
Multilayer networks: metrics and spectral
properties

Emanuele Cozzo, Guilherme Ferraz de Arruda, Francisco A. Rodrigues and Yamir
Moreno

Abstract Multilayer networks represent systems in which there are several topolog-
ical levels each one representing one kind of interaction or interdependency between
the systems’ elements. These networks have attracted a lot of attention recently be-
cause their study allows considering different dynamical modes concurrently. Here,
we revise the main concepts and tools developed up to date. Specifically, we focus
on several metrics for multilayer network characterization as well as on the spectral
properties of the system, which ultimately enable for the dynamical characteriza-
tion of several critical phenomena. The theoretical framework is also applied for
description of real-world multilayer systems.
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Departamento de Matemática Aplicada e Estatı́stica, Instituto de Ciências Matemáticas e de
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1 Introduction

Complex network science relies on the hypothesis that the behavior of many com-
plex systems can be explained by studying structural and functional relations among
its components by means of a graph representation. The emergence of intercon-
nected network models responds to the fact that complex systems include multi-
ple subsystems organized as layers of connectivity. In this way, interconnected net-
works have emerged during the last few years as a general framework to deal with
hyperconnected systems [1]. With the term interconnected networks one may re-
fer to many types of connections among different networked systems: dependency
relations among systems of different objects, cooperative or competitive relations
among systems of different agents, or different channels of interactions among the
same set of actors, to name a few. What these examples have in common is that
different interaction modes among a differentiated or indistinguishable set of com-
ponents/actors might exist.

Although this framework has been used for many years, only in the last several
years it has attracted more attention and a number of formalisms have been proposed
to deal with multilayer networks [2, 3]. Here we elaborate on a formalism developed
recently and discussed at length in the review paper by Kivela et al. [4]. To this
end, we report on a more refined formalism that is aimed at optimizing the study
of a particular case of interconnected networks that is of much interest: Multiplex
Networks.

In Multiplex Networks a set of agents might interact in different ways, i.e.,
through different means. Since a subset of agents is present at the same time in
different networks of interactions (layers), these layers become interconnected. Ex-
amples of such type of systems can be founded in different fields, from biological
systems, where the web of molecular interactions in a cell make use of many differ-
ent biochemical channels and pathways, to technological systems, where person-to-
person communication (usually machine-mediated) happens across many different
modes. We take the last example as a paradigmatic one, which gave rise to the now
popular term ”hyperconnectivity” [5].

Suppose we are interested in analyzing a set of social agents (individuals, in-
stitutions, firms, etc. ), who interact among them through a number of online social
networks (OSNs) like Twitter, Facebook, etc. Some of these agents might be present
in several OSNs and exchange information through them, using the information ob-
tained in one network to communicate in another one, or integrating information
across all of those in which they are active. We represent such a system as a set of
graphs, one for each OSN, in which each actor who participates in it is represented
by a node. These networks are the layers of the graph. In this scheme, the same
actors are represented by a number of different nodes (as many nodes as the num-
ber of layers in which the actor is present). At the same time, we represent the fact
that different nodes might denote the same actors, thus being related, by a coupling
graph in which nodes representing the same actors are connected.

The rest of the Chapter is organized as follows. The first section translates the
aforementioned structural features in the formal language of graph theory. By doing
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that, we synthesize the topology of such a system in terms of matrices. In addition,
as many years of research [6] have demonstrated, the relation between structure and
function can be studied by means of the spectral properties of the matrices repre-
senting the graph structure. This is also studied in the second part of this Chapter,
where we give a simple example of the epidemic spreading process and analyze real
world multilayer networks.

2 Notation, basic definitions and properties

A multiplex network is a quadruple M = (L,n,P,M). L = {1, . . . ,m} is an index
set that we call the layer set. Here we have assumed L ⊂N for practical reasons
and without loss of generality. We indicate the general element of L with Greek
lower case letters. Moreover, n is a set of nodes and P = (n,L,N), N ⊆ n×L is
a binary relation. Finally, the statement (n,α) ∈ N is read node n participates in
layer α . We call the ordered pair (n,α) ∈N a node-layer pair and we say that the
node-layer pair (n,α) is the representative of node n in layer α .

