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Socially relevant situations that involve strategic interactions are widespread among animals and humans alike. To
study these situations, theoretical and experimental research has adopted a game theoretical perspective, generating
valuable insights about human behavior. However, most of the results reported so far have been obtained from a
population perspective and considered one specific conflicting situation at a time. This makes it difficult to extract
conclusions about the consistency of individuals’ behavior when facing different situations and to define a compre-
hensive classification of the strategies underlying the observed behaviors. We present the results of a lab-in-the-
field experiment in which subjects face four different dyadic games, with the aim of establishing general behavioral
rules dictating individuals’ actions. By analyzing our datawith an unsupervised clustering algorithm,we find that all
the subjects conform, with a large degree of consistency, to a limited number of behavioral phenotypes (envious,
optimist, pessimist, and trustful), with only a small fraction of undefined subjects. We also discuss the possible con-
nections to existing interpretations based on a priori theoretical approaches. Our findings provide a relevant
contribution to the experimental and theoretical efforts toward the identification of basic behavioral phenotypes
in a wider set of contexts without aprioristic assumptions regarding the rules or strategies behind actions. From
this perspective, our work contributes to a fact-based approach to the study of human behavior in strategic sit-
uations, which could be applied to simulating societies, policy-making scenario building, and even a variety of
business applications.
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Many situations in life entail social interactions where the parties
involved behave strategically; that is, they take into consideration the
anticipated responses of actors who might otherwise have an impact
on an outcome of interest. Examples of these interactions include social
dilemmas where individuals face a conflict between self and collective
interests, which can also be seen as a conflict between rational and ir-
rational decisions (1–3), as well as coordination games where all parties
are rewarded for making mutually consistent decisions (4). These and
related scenarios are commonly studied in economics, psychology, po-
litical science, and sociology, typically using a game theoretic framework
to understand how decision-makers approach conflict and cooperation
under highly simplified conditions (5–7).

Extensive work has shown that, when exposed to the constraints in-
troduced in game theory designs, people are often not “rational” in the
sense that they do not pursue exclusively self-interested objectives (8, 9).
This is especially clear in the case of prisoner’s dilemma (PD) games,
where rational choice theory predicts that players will always defect
but empirical observation shows that cooperation oftentimes occurs,
even in “one-shot” games where there is no expectation of future inter-
action among the parties involved (8, 10). These findings beg the ques-
tion as to why players sometimes choose to cooperate despite incentives
not to do so. Are these choices a function of a person’s identity and
therefore consistent across different strategic settings? Do individuals
draw from a small repertoire of responses, and if so, what are the
conditions that lead them to choose one strategy over another?

Here, we attempt to shed light on these questions by focusing on a
wide class of simple dyadic games that capture two important features
of social interaction, namely, the temptation to free-ride and the risk
associated with cooperation (8, 11, 12). All are two-person, two-action
games in which participants decide simultaneously which of the two
actions they will take. Following previous literature, we classify partici-
pants’ set of choices as either cooperation, which we define as a choice
that promotes the general interest, or defection, a choice that serves an
actor’s self-interest at the expense of others.

The games used in our study include PD (13, 14), the stag hunt (SH)
(4), and the hawk-dove (15) or snowdrift (16) games (SGs). SH is a co-
ordination game in which there is a risk in choosing the best possible
option for both players: cooperating when the other party defects poses
serious consequences for the cooperator, whereas the defector faces less
extreme costs for noncooperation (17). SG is an anticoordination game
where one is tempted to defect, but participants face the highest penal-
ties if both players defect (18). In PD games, both tensions are present:
when a player defects, the counterpart faces the worst possible situation
if he or she cooperates, whereas in that case, the defector benefits more
than by cooperating.We also consider the harmony game (HG), where
the best individual and collective options coincide; therefore, there
should be no tensions present (19).

Several theoretical perspectives have sought to explain the seemingly
irrational behavior of actors during conflict and cooperation games.
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Perhaps most prominent among them is the theory of social value ori-
entations (20–22), which focuses on how individuals divide resources
between self and others. This research avenue has found that individuals
tend to fall into certain categories such as individualistic (thinking only
about themselves), competitive (attempting to maximize the difference
between their own and the other’s payoff), cooperative (attempting to
maximize everyone’s outcome), and altruistic (sacrificing their own
benefits to help others). Relatedly, social preferences theory posits that
people’s utility functions often extend beyond their ownmaterial payoff
and may include considerations of aggregate welfare or inequity
aversion (23). Whereas theories of social orientation and social prefer-
ences assume intrinsic value differences between individuals, cognitive
hierarchy theory instead assumes that playersmake choices on the basis
of their predictions about the likely actions of other players, and as such,
the true differences between individuals come not from values but
rather from depth of strategic thought (24).

Oneway to arbitrate between existing theoretical paradigms is to use
within-subject experiments, where participants are exposed to a wide
variety of situations requiring strategic action. If individuals exhibit a
similar logic (and corresponding behavior) in different experimental
settings, this would provide a more robust empirical case for theories
that argue that strategic action stems from intrinsic values or social ori-
entation. By contrast, if participants’ strategic behavior depends on the
incentive structure afforded by the social context, these findings would
pose a direct challenge to the idea that social values drive strategic
choices.

