eq. (S53) can be solved for the Laplace transform of g:

ĝ(s;w) =
1

s

s+ λz − λzΦ̂(s)

s+ λz − λzΦ̂(s) + (γ − 1)C
1

γ−1w
γ−2
γ−1 Φ̂(s)

. (S58)

The Laplace transform of φ then follows from Eq. (S56) and a similar asymptotic analysis of
Eq. (S19) yields

Ĥ(s; 1 −w) =
1

s
− λz(s+ λz + Φ̂(s))

s+ λz
φ̂(s;w) (S59)

Substituting from Eqs. (S56) and (S58) results in Eq. (S1). Numerical inversion of the Laplace
transform and of the PGF, as described in Sec. S4, give the results shown in Figs. 2 and 3 of the
main text.

A similar analysis can be performed in the case where the out-degree distribution pk has finite
second moment. We again utilize a one-term expansion similar to Eq. (S51), but we can also
retain a non-vanishing innovation probability µ in this case. The one-term expansion can be
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shown to be accurate when λz ≫ 1; this condition is obeyed in all relevant cases we examine.
The resulting large-a asymptotics for the generating function H(a;x) are found by inverting the
following Laplace transform:

Ĥ(s; 1− w) =
1

s
− φ(∞;w)×

× (1− µ)λz(s + λz + µ+ Φ̂(s))

s(s+ λz + µ)

[

2(1 − µ) w
φ(∞;w)Φ̂(s)− µ(λz + 1)Φ̂(s)

s+ λz + µ− (λz(1 + µ) + 2µ) Φ̂(s) + 2(1 − µ) w
φ(∞;w)Φ̂(s)

]

,

(S60)

with φ(∞;w) given by

φ(∞;w) =
−µ(λz + 1) +

√

µ2(λz + 1)2 + 2λ2(1− µ)2 (〈k2〉 − z)w

λ2(1− µ) (〈k2〉 − z)
. (S61)

Numerical inversion of the Laplace transform, as in Sec. S4, gives the asymptotic results shown
in the inset of Fig. 2A.

S2.7.1 Analysis of the data collapse in Fig. 3B

The large-n asymptotics of the popularity distribution are found from the small-w expansion
(with w = 1 − x) of h(a;x) = 1 −H(a;x), and in the a → ∞ limit for the scale-free out-degree
distribution we obtain from Eq. (S59) (using the final value theorem for Laplace transforms)

h(∞; 1 − w) ∼ (λz + 1)C
−

1
γ−1w

1
γ−1 as w → 0. (S62)

Understanding the large-a approach to this steady state (i.e., the case where a is large but finite)
is a difficult problem in asymptotic analysis, involving the double limits n → ∞ and a → ∞.
However, some insight can be obtained by factoring the function h into a product of its infinite-
age limit h(∞;x) and another function h1, with h1 limiting to 1 as a → ∞:

h(a;x) = h(∞;x)h1(a;x). (S63)

Taking Laplace transforms gives

ĥ(s;x) = h(∞;x)ĥ1(s;x), (S64)

where

ĥ1(s; 1− w) =
λz(s + λz + Φ̂(s))

s(λz + 1)(s + λz)

(γ − 1)λD
1

γ−1 [Γ(1− γ)]
1

γ−1 w
γ−2
γ−1 Φ̂(s)

s+ λz − λzΦ̂(s) + (γ − 1)λD
1

γ−1 [Γ(1− γ)]
1

γ−1 w
γ−2
γ−1 Φ̂(s)

.

(S65)

In particular, note that ĥ1(s; 1 − w) depends on w only through the factor w
γ−2
γ−1 . In the case

where γ is very close to 2, the exponent (γ − 2)/(γ − 1) of the w dependence is close to zero,
and the dependence of h1 on w is therefore very weak. It follows that the rate of approach of the
corresponding distribution qn(a) to the steady state qn(∞) does not show a strong dependence

24



on n, and the CCDFs for various ages appear almost parallel in the log-log plot of Fig. 3A of the
main text (note γ = 2.13 in the Twitter network used in Fig. 3 of the main text, see Sec. S1).

As we saw in Sec. S2.5 for the large-age asymptotics of the mean popularity, the long-time
behavior of the popularity distribution may be obtained by inserting the small-s approximation
Φ̂(s) ≈ 1− sT in Eq. (S1) and examining the linear (early-age) growth of the inverse transforms.
The resulting popularity distributions qn(a) show (for large n) a regime of linear-in-age growth,
and in the case where γ ≈ 2, the rate of this growth depends only weakly on n. Since the mean
popularity m(a) is also growing linearly during this age period (see Eq. (S41)), the division of the
CCDFs at various ages by the corresponding mean m(a) leads to the collapse of the data onto
the single curve that is seen in Fig. 3B.

S3 Extension to heterogeneous activity rates

To focus on understanding the combined effects of memory and out-degree distribution, most
of our results thus far are specialized to the case of uniform user activity rates, βjk ≡ 1. It is
interesting, however, to examine the impact of heterogeneous activity rates upon the results we
have obtained. To this end, we extend here to the case where the activity rate of a user depends
on its out-degree k while retaining the assumption pjk = δj,zpk, so that βjk = βk (normalized so
that

∑

k βkpk = 1 and with β =
∑

k
k
zβkpk).