On the other hand, M = {Gα}α∈L is a set of graphs, that we call layer-graphs,
indexed by means of L. The node set of a layer-graph Gβ ∈M is a sub-set nβ ⊂N
such that nβ = {(n,α)∈P |α = β}, so the nodes of Gβ are node-layer pairs; in that
sense we say that node-layer pairs represent nodes in layers. The edge set of a graph
Gα ∈M is Eβ ⊆ nβ ×nβ . Additionally, the binary relation P can be identified with
its graph GP. GP has nodes set given by n∪L, and edge set EP =N, and we call
it the participation graph.

Consider the graph GC on N in which there is an edge between two node-layer
pairs (n,α) and (m,β ) only if n = m; that is, only if the two edges in the graph
GP are incident on the same node n ∈ n, which means that the two node-layer pairs
represent the same node in different layers. We call GC the coupling graph. It is easy
to realize that the coupling graph is formed by n =| n | disconnected components
that are clicks or isolated nodes. Each clique is formed by all the representatives of
a node in the layers, we call the components of GC supra-nodes.

Let’s now also consider the graph Gl on the same nodes set N, and in which there
is an edge between two node-layer pairs (n,α), (m,β ) only if α = β ; that is, only
if the two edges in the graph GP are incident on the same node α ∈ L. We call Gl

the layer graph. It is easy to realize that graph is formed by m =| L | disconnected
components that are clicks.

Finally, we can define the supra-graph GM as the union of the layer-graphs with
the coupling graph: GC ∪M. GM has node set N and edge set

⋃
α Eα ∪EC. GM is

a synthetic representation of the Multiplex Network M . It results that each layer-
graph Gα is a sub-graph of GM induced by nα . Furthermore, when all nodes par-
ticipate in all layer-graphs the Multiplex Network is said to be fully aligned [4] and
the coupling graph is made of n complete graphs of m nodes.

It is useful to come back to our system of social agents as a paradigmatic mul-
tiplex network to make sense of the previous definitions. The layer set is the list
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of OSNs, for example L = {Facebook,Twitter,Google+}. Since for practical pur-
poses we want a set of indexes that are natural numbers, we may say that: Face-
book is 1, Twitter is 2, and Google+ is 3. The set of nodes is the set of social
actors, for example n = {Marc,Alice,BiFi,Nick,Rose}. The binary relations repre-
sent the participation of each of these agents in some of the OSNs, thus we have that
an statement of the type Alice has a Facebook account is represented by the pair
(Alice,1), that is a node-layer pair. Each set of relation in each OSN is represented
by a graph, for example the link [(Alice,1),(Nick,1)] means that Alice and Nick are
friends on Facebook. If Alice has a Facebook account and a Twitter account, but not
a Google+ account, in the coupling graph we will have the connected component
[(Alice,1),(Alice,2)] that is the supra-node related to Alice. If only the BiFi, Nick,
and Rose have Google+ accounts, in the layer graph we will have the connected
component [(Bi f i,3),(Nick,3),(Rose,3)].

3 Multiplex networks related Matrices

3.1 Adjacency matrices

In general, the adjacency matrix of a (unweighted, undirected) graph G with N nodes
is a N ×N (symmetric) matrix A = {ai j}, with ai j = 1 only if there is an edge
between i and j in G, and ai j = 0 otherwise. We can consider the adjacency matrix
of each of the graphs introduced in the previous section. The adjacency matrix of a
layer graph Gα is a nα ×nα symmetric matrix Aα = aα

i j, with aα
i j = 1 only if there

is an edge between (i,α) and ( j,α) in Gα . We call them layer adjacency matrices.
Likewise, the adjacency matrix of GP is an n×m matrix P = piα , with piα = 1

only if there is an edge between the node i and the layer α in the participation
graph, i.e. only if node i participate in layer α . We call it the participation matrix.
The adjacency matrix of the coupling graph GC is an N×N matrix C = {ci j}, with
ci j = 1 only if there is an edge between node-layer pair i and j in GC, i.e. if they are
representatives of the same node in different layers. We can arrange the rows and the
columns of C such that node-layer pairs of the same layer are contiguous and layers
are ordered. We assume that C is always arranged in that way. It results that C is a
block matrix with zero diagonal blocks. Thus, ci j = 1, with i, j = 1, . . . ,N represents
an edge between a node-layer pair in layer 1 and a node-layer pair in layer 2 if i < n1
and n1 < j < n2. Figure 1 shows a multiplex network and the respective matrices A
and C .
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3.2 The supra-adjacency matrix