We therefore contribute to the literature on decision-making in
three important ways. First, we expose the same participants tomultiple
games with different incentive structures to assess the extent to which
strategies stem from stable characteristics of an individual. Second, we
depart from existing paradigms by not starting from an a priori classi-
fication to analyze our experimental data. For instance, empirical
studies have typically used classifications schemes that were first derived
from theory, making it difficult to determine whether these classifica-
tions are the best fit for the available data.We address this issue by using
an unsupervised, robust classification algorithm to identify the full set of
“strategic phenotypes” that constitute the repertoire of choices among
individuals in our sample. Finally, we advance research that documents
the profiles of cooperative phenotypes (25) by expanding the range of
human behaviors that may fall into similar types of classification. By
focusing on both cooperation and defection, this approach allows us
tomake contributions toward a taxonomy of human behaviors (26, 27).
RESULTS

Laboratory-in-the-field experiment
We recruited 541 subjects of different ages, educational level, and social
status during a fair in Barcelona (see Materials and Methods) (28). The
experiment consisted of multiple rounds, in which participants were
randomly assigned partners and assigned randomly chosen payoff
values, allowing us to study the behavior of the same subject in a variety
of dyadic games including PD, SH, SG, and HG, with different payoffs.
To incentivize the experimental subjects’ decisions with real material
(economic) consequences, they were informed that they would propor-
tionally receive lottery tickets (one ticket per 40 points; the modal num-
ber of tickets earnedwas two) to the payoff they accumulated during the
rounds of dyadic games they played. The prize in the corresponding
Poncela-Casasnovas et al. Sci. Adv. 2016; 2 : e1600451 5 August 2016
lottery was four coupons redeemable at participating neighboring
stores, worth 50 euros each. The payoff matrices shown to the partici-
pants had the following form (rows are participant’s strategies, whereas
columns are those of the opponent)

C D
C
D

R S
T P

� �
ð1Þ

Actions C and D were coded as two randomly chosen colors in the
experiment to avoid framing effects. R and P were always set to R = 10
andP= 5, whereasT and S took valuesT∈ {5, 6,…, 15} and S ∈ {0, 1,…,
10}. In thisway, the (T, S) plane can be divided into four quadrants, each
one corresponding to a different game depending on the relative order
of the payoffs: HG (S > P, R > T), SG (T > R > S > P), SH (R > T > P > S),
and PD (T > R > P > S). Matrices were generated with equal probability
for each point in the (T, S) plane, which was discretized as a lattice of
11 × 11 sites. Points in the boundaries between games, at the boundary
of our game space, or in its center do not correspond to the four basic
games previously described. However, we kept those points to add
generality to our exploration, and in any event, we made sure in the
analysis that the results did not change even if we removed those spe-
cial games (see below). For reference, see Fig. 1 (middle) for the Nash
(symmetric) equilibrium structure of each one of these games.

Population-level behavior
The average level of cooperation aggregated over all games and subjects
is 〈C〉 = 0.49 ± 0.01, where the error corresponds to a 95% confidence
interval (we apply this rule to the rest of our results, unless otherwise
specified). This is in agreement with the theoretically expected value,
〈C〉theo = 0.5, calculated by averaging over all the symmetric Nash
equilibria for the (T, S) values analyzed. However, the aggregate coop-
eration heatmap looks very different from what would be obtained by
simulating a population of players on a well-mixed scenario (compare
right and central panels in Fig. 1).

On the other hand, the experimental levels of cooperation per game
(excluding the boundaries between them, so the points strictly corre-
spond to one of the four games) are as follows: 〈C〉PD = 0.29 ± 0.02
(〈C〉theoPD ¼ 0), 〈C〉SG = 0.40 ± 0.02 (〈C〉theoSG ¼ 0:5), 〈C〉SH = 0.46 ±
0.02 (〈C〉theoSH ¼ 0:5), and 〈C〉HG = 0.80 ± 0.02 (〈C〉theoHG ¼ 1). The values
are considerably different from the theoretical ones in all cases, partic-
ularly for PD and HG.

Emergence of phenotypes
After looking at the behavior at the population level, we focus on the
analysis of the decisions at the individual level (27). Our goal is to assess
whether individuals behave in a highly idiosyncratic manner or wheth-
er, on the contrary, there are only a few “phenotypes” by which all our
experimental subjects can be classified. To this aim,we characterize each
subject with a four-dimensional vector where each dimension repre-
sents a subject’s average level of cooperation in each of the four
quadrants in the (T, S) plane. Then, we apply an unsupervised clustering
procedure, the K-means clustering algorithm (29), to group those indi-
viduals that have similar behaviors, that is, the values in their vectors are
similar. Input for this algorithm (see section S4.7) is the number of
clusters k, which is yet to be determined, and this algorithm groups
the data in such a way that it both minimizes the dispersion within
2 of 8
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clusters and maximizes the distance among centroids of different
clusters. We found that k = 5 clusters is the optimal number of
groups according to the Davies-Bouldin index (see section S4.8)
(30), which does not assume beforehand any specific number of
types of behaviors.