The mean popularity is given in the general case by Eq. (S34). Repeating the asymptotic
analysis of Eq. (S38) though to Eq. (S41) for the µ → 0 limit, we again find linear growth of m(a)
with age a, with a slope that generalizes that found in Eq. (S41):

m(a) ∼
λzβ + β2

β

Tλzβ + 1
a as a → ∞, (S66)

where we have introduced the notation β2 ≡∑k
k
z (βk)

2 pk.
If we additionally assume that the user activity rates saturate to a constant level β∞ at very

large k, so βk → β∞ as k → ∞, then we can repeat the asymptotic approximations of Sec. S2.7
to determine a generalized version of Eq. (S1):

Ĥ(s;x) ∼ 1

s

− 1

s

λzβ
(

s+ λzβ + β2

β
Φ̂(s)

)

(γ − 1)(1 − x)Φ̂(s)

(s+ λzβ)

(

s+ λzβ − λzβΦ̂(s) + β
1

γ−1
∞ (γ − 1)λD

1
γ−1 [Γ(1− γ)]

1
γ−1 (1− x)

γ−2
γ−1 Φ̂(s)

) .

(S67)

To demonstrate the effect of heterogeneous activity rates, we consider a model for βk inspired
by the data analysis shown in Fig. 6(a) of [27]. There, the average activity rate (as measured by
the number of tweets by a user in a fixed time period) is found to grow approximately linearly
with the number of followers k of that user, for k from 0 to about 100. Then, for k values from
about 100 up to the maximum shown in the plot (k = 103), the activity rate grows as a more
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Figure S5: As Fig. 3 of the main text, but including heterogeneous activity rates βk given by
Eq. (S68). Model parameters are: λ = 5 × 10−4, µ = 0.033, kG = 0.25, θ = 500, with one model
time unit corresponding to 0.18 days.
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slowly increasing linear function of k. We model these characteristics (which are also seen in other
studies, e.g., [38]), using a piecewise-linear and continuous function of k, assuming a saturation
of activity at very high k, as follows:

βk ∝







0.35k if k < 100,
35 + 0.044(k − 100) if 100 ≤ k < 104.

470.6 if k ≥ 104,
(S68)

where the values are chosen to closely match the linear growth rates in Fig. 6(a) of [27]. Using this
heterogeneous activity rate (with the constant of proportionality set by the condition

∑

k βkpk =
1), Fig. S5 shows results that correspond closely to the homogeneous-activity example of Fig. 3
of the main text. A comparison of panels D from both figures clearly shows that including
heterogeneous activity rates allows a better fitting of the model to data for the fraction q1(a) of
non-retweeted memes. However, the other results of the model (panels A, B and C of Fig. S5
compared to same panels in Fig. 3) are relatively unaffected by the activity rate, so that the good
matches between model and data seen in Fig. 3 are not compromised by including heterogeneity
in activity rates.

S4 Numerical inversion of Laplace transforms and PGFs

Many of our results for the popularity distribution qn(a) are expressed in terms of the correspond-
ing PGF H(a;x). As in [17], we use the Fast Fourier Transform method of [39–41] to numerically
invert the PGF at a fixed age a to produce, for example, the model distributions in Figs. 2 and 3;
see Sec. S2 of [17] for further details and links to Octave/Matlab code for implementing the PGF
inversion.

The results of the model for the age-dependence of several quantities are expressed in terms
of Laplace transforms. To numerically invert the Laplace transforms we use the efficient Talbot
algorithm [42], in its simplified version described in Sec. 6 of [43]. The Talbot algorithm is based
on a numerical evaluation of the Bromwich (Laplace inversion) integral, using a cleverly-chosen
deformation of the contour in the complex-s plane. The Laplace inversion of Ĥ(s;x) to obtain
H(a;x) at a desired age a, for example, can be quickly computed using the 2ML − 1 weights γk
and nodes δk defined by [44]

δ0 =
2ML

5
, δk =

2kπ

5
(cot(kπ/ML) + i) for −ML + 1 ≤ k ≤ ML − 1,

γ0 =
1

2
eδ0 ,

γk = [1 + i(kπ/ML)(1 + [cot(kπ/ML)
2])− i cot(kπ/ML)]e

δk for −ML + 1 ≤ k ≤ ML − 1,
(S69)

(where i =
√
−1) by calculating the sum

H(a;x) =
1

5a



γ0Ĥ

(

δ0
a
;x

)

+

ML−1
∑

k=−ML+1

γkĤ

(

δk
a
;x

)



 . (S70)
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In practice, the precision of the Talbot algorithm is very high, and only relatively small values of
ML are required to obtain accurate results; we used ML = 25 in the examples shown.
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[44] J. Abate and P. P. Valkó. Multi-precision Laplace inversion. Int. J. Numer. Meth. Engng.,
60:979–993, 2004.

30


	S1 Further information on Figures 2 and 3
	S2 Derivation and analysis of model equations
	S2.1 Derivation of governing equations
	S2.1.1 Description of the generalized model
	S2.1.2 Derivation of the PGF equations

	S2.2 Criticality of the branching process
	S2.3 An explicit expression for q1(a)
	S2.4 Distribution of response times
	S2.5 Mean popularity
	S2.5.1 Large-age asymptotics of mean popularity

	S2.6 Infinite-age limit of popularity distribution
	S2.7 Large-a, large-n asymptotics of popularity distribution
	S2.7.1 Analysis of the data collapse in Fig. 3B


	S3 Extension to heterogeneous activity rates
	S4 Numerical inversion of Laplace transforms and PGFs