The supra-adjacency matrix is the adjacency matrix of the supra-graph GM . Just as
GM , ¯A is a synthetic representation of the whole multiplex M . By definition, it
can be obtained from the intra-layer adjacency matrices and the coupling matrix in
the following way:

¯A =
⊕

α

Aα +C , (1)

where the same consideration as in C applies for the indices. We also define A =⊕
Aα , and we call it the intra-layer adjacency matrix. Figure 1 shows the supra-

adjacency and the intra-layer adjacency matrices of a multiplex network. Some basic
metrics are easily calculated from the supra-adjacency matrix.

The degree of a node-layer i is the number of node-layers connected to it by an
edge in GM and is given by

Ki = ∑
j

¯Ai j. (2)

Sometimes we write i(α) as an index, instead of simply i, to explicitly indicate that
the node-layer i is in layer α even if the index i already uniquely indicates a node-
layer pair. Since ¯A can be read as a block matrix, with the Aα on the diagonal
blocks, the index i(α) can be interpreted as block index. It is also useful to define
the following quantities

eα = ∑
β<α

nβ , (3)

which we call the excess index of layer α . The layer degree of a node-layer i, ki(α),
is the number of neighbors it has in Gα , i.e., ki(α) = ∑ j aα

i j. By definition of ¯A

ki(α) =
nα+eα

∑
j=1+eα

¯Ai j. (4)

The coupling degree of a node-layer i, ci(α), is the number of neighbors it has in the
coupling graph, i.e., ci(α) = ∑ j ci j. From ¯A we get

ciα = ∑
j<eα ,

j>nα+eα

¯Ai j. (5)

Finally, we note that the degree of a node-layer can be expressed as

Ki(α) = ∑
j

¯Ai j = kiα + ciα . (6)

Eq.(6) explicitly expresses the fact that the degree of a node-layer pair is the sum of
its layer-degree plus its coupling-degree.
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3.3 The supra-Laplacian matrix

Generally, the Laplacian matrix of a graph with adjacency matrix A, or simply the
Laplacian, is given by

L = D−A (7)

where D = diag(k1,k2, . . .) is the degree matrix.
Thus, it is natural to define the supra-Laplacian matrix of a Multiplex network

as the Laplacian of its supra-graph

L̄ = D̄− ¯A , (8)

where D̄ = diag(K1,K2, . . . ,KN) is the degree matrix. Besides, we can define the
layer Laplacian of each graph Gα as

Lα = Dα −Aα , (9)

and the Laplacian of the coupling graph

LC = ∆ −C (10)

where ∆ = diag(c1,c2, . . . ,cN) is the coupling-degree matrix.
By definition, we have

L̄ =
⊕

α

L α +LC. (11)

Eq. (11) takes a very simple form in the case of a node-aligned multiplex, i.e.,

L̄ =
⊕

α

(Lα + cIN)−Km⊗ In (12)

where Km is the adjacency matrix of a complete graph of m nodes, Ik is the k× k
identity matrix and ci = c,∀i ∈N is the coupling degree of a node-layer pair.

3.4 Characteristic Matrices

3.4.1 Supra-nodes Characteristic Matrix

The supra-nodes characteristic matrix Sn = {si j} is an N× n matrix with si j = 1
only if the node-layer i is a representative of node j, i.e., it is in the connected
component j in the graph GC. We call it a characteristic matrix since supra-nodes
partitions the node-layer set and Sn is the characteristic matrix of that partition.
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3.4.2 Layers Characteristic Matrix

The layer characteristic matrix Sl = {si j} is an N ×m matrix with si j = 1 only
if the node-layer i is in the connected component j in the graph Gl. We call it a
characteristic matrix since it is the characteristic matrix of the partition of the node-
layer set induced by layers.