The results of the clustering analysis (Fig. 2) show that there is a
group that mostly cooperates in HG, a second group that cooperates
in both HG and SG, and a third one that cooperates in both HG and
SH. Players in the fourth group cooperate in all games, and finally, we
find a small group who seems to randomly cooperate almost
everywhere, with a probability of approximately 0.5.

To obtain a better understanding of the behavior of these five groups,
we represent the different types of behavior in a heatmap (Fig. 3) to ex-
Poncela-Casasnovas et al. Sci. Adv. 2016; 2 : e1600451 5 August 2016
tract characteristic behavioral rules. In this respect, it is important to
note that Fig. 3 provides a complementary view of the clustering results:
our clustering analysis was carried out attending only to the aggregate
cooperation level per quadrant, that is, to four numbers or coordinates
per subject, whereas this plot shows the average number of times the
players in each group cooperated for every point in the space of games.

The cooperation heatmaps in Fig. 3 show that there are common
characteristics of subjects classified in the same group even when
looking at every point of the (T, S) plane. The first two columns in
Fig. 3 display consistently different behaviors in coordination and anti-
coordination games, although they both act as prescribed by the Nash
equlibrium in PD andHG. Both groups are amenable to a simple inter-
pretation that links them to well-known behaviors in economic theory.
http://advances.sciencem
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Fig. 1. Summary of the games used in the experiment and their equilibria. Schema with labels to help identify each one of the games in the
quadrants of the (T, S) plane (left), along with the symmetric Nash equilibria (center) and average empirical cooperation heatmaps from the 8366 game
actions of the 541 subjects (right), in each cell of the (T, S) plane. The symmetric Nash equilibria (center) for each game are as follows: PD and HG have one
equilibrium, given by the pure strategiesD and C, respectively. SG has a stablemixed equilibrium containing both cooperators and defectors, in a proportion
that depends on the specific payoffs considered. SH is a coordination game displaying two pure-strategy stable equilibria, whose bases of attraction are
separated by an unstable one, again depending on the particular payoffs of the game (5, 6, 43). The fraction of cooperation is color-coded (red, full
cooperation; blue, full defection).
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Fig. 2. Results from the K-means clustering algorithm. For every cluster, a column represents a player belonging to his or her corresponding cluster,
whereas the four rows indicate the four average cooperation values associatedwith his or her (from top to bottom: cooperation inHG, SG, SH, andPDgames).
We color-coded the average level of cooperation for eachplayer in eachgame (blue, 0.0; red, 1.0),whereas the lack of value in aparticular game for a particular
player is coded inwhite. Cluster sizes: Envious, n=161 (30%); Pessimist, n=113 (21%); Undefined, n=66 (12%); Optimist, n=110 (20%); Trustful, n= 90 (17%).
3 of 8

http://advances.sciencemag.org/


R E S EARCH ART I C L E

http://advances.scien
D

ow
nloaded from

 

Thus, the first phenotype (n = 110 or 20% of the population) cooperates
wherever T < R (that is, they cooperate in the HG and in the SH and
defect otherwise). By using this strategy, these subjects aim to obtain the
maximum payoff without taking into account the likelihood that their
counterpart will allow them to get it, in agreement with a maximax be-
havior (31). Accordingly, we call this first phenotype “optimists.” Con-
versely, we label subjects in the second phenotype “pessimists” (n = 113
or 21% of the population) because they use a maximin principle (32) to
choose their actions, cooperating only when S > P (that is, in HG and
SG) to ensure a best worst-case scenario. The behaviors of these two
phenotypes, which can hardly be considered rational [as discussed by
Colman (31)], are also associated with different degrees of risk aversion,
a question that will be addressed below.

Regarding the third column in Fig. 3, it is apparent from the plots
that individuals in this phenotype (n = 161 or 30% of the population)
exclusively cooperate in the upper triangle of HG [that is, wherever
(S − T) ≥ 0]. As was the case with optimists and pessimists, this third
behavior is far from being rational in a self-centered sense, in so far as
players forsake the possibility of achieving the maximum payoff by
playing the only Nash equilibrium in HG. In turn, these subjects seem
to behave as driven by envy, status-seeking consideration, or lack of
trust. By choosing D when S > P and R > T, these players prevent their
counterparts from receiving more payoff than themselves even when,
by doing so, they diminish their own potential payoff. The fact that
competitiveness overcomes rationality as players basically attempt to
ensure they receivemore payoff than their opponents suggests an inter-
pretation of the game as an assurance game (3), and accordingly, we
have dubbed this phenotype “envious.”

The fourth phenotype (fourth column in Fig. 3) includes those
players who cooperate in almost every round and in almost every site
Poncela-Casasnovas et al. Sci. Adv. 2016; 2 : e1600451 5 August 2016
of the (T, S) plane (n = 90 or 17% of the population). In this case, and
opposite to the previous one, we believe that these players’ behavior can
be associated with trust in partners behaving in a cooperative manner.
Another way of looking at trust in this context is in terms of expecta-
tions, because it has been shown that expectationof cooperation enhances
cooperation in the PD (33). In any event, explaining the roots of this type
of cooperative behavior in a unique manner seems to be a difficult task,
and alternative explanations of cooperation on the PD involving normal-
ized measures of greed and fear (34) or up to five simultaneous factors
(35) have been advanced too. Lacking an unambiguousmotivation of the
observed actions of the subjects in this group, we find the name “trustful”
to be an appropriate one to refer to this phenotype. Last, the unsupervised
algorithm found a small fifth group of players (n = 66 or 12% of the pop-
ulation) who cooperate in an approximately random manner, with a
probability of 0.5, in any situation. For lack of better insight into their
behavior, we will hereinafter refer to this minority as “undefined.”