4 The coarse-grained representation of a Multiplex Network

4.1 Nodes partitions and Quotient graphs

We next briefly introduce the notion of network quotient associated to a partition
of the node set. Suppose that V1, ...,Vm is a partition of the node set of a network
G with adjacency matrix A, and write ni = |Vi|. The quotient network Q of G is a
coarse-grained representation of the network with respect to the partition. It has one
node per cluster Vi and an edge from Vi to Vj weighted by an average connectivity
from Vi to Vj

bi j =
1
σ

∑
k∈Vi
l∈V j

akl . (13)

Different choices are possible for the normalization parameter σ : σi = ni, σ j = n j
or σi j =

√nin j. Depending on the choice for σ we call the resulting quotient respec-
tively: left, right or symmetric quotient. We can express the left quotient Ql(A) in
matrix form. Consider the n×m characteristic matrix of the partition S = si j, with
si j = 1 if i ∈Vj and zero otherwise. Then

Ql(A) = Λ
−1ST AS, (14)

where Λ = diag{n1, . . . ,nm}.

4.2 Aggregate Network and Network of Layers of a Multiplex
Network

In the context of Multiplex Networks two quotient graphs arise naturally [7] by con-
sidering coupled node-layer pairs and layers. Supra-nodes partition the supra-graph,
and the supra-nodes characteristic matrix Sn is the associated characteristic matrix.
Then, we define the aggregate network of the multiplex network as the quotient
associated to that partition:

Ã = Λ
−1S T

n
¯A Sn, (15)
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where Λ = diag{κ1, . . . ,κn} is the multiplexity degree matrix. Since, the Laplacian
of the quotient is equal to the quotient of the Laplacian, the Laplacian of the aggre-
gate network is given by:

L̃ = Λ
−1S T

n L̄ Sn. (16)

In the same way, layers partition the supra-graph, thus the network of layers is de-
fined by

Ãl = Λ
−1S T

l
¯A Sl, (17)

and its Laplacian is given by

L̃l = Λ
−1ST

l L̄Sl. (18)

5 Spectral Properties

5.1 The largest eigenvalue of ¯A

In the following we will interpret ¯A as a perturbed version of A , C being the
perturbation. This choice is reasonable whenever

|| C ||<||A || . (19)

Consider the largest eigenvalue λ of A . Since A is a block diagonal matrix, the
spectrum of A , σ(A ), is

σ(A ) =
⋃
α

σ(Aα), (20)

σ(Aα) being the spectrum of the adjacency-matrix Aα of layer α . So, the largest
eigenvalue λ of A is

λ = max
α

λα (21)

with λα being the largest eigenvalue of Aα . We will look for the largest eigenvalue
λ̄ of ¯A as

λ̄ = λ +∆λ , (22)

where ∆λ is the perturbation to λ due to the coupling C. For this reason, we call
the layer δ for which λδ = λ the dominant layer. Let 1α be a vector of size m with
all entries equal to 0 except for the δ -th. If φδ is the eigenvector of Aδ associated to
λδ , we have that

φ = φδ ⊗1α (23)

is the eigenvector associated to λ . Observe that φ have dimension nδ , while 1α have
dimension m, where nδ is the number of nodes on the dominant layer δ , yielding to
a product of dimension nδ ×m, however it is not true if the number of nodes in is
not the same on all layers. In such case we must construct the vector φ with zeros
on all positions, except on the position of the leading eigenvector of the dominant
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layer. Then, we can approximate ∆λ as

∆λ ≈ φ T C φ

φ T φ
+

1
λ

φ T C 2φ

φ T φ
. (24)

Because of the structure of φ and C, the first term on the r.h.s. is zero, while only
the diagonal blocks of C2 take part in the product φ TC2φ . The diagonal blocks of
C2 are diagonals and

(C2)ii = ∑
i′

Cii′Ci′i = ci. (25)

Thus, we have that the perturbation is

∆λ ≈ z
λ
, (26)

where we have defined the effective multiplexity z as the weighted mean of the cou-
pling degree with the weight given by the squares of the entries of the leading eigen-
vector of A:

z = ∑
i

ci
φ 2

i
φ T φ

, (27)

where z = 0 in a monoplex -single layer- network or z = m− 1 in a node aligned
multiplex. Summing up, we have that the largest eigenvalue of the supra-adjacency
matrix is equal to the largest eigenvalue of the dominant layer adjacency matrix at
a first order approximation. As a consequence, for example, the critical point for an
epidemic outbreak in a multiplex network is settled by that of the dominant layer at
a first order approximation[8]. At second order, the deviation of λ̄ from λ depends
on the effective multiplexity and goes to zero with λ . See figure 2 and 3.

The approximation given in Eq. (26) can fail when the largest eigenvalue is near
degenerated. We have two cases in which this can happen:

• the dominant layer is near degenerated,
• there is one (or more) layers with the largest eigenvalue near that of the dominant

layer.