Remarkably, three of the phenotypes reported here (optimist, pessi-
mist, and trustful) are of a very similar size. On the other hand, the largest
one is the envious phenotype, including almost a third of the participants,
whereas the undefined group, which we cannot yet consider as a bona
fide phenotype because we have not found any interpretation of the cor-
responding subjects’ actions, is considerably smaller than all the others.
In agreement with abundant experimental evidence, we have not found
any purely rational phenotype: the strategies used by the four relevant
groups are, to different extents, quite far from self-centered rationality.
Note that ours is an across-game characterization, which does not ex-
clude the possibility of subjects taking rational, purely self-regarding
decisions when restricted to one specific game (see section S4.5).

Finally, and to shed more light on the phenotypes found above, we
estimate an indirect measure of their risk aversion. To do this, we
 on A
ugust 5, 2016
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Fig. 3. Summary results of the different phenotypes (Optimist, Pessimist, Envious, Trustful, and Undefined) determined by the K-means clustering
algorithm,plus theaggregationofallphenotypes. For eachphenotype (column),we showtheworddescriptionof thebehavioral rule and thecorresponding
inferred behavior in the whole (T, S) plane (labeled as Numerical). The fraction of cooperation is color-coded (red, full cooperation; blue, full defection). The last
row (labeled as Experiment) shows the average cooperation, aggregating all the decisions taken by the subjects classified in each cluster. The fractions for each
phenotypeare as follows: 20%Optimist, 21%Pessimist, 30%Envious, 17%Trustful, and12%Undefined. Thevery last columnshows theaggregatedheatmapsof
cooperation for both the simulations and the experimental results. The simulation results assume that each individual plays using one and only one of the
behavioral rules and respects the relative fractions of each phenotype in the population found by the algorithm. Note the agreement between aggregated
experimental and aggregated numerical heatmaps (the discrepancy heatmap between them is shown in section S4.11). We report that the average difference
across the entire (T, S) plane between the experiment and the phenotype aggregation is of 1.39 SD units, which represents a value inside the standard 95%
confidence interval, whereas for any given phenotype, this difference averaged over the entire (T, S) plane is smaller than 2.14 SD units.
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consider the number of cooperative actions in SG together with the num-
ber of defective actions in SH (over the total sum of actions in both
quadrants for a given player; see section S4.5). Whereas envious, trustful,
and undefined players exhibit intermediate levels of risk aversion (0.52,
0.52, and 0.54, respectively), pessimists exhibit significantly higher value
(0.73), consistent with their fear of facing the worst possible outcome and
their choice of the best worst-case scenario. In contrast, the optimist
phenotype shows a very low risk aversion (0.32), in agreement with
the fact that they aim to obtain the maximum possible payoff, taking
the risk that their counterpart does not work with them toward that goal.

Robustness of phenotypes
Wehave carefully checked that ourK-means clustering results are robust.
Lacking the “ground truth” behind our data in terms of different types of
individual behaviors, we must test the significance and robustness of our
clustering analysis by checking its dependence on the data set itself. We
studied this issue in several complementary manners. First, we applied
the same algorithm to a randomized version of our data set (preserving
the total number of cooperative actions in the population but destroying
any correlation among the actions of any given subject), showing no sig-
nificant clustering structure at all (see section S4.7 for details).

Second, we ran theK-means clustering algorithm on portions of the
original data with the so-called “leave-p-out” procedure (36). This test
showed that the optimum five-cluster scheme found is robust even
when randomly excluding up to 55% of the players and their actions
(see section S4.7 for details). Moreover, we repeated the whole analysis,
discarding the first two choices made by every player, to account for
excessive noise due to initial lack of experience; the results more clearly
show even the same optimum at five phenotypes. See section S4.7 for a
complete discussion.

Third, we tested the consistency among cluster structures found in
different runs of the same algorithm for a fixed number of clusters, that
is to say, how likely it is that the particular composition of individuals in
the cluster scheme from one realization of the algorithm is correlated
with the composition from that of a different realization. To ascertain
this, we computed the normalized mutual information score MI (see
section S4.9 for formal definition) (37), knowing that the comparison
of two runs with exactly the same clustering composition would give a
value MI = 1 (perfect correlation), and MI = 0 would correspond to a
total lack of correlation between them. We ran our K-means clustering
algorithm 2000 times for the optimum k = 5 clusters and paired the
clustering schemes for comparison, obtaining an average normalized
mutual information score ofMI=0.97 (SD, 0.03). To put these numbers
in perspective, the same score for the pairwise comparison of results
from 2000 realizations of the algorithm on the randomized version of
the data is MI = 0.59 (SD, 0.18) (see section S4.9 for more details).