The accuracy of the approximation is related to the formula

∆λ ≈ φ
T C φ +∑

i

(φ (i)T C φ)

λ −λ (i)
, (28)

where λ (i) and φ (i) are the non-dominant eigenvalues and the associated eigenvec-
tors. In the first case it is evident that the second term on the r.h.s. will diverge, while
in the latter, because of the structure of C , φ , and φ (i), it is zero. In that case, we
say that the multiplex network is near degenerated and we call the layers with the
largest eigenvalues co-dominant layers.

When the multiplex network is near degenerated, φ used in the approximation of
equation (26) has a different structure. Consider that we have l co-dominant layers
δi, i = 1, . . . , l. If φδi is the eigenvector of Aδi associated to λδi , we have that
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φ =
l

∑
i=1

φδi ⊗1δi . (29)

Note that the same comment on Eq. (23) also applies here. The term linear in C in
the approximation of equation (26) is no more zero. We have

zc =
φ T C φ

φ T φ
=

1
φ T φ

∑
l,m:l 6=m

φ
T
δl

φδm (30)

and we name zc the correlated multiplexity. We can decompose zc in the contribution
of each single node-layer pair

zci =
1

φ T φ
∑

m:m 6=l
∑

j
φδl iCi jφδm j. (31)

and we call zci the correlated multiplexity degree of node-layer i. By definition,
coupled node-layer pairs have the same correlated multiplexity degree. So, if we
have md co-dominant layers in the multiplex, we get

∆λ ≈ zc +
z
λ

= md ∑
i∈δ

zci +
∑i∈δ zi

λ
. (32)

5.2 Spectral relations between supra and coarse-grained
representations

The fundamental spectral result related to a quotient network is that adjacency
eigenvalues of a quotient network interlace the adjacency eigenvalues of the parent
network. That is, if µi, . . . ,µm are the adjacency eigenvalues of the quotient network,
and λi, . . . ,λn are the adjacency eigenvalues of the parent network, it results that

λi ≤ µi ≤ λi+n−m. (33)

The same result applies for Laplacian eigenvalues. We can derive directly from that
result a list of bounds for the supra-adjacency and the supra-Laplacian in terms of
the aggregate network and of the network of layers [7]. Besides, in the case of node
aligned multiplex networks, we have that the eigenvalues of the laplacian of the net-
work of layers are a sub-set of the spectrum of the supra-Laplacian. This result is of
special relevance in studying the structural properties of a multiplex network, since
it states that the adjacency (Laplacian) eigenvalues of the coarse-grained represen-
tation of a multiplex interlace the adjacency (Laplacian) eigenvalues of the parent.
In the case of a node-aligned multiplex, the Laplacian eigenvalues of the network of
layers are a sub-set of the Laplacian eigenvalues of the parent Multiplex network.
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5.3 The second eigenvalue of L̄

A number of structural and dynamical properties of a network can be derived from
the value of the first non-zero eigenvalue of the Laplacian. In the particular case of
Multiplex Networks it has been shown that its behavior reflects a structural transition
of the system [9]. We investigate the first non-zero eigenvalue of the supra-Laplacian
of a node-aligned multiplex network. From the interlacing results of the previous
section, we know that

µ̄2 ≤ µ̃a2 (34)

and that
µ̄2 ≤ m. (35)

m is always an eigenvalue of the supra-Laplacian, so, we can look for the condition
under which µ̄2 = m holds. By combining equations (34) and (35), we arrive to the
conclusion that if m≥ µ̃a2 , then µ̄2 6= m. On the other hand, we can approximate µ̄2
as

µ̄2 = µ2 +∆ µ2, (36)

where µ2 is the eigenvalue of L . We have

∆ µ2 ≈∑
i< j

ci j(xi− x j)
2, (37)

where xi are the elements of the eigenvector x associated to µ2. Because of the
structure of C and x, it results

∆ µ2 ≈ m−1 (38)

for a node aligned multiplex. Thus, since m is always an eigenvalue of M̄, for that
approximation to be correct, the following condition must hold

µ2 +m−1 < m, (39)

from which we can conclude that if µ2 < 1 then µ̄2 6= m.
In summary, we have that, if µ̃a2 < m or µ2 < 1 then µ̄2 6= m, but the converse is not
true in general.

6 Applications

6.1 Dynamical processes: epidemic spreading

An important application are the dynamical consequences of the interlacing proper-
ties on both adjacency and Laplacian matrices (see Section 5.2 and Ref. [7]). Here,
as an example, we show the SIS epidemic spreading on the top of a multilayer net-
work and the comparison with the aggregate network. Such dynamical process is
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based on the contact between individuals, or nodes, which can be infected or sus-
ceptible to the disease. Infected nodes, also called spreaders, spread the disease to its
neighbors inside a time windows with probability β and recover from it with prob-
ability µ . Considering a discrete time approach, the Markov chain that formalizes
this processes can be formally written by the iterative equation

pi(t +1) = β ∑
j

¯Ai j p j(t)−µ pi(t), (40)

where pi(t) is the probability of the node-layer pair i be infected at time t, ¯Ai j are
the elements of the supra-adjacency matrix ¯A , while β and µ are the infection and
recovery probabilities, respectively. Such model consider the inter-layer and intra-
layer as equal, which is a special case of the model presented in [8]. The critical
point can be obtained by the first order approximation of Eq. (40) on its stationary
regime, yielding

βc =
µ

λn( ¯A )
, (41)

where λn( ¯A ) is largest eigenvalue of the supra-adjacency matrix ¯A (see Eq. (1)).
From the interlacing properties

λnα
(Aα)≤ λn( ¯A ), (42)

Hence, the critical value βc is bounded by the individual critical values and it is
always lower or equal to the lowest individual layer critical value. In addition, ob-
serve that when the effective multiplexity, z≈ 0 in Eq. (27), the approximated lead-
ing eigenvalue of the multilayer supra-adjacency is given by the λ̄ = max{λ ( ¯A )}.
Furthermore, exploiting the network of layers spectra,

λm ≤ λn( ¯A ), (43)

where λm is the largest eigenvalue of the network of layers, whose matrix is given
by equation (17), implying another constraint to the critical point. In other words,
the critical point of the network of layers bound from above the critical point of the
multilayer.

Contrasting with the first model, now we consider a spreading process on the
aggregate network, Eq. (15), hence

pi(t +1) = β ∑
j

ãi j p j(t)−µ pi(t), (44)

where pi(t) is the probability of the node i be infected at time t, ãi j are the elements
of the aggregated adjacency matrix Ã, β is the infection probability and µ is the
recovery probability. Observe that such process is different from the spreading de-
scribed on Eq. (40), in which each node can infect its neighbors on any layer. On
the other hand, in Eq. 44 each supra-node chooses a layer with uniform probability,
than spreads the disease to all neighbors in that layer. Moreover, the critical point
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can be obtained using the same arguments as before, yielding to

β̃c =
µ

λn(Ã)
, (45)

where λn(Ã) is largest eigenvalue of the aggregated adjacency matrix. Once again,
for the interlacing results we have

β̃c ≥ βc. (46)

Such result imply that the the spreading process on the multilayer structure is more
efficient, or in the worst case as efficient as, than the process on the aggregate net-
work [7].

The results of this section was formerly presented in [7]. In addition, it is note-
worthy that a more complete model is proposed in [8], which consider the activity
of the nodes and different spreading probabilities for the intra-layer and inter-layer
edges. However, here we show the simplest cases, similar to the ones exposed in [8],
in order to be more didactic. In spite of that, the examples shown here exemplify the
importance of considering the multilayer structure and the role of the aggregated
network and the network of layers.

6.2 Real-world multilayer networks

In order to evaluate real-world multilayer structures we study some networks avail-
able at http://deim.urv.cat/ manlio.dedomenico/data.php. We separate them into
three different categories: (i) transportation networks; (ii) biological networks and
(iii) social networks. We evaluate the maximum of the individual layer eigenvalues
and the eigenvalue of the supra-adjacency matrix ¯A . Moreover, the approximations
of the leading eigenvalues are also computed for comparison. Table 1 presents the
results. Contrasting with monoplex systems, instead of one type of relationship, here
we have m different types and also the connections between different layers. The av-
erage of the matrix A contains information about the relationship inside each layer,
whereas the average of C summarizes the relations between layers, i.e., between a
given structure in two different contexts.