All the tests presented above provide strong support for our classi-
fication in terms of phenotypes. However, we also searched for possible
dependencies of the phenotype classification on the age and gender dis-
tributions for each group (see section S4.10), and we found no signifi-
cant differences among them, which hints toward a classification of
behaviors (phenotypes) beyond demographic explanations.
DISCUSSION AND CONCLUSIONS

We have presented the results of a laboratory-in-the-field experiment
designed to identify phenotypes, following the terminology fittingly in-
Poncela-Casasnovas et al. Sci. Adv. 2016; 2 : e1600451 5 August 2016
troduced by Peysakhovich et al. (25). Our results suggest that the indi-
vidual behaviors of the subjects in our population can be described by a
small set of phenotypes: envious, optimist, pessimist, trustful, and a
small group of individuals referred to as undefined, who play an un-
known strategy. The relevance of this repertoire of phenotypes arises
from the fact that it has been obtained from experiments in which
subjects played a wide variety of dyadic games through an unsupervised
procedure, theK-means clustering algorithm, and that it is a very robust
classification. With this technique, we can go beyond correlations and
assign specific individuals to specific phenotypes, instead of looking at
(aggregate) population data. In this respect, the trimodal distributions of
the joint cooperation probability found by Capraro et al. (38) show
much resemblance to our findings, and although a direct comparison
is not possible because they correspond to aggregate data, they point in
the direction of a similar phenotype classification. In addition, our re-
sults contribute to the currently available evidence that people are het-
erogeneous, by quantifying the degree of heterogeneity, in terms of both
the number of types and their relative frequency, in a specific (but broad)
suite of games.

Although the robustness of our agnostic identification of phenotypes
makes us confident of the relevance of the behavioral classification, and
our interpretation of it is clear and plausible, it is not the only possible
one. It is important to point out that connections can also be drawn to
earlier attempts to classify individual behaviors. As we have mentioned
previously, one theory that may also shed light on our classification is
that of social value orientation (20–22). Thus, the envious type may be
related to the competitive behavior found in that context (although in
our observation, envious people just aim at making more profit than
their competitors, not necessarily minimizing their competitors’ profit);
optimists could be cooperative, and trustful seem very close to altruistic.
As for the pessimist phenotype, we have not been able to draw a clear
relationship to the typesmost commonly found among social value ori-
entations, but in any event, the similarity between the two classifica-
tions is appealing and suggests an interesting line for further research.
Another alternative view on our findings arises from social preferences
theory (23), where, for instance, envy can be understood as the case in
which inequality that is advantageous to self yields a positive contribu-
tion to one’s utility (39–42). Altruists can be viewed as subjects with
concerns for social welfare (39), whereas other phenotypes are difficult
to be understood in this framework, and optimists and pessimists do
not seem to care about their partner’s outcome. However, other inter-
pretations may apply to these cases: optimists could be players strongly
influenced by payoff dominance a la Harsanyi and Selten (43), in the
sense that these players would choose strategies associated with the
best possible payoff for both. Yet, another view on this phenotype is that
of team reasoning (44–46), namely, individuals whose strategies maxi-
mize the collective payoff of the player pair if this strategy profile is
unique. Proposals such as the cognitive hierarchy theory (24, 47) and
the level-k theory (48, 49) do not seem to fit our results in so far as the
best response to the undefined phenotype, which would be the zeroth
level of behavior, does not match any of our behavioral classes.

Our results open the door to making relevant advances in a number
of directions. For instance, they point to the independence of the phe-
notypic classification of age and gender. Although the lack of gender
dependence may not be surprising, it would be really astonishing that
small children would exhibit behaviors with similar classifications in
view of the body of experimental evidence about their differences from
adults (50–55), and further research is needed to assess this issue in
5 of 8
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detail. As discussed also by Peysakhovich et al. (25), our research does
not illuminate whether the different phenotypes are born, made, or
something in between, and thus, understanding their origin would
be a far-reaching result.

We believe that applying an approach similar to ours to obtain
results about the cooperative phenotype (25, 38, 56) and, even better,
to carry out experiments with an ample suite of games, as well as a
detailed questionnaire (57), is key in future research. In this regard, it
has to be noted that the relationship between our automatically identi-
fied phenotypes and theories of economic behavior yields predictions
about other games: envy and expectations about the future and about
other players will dictate certain behaviors in many other situations.
Therefore, our classification here can be tested and refined by looking
for phenotypes arising in different contexts. This could be complemented
with a comparison of our unsupervised algorithm with the parametric
modeling approach by Cabrales (41) or even by implementing flexible
specifications to social preferences (23, 39, 40) or social value orientation
(20–22) to improve the understanding of our behavioral phenotypes.