Regarding the networks studied here, we observe that biological networks tend
to be sparser than social nets, specially considering the inter-layer relations. In ad-
dition, observe that there is a relationship between the average of the matrix C and
the effective multiplexity z. For most of the networks, the first order approximation
is accurate. However, some networks are better approximated by the second order
approximation, for instance the CS. Furthermore, among all networks analyzed the
only one that presented a poor approximation is the EU air transportation network,
which can be explained by the high density of inter-layer couplings compared with
the density of intra-layer connections.
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Fig. 1 Example of a multiplex network. The structure of each layer is represented by an adjacency
matrix A i, where i =1, 2. Clm stores the connections between layers l and m. Note that the number
of nodes in each layer is not the same.
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Fig. 2 Effective multiplexity z as a function of the fraction of nodes coupled s for a two layers
multiplex with 800 nodes with a power law distribution with γ = 2.3 in each layer. For each value
of s, 40 different realizations of the coupling are shown while the intra-layer structure is fixed.
In the panel on the top the z shows a two band structure, while in the panel on the bottom, it is
continuous. The difference is due to the structure of the eigenvector.
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Table 1 Properties of real multilayer networks.

Structure Approximation References
Multilayer N m 〈A 〉 〈C 〉 〈 ¯A 〉 max{λ ( ¯A )} maxα{λ (Aα )} λ̄ = λ + z

λ
z

Tr
an

sp
. London transport 369 3 2.211 0.155 2.366 3.787 3.782 3.786 0.004 [10]

EU air transportation 450 37 3.528 11.417 14.945 30.274 19.315 19.690 7.226 [11]

B
io

lo
gi

ca
l

C. elegans connectome 279 3 7.855 1.894 9.748 21.187 21.005 21.099 1.959 [12], [13]
Danio Rerio genetic 155 5 1.900 0.367 2.267 4.941 4.391 4.484 0.408 [14], [13]
Hepatitus C genetic 105 3 1.938 0.419 2.357 9.180 8.888 9.016 1.139 [14], [13]

Homo genetic 18222 7 8.570 1.516 10.086 119.311 119.286 119.308 2.541 [14], [13]
Human Herpes4 genetic 216 4 1.847 0.444 2.291 12.484 12.329 12.453 1.530 [14], [13]

Human HIV1 genetic 1005 5 2.115 0.393 2.508 16.427 16.227 16.364 2.226 [14], [13]
Oryctolagus genetic 144 3 1.808 0.093 1.901 8.832 8.832 8.832 0.000 [14], [13]

Xenopus genetic 461 5 1.935 0.488 2.423 6.203 6.093 6.189 0.583 [14], [13]

So
ci

al

CKM Physicians Innovation 246 3 4.065 1.884 5.950 8.125 6.703 6.998 1.975 [15]
CS Aarhus 61 5 5.536 2.929 8.464 11.522 10.220 10.476 2.612 [16]

Kapferer Tailor Shop 39 4 7.360 2.893 10.253 14.704 14.052 14.261 2.930 [17]
Krackhardt High Tech 21 3 7.746 2.000 9.746 14.801 14.542 14.680 2.000 [18]

Lazega Law Firm 71 3 15.670 1.991 17.660 24.194 23.868 23.952 1.994 [19]
Vickers Chan 7th Graders 29 3 11.908 2.000 13.908 18.426 18.070 18.181 2.000 [20]
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7 Conclusion

The last years of research have just started to show that interconnected networks
exhibit specific structural and dynamical properties that cannot be directly deduced
from isolated networks. In order to gain understanding of such a system, a complete
new toolbox is needed. On the other hand, such a new framework cannot be a naive
extension of what has been developed for isolated, single layered, networks: we need
that those tools be adapted to particular questions posed by interconnected networks.
It is our conviction that the best way to tackle the problems ahead is to came back to
the very basic concepts of graph theory and to build on them. The supra-adjacency
matrix and the supra-Laplacian are examples of such basic objects, and the specific
structural features of the interconnected system are reflected in them. In this way,
the rigorous study of these objects, as well as of their spectral properties, is likely
to lead us to the correct understanding of the systems under study. Additionally we
presented two applications, firstly the difference an epidemic spreading process that
takes place on top of a multilayer or the aggregated network. Secondly, we have
shown that perturbation theory is accurate enough when it comes to approximate
the eigenvalue of a multilayer structure using the dominant (or co-dominant) layers.
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