Finally, our results also have implications in policy-making and real-
life economic interactions. For instance, there is a large group of individ-
uals, the envious ones (about a third of the population), that in situations
such as HG fail to cooperate when they are at risk of being left with
lower payoff than their counterpart. This points to the difficulty of
making people understand when they face a nondilemmatic, win-win
situation, and that effortmust be expended tomake this very clear.Other
interesting subpopulations are those of the pessimist and optimist phe-
notypes, which together amount to approximately half of the popula-
tion. These people exhibit large or small risk aversion, respectively, and
use an ego-centered approach in their daily lives, thus ignoring that
others can improve or harm their expected benefit with highly un-
desirable consequences. A final example of the hints provided by our
results is the existence of an unpredictable fraction of the population
(undefined) that, even being small, can have a strong influence on social
interactions because its noisy behavior could lead people with more
clear heuristics to mimic its erratic actions. On the other hand, the clas-
sification in terms of phenotypes (particularly if, as we show here, it
comprises only a few different types) can be very useful for firms,
companies, or banks interactingwith people: it could be used to evaluate
customers or potential ones or even employees formanagerial purposes,
allowing for a more efficient handling of the human resources in large
organizations. This approach is also very valuable in the emergent de-
liberative democracy and open-government practices around the globe
[including the Behavioural Insights Team (58) of the UK government,
its recently established counterpart at the White House or the World
Health Organization (59)]. Research following the lines presented here
could lead to many innovations in these contexts.
MATERIALS AND METHODS

The experiment was conducted as a lab-in-the-field, that is, to avoid
restricting ourselves to the typical samples of university undergraduate
students, we took our laboratory to a festival in Barcelona and recruited
subjects from the general audience (28). This setup allows, at the very
least, to obtain results from a very wide age range, as was the case in a
previous study where it was found that teenagers behave differently
(55). All participants in the experiment signed an informed consent
to participate. In agreement with the Spanish Law for Personal Data
Poncela-Casasnovas et al. Sci. Adv. 2016; 2 : e1600451 5 August 2016
Protection, no association was ever made between their real names
and the results. This procedure was checked and approved by the Vice-
provost of Research of Universidad Carlos III deMadrid, the institution
funding the experiment.

To equally cover the four dyadic games in our experiments, we dis-
cretized the (T, S) plane as a lattice of 11 × 11 sites. Each player was
equipped with a tablet running the application of the experiment (see
section S1 for technical details and section S2 for the experiment
protocol). The participants were shown a brief tutorial in the tablet
(see the translation of the tutorial in section S3) but were not instructed
in any particular way nor with any particular goal in mind. They were
informed that they had to make decisions in different conditions and
against different opponents in every round. They were not informed
about how many rounds of the game they were going to play. Because
of practical limitations, we could only simultaneously host around
25 players, so the experiment was conducted in several sessions over a
period of 2 days. In every session, all individuals played a different,
randomly picked number of rounds between 13 and 18. In each round
of a session, each participantwas randomly assigned a different opponent
and a payoff matrix corresponding to a different (T, S) point among
our 11 × 11 different games. Couples and payoffmatrices were random-
ized in each new round, and players did not know the identity of their
opponents. In case there was an odd number of players or a given player
was nonresponsive, the experimental software took over and made the
game decision for him or her, accordingly labeling its corresponding
data to discard actions in the analysis (143 actions). When the action
was actually carried out by the software, the stipulation was that it re-
peated the previous choice of C or D with an 80% probability. In the
three cases where a session had an odd number of participants, it has
to be noted that no subjects played all the time against the software,
because assigning of partners was randomized for every round. The
total number of participants in our experiment was 541, adding up to
a total of 8366 game decisions collected, with an average number of
actions per (T, S) value of 69.1 (see also section S4.3).
SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/2/8/e1600451/DC1
Technical implementation of the experiment
Running the experiment
Translated transcript of the tutorial and feedback screen after each round
Other experimental results
fig. S1. System architecture.
fig. S2. Age distribution of the participants in our experiment.
fig. S3. Screenshots of the tutorial shown to participants before starting the experiment and
feedback screen after a typical round of the game.
fig. S4. Fraction of cooperative actions for young (≤15 years old) and adult players (>16 years
old) and relative difference between the two heatmaps: (young − adults)/adults.
fig. S5. Fraction of separate cooperative actions for males and females and relative difference
between the two heatmaps: (males − females)/females.
fig. S6. Fraction of cooperative actions separated by round number: for the first 1 to 3 rounds,
4 to 10 rounds, and last 11 to 18 rounds.
fig. S7. Relative difference in the fraction of cooperation heatmaps between groups of rounds.
fig. S8. Total number of actions in each point of the (T,S) plane for all 541 participants in the
experiment (the total number of game actions in the experiment adds up to 8366).
fig. S9. SEM fraction of cooperative actions in each point of the (T,S) plane for all the
participants in the experiment.
fig. S10. Average fraction of cooperative actions (and SEM) among the population as a
function of the round number overall (left) and separating the actions by game (right).
fig. S11. Distribution of fraction of rational actions among the 541 subjects of our experiment,
when considering only their actions in HG or PD, or both.
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fig. S12. Fraction of rational actions as a function of the round number for the 541 subjects,
defined by their actions in the PD game and HG together (top) and independently (bottom).
fig. S13. Values of risk aversion averaged over the subjects in each phenotype.
fig. S14. Average response times (and SEM) as a function of the round number for all the
participants in the experiment and separating the actions into cooperation or defection.
fig. S15. Distributions of response times for all the participants in the experiment and
separating the actions into cooperation (top) and defection (bottom).
fig. S16. Testing the robustness of the results from the K-means algorithm.
fig. S17. Davies-Bouldin index as a function of the number of clusters in the partition of our
data (dashed black) compared to the equivalent results for different leave-p-out analyses.
fig. S18. Average value for the normalized mutual information score, when doing pairwise
comparisons of the clustering schemes from 2000 independent runs of the K-means
algorithm both on the actual data and on the randomized version of the data.
fig. S19. Age distribution for the different phenotypes compared to the distribution of the
whole population (black).
fig. S20. Difference between the experimental (second row) and numerical (or inferred; first
row) behavioral heatmaps for each one of the phenotypes found by the K-means clustering
algorithm, in units of SD.
fig. S21. Average level of cooperation over all game actions and for different values of T (in
different colors).
fig. S22. Average level of cooperation as a function of (T,S) for both hypothesis and experiment.
 on A
ugust 5, 2016

http://advances.sciencem
ag.org/

ded from
 

REFERENCES AND NOTES
1. R. M. Dawes, Social dilemmas. Annu. Rev. Psychol. 31, 169–193 (1980).
2. P. Kollock, Social dilemmas: The anatomy of cooperation. Annu. Rev. Soc. 24, 183–214

(1998).
3. P. A. M. Van Lange, J. Joireman, C. D. Parks, E. Van Dijk, The psychology of social dilemmas:

A review. Organ. Behav. Hum. Dec. Process. 120, 125–141 (2013).
4. B. Skyrms, The Stag Hunt and the Evolution of Social Structure (Cambridge Univ. Press,

Cambridge, UK, 2003).
5. K. Sigmund, The Calculus of Selfishness (Princeton Univ. Press, Princeton, NJ, 2010).
6. H. Gintis, Game Theory Evolving: A Problem-centered Introduction to Evolutionary Game Theory

(Princeton Univ. Press, Princeton, NJ, ed. 2, 2009).
7. R. B. Myerson, Game Theory—Analysis of Conflict (Harvard Univ. Press, Cambridge, MA,

1991).
8. C. F. Camerer, Behavioral Game Theory: Experiments in Strategic Interaction (Princeton Univ.

Press, Princeton, NJ, 2003).
9. J. H. Kagel, A. E. Roth, The Handbook of Experimental Economics (Princeton Univ. Press,

Princeton, NJ, 1997).
10. J. O. Ledyard, Public goods: A survey of experimental research, in The Handbook of

Experimental Economics, J. H. Kagel, A. E. Roth, Eds. (Princeton Univ. Press, Princeton, NJ, 1997),
pp. 111–194.

11. A. Rapoport, M. Guyer, A taxonomy of 2 × 2 games. Gen. Syst. 11, 203–214 (1966).
12. M. W. Macy, A. Flache, Learning dynamics in social dilemmas. Proc. Natl. Acad. Sci. U.S.A.

99 (suppl. 3), 7229–7236 (2002).
13. A. Rapoport, A. M. Chammah, Prisoner’s Dilemma (University of Michigan Press, Ann Arbor,

MI, 1965).
14. R. Axelrod, W. D. Hamilton, The evolution of cooperation. Science 211, 1390–1396 (1981).
15. J. M. Smith, Evolution and the theory of games (Cambridge Univ. Press, Cambridge, UK, 1982).
16. R. Sugden, The Economics of Rights, Cooperation and Welfare (Palgrave Macmillan, London,

UK, ed. 2, 2005).
17. R. Cooper, Coordination Games (Cambridge Univ. Press, Cambridge, UK, 1998).
18. Y. Bramoullé, Anti-coordination and social interactions. Games Econ. Behav. 58, 30–49

(2007).
19. A. N. Licht, Games commissions play: 2×2 Games of international securities regulation. Yale

J. Int. Law 24, 61–125 (1999).
20. P. M. A. Van Lange, Beyond self-interest: A set of propositions relevant to interpersonal

orientations. Eur. Rev. Soc. Psychol. 11, 297–331 (2000).
21. C. E. Rusbult, P. A. M. Van Lange, Interdependence, interaction, and relationships. Annu.

Rev. Psychol. 54, 351–375 (2003).
22. D. Balliet, C. Parks, J. Joireman, Social value orientation and cooperation in social dilem-

mas: A meta-analysis. Group Process. Interg. Rel. 12, 533–547 (2009).
23. E. Fehr, K. M. Schmidt, A theory of fairness, competition, and cooperation. Q. J. Econ. 114,

817–868 (1999).
24. C. F. Camerer, T.-H. Ho, J.-K. Chong, A cognitive hierarchy model of games. Q. J. Econ. 119,

861–898 (2004).
25. A. Peysakhovich, M. A. Nowak, D. G. Rand, Humans display a ‘cooperative phenotype’ that

is domain general and temporally stable. Nat. Commun. 5, 4939 (2014).
Poncela-Casasnovas et al. Sci. Adv. 2016; 2 : e1600451 5 August 2016
26. M. Blanco, D. Engelmann, H. T. Normann, A within-subject analysis of other-regarding pre-
ferences. Games Econ. Behav. 72, 321–338 (2011).

27. A. P. Kirman, Whom or what does the representative individual represent? J. Econ. Perspec.
6, 117–136 (1992).

28. O. Sagarra, M. Gutiérrez-Roig, I. Bonhoure, J. Perelló, Citizen science practices for compu-
tational social science research: The conceptualization of pop-up experiments. Front. Phys.
3, 93 (2016).

29. J. MacQueen, Some methods for classification and analysis of multivariate observations, in
Proceedings of the fifth Berkeley Symposium on Mathematical Statistics and Probability (University
of California Press, Berkeley, CA, 1967), pp. 281–297.

30. D. L. Davies, D. W. Bouldin, A cluster separation measure. IEEE Trans. Pattern Anal. Mach.
Intell. 1, 224–227 (1979).

31. A. M. Colman, Game Theory and its Applications: In the Social and Biological Sciences (Psychology
Press, Routledge, Oxford, UK, 1995).

32. J. Von Neumann, O. Morgenstern, Theory of Games and Economic Behavior (Princeton Univ.
Press, Princeton, NJ, 1944).

33. G. T. T. Ng, W. T. Au, Expectation and cooperation in prisoner’s dilemmas: The moderating
role of game riskiness. Psychon. Bull. Rev. 23, 353–360 (2016).

34. T. K. Ahn, E. Ostrom, D. Schmidt, R. Shupp, J. Walker, Cooperation in PD games: Fear, greed,
and history of play. Public Choice 106, 137–155 (2001).

35. C. Engel, L. Zhurakhovska, “When is the risk of cooperation worth taking? The prisoner’s
dilemma as a game of multiple motives” (Max Planck Institute for Research on Collective
Goods no. 2012/16, Bonn, 2012).

36. R. Kohavi, A study of cross-validation and bootstrap for accuracy estimation and model
selection. IJCAI 14, 1137–1145 (1995).

37. D. J. C. MacKay, Information Theory, Inference, and Learning Algorithms (Cambridge Univ.
Press, Cambridge, UK, ed. 2, 2003).

38. V. Capraro, J. J. Jordan, D. G. Rand, Heuristics guide the implementation of social prefer-
ences in one-shot Prisoner’s Dilemma experiments. Sci. Rep. 4, 6790 (2014).

39. G. Charness, M. Rabin, Understanding social preferences with simple tests. Q. J. Econ. 117,
817–869 (2002).

40. G. Bolton, A. Ockenfels, ERC: A theory of equity, reciprocity and competition. Am. Econ. Rev.
90, 166–193 (2000).

41. A. Cabrales, The causes and economic consequences of envy. SERIEs 1, 371–386 (2010).
42. A. Cabrales, R. Miniaci, M. Piovesan, G. Ponti, Social preferences and strategic uncertainty:

An experiment on markets and contracts. Am. Econ. Rev. 100, 2261–2278 (2010).
43. J. C. Harsanyi, R. Selten, A General Theory of Equilibrium Selection in Games (Massachusetts

Institute of Technology Press, Cambridge, MA, 1988).
44. M. Bacharach, Interactive team reasoning: A contribution to the theory of co-operation.

Res. Econ. 53, 117–147 (1999).
45. R. Sugden, Thinking as a team: Towards an explanation of nonselfish behaviour. Soc. Philos.

Policy 10, 69–89 (1993).
46. R. Sugden, Mutual advantage, conventions and team reasoning. Int. Rev. Econ. 58, 9–20

(2011).
47. A. M. Colman, B. D. Pulford, C. L. Lawrence, Explaining strategic coordination: Cognitive

hierarchy theory, strong Stackelberg reasoning, and team reasoning. Decision 1, 35–58 (2014).
48. D. O. Stahl II, P. W. Wilson, Experimental evidence on players’ models of other players.

J. Econ. Behav. Organ. 25, 309–327 (1994).
49. D. O. Stahl, P. W. Wilson, On players’ models of other players: Theory and experimental

evidence. Games Econ. Behav. 10, 218–254 (1995).
50. E. Fehr, H. Bernhard, B. Rockenbach, Egalitarianism in young children. Nature 54,

1079–1083 (2008).
51. B. House, J. Henrich, B. Sarnecka, J. B. Silk, The development of contingent reciprocity in

children. Evol. Hum. Behav. 34, 86–93 (2013).
52. G. Charness, M.-C. Villeval, Cooperation and competition in intergenerational experiments

in the field and the laboratory. Am. Econ. Rev. 99, 956–978 (2009).
53. M. Sutter, M. G. Kocher, Trust and trustworthiness across different age groups. Games Econ.

Behav. 59, 364–382 (2007).
54. J. F. Benenson, J. Pascoe, N. Radmore, Children’s altruistic behavior in the dictator game.

Evol. Hum. Behav. 28, 168–175 (2007).
55. M. Gutiérrez-Roig, C. Gracia-Lázaro, J. Perelló, Y. Moreno, A. Sánchez, Transition from

reciprocal cooperation to persistent behaviour in social dilemmas at the end of adoles-
cence. Nat. Commun. 5, 4362 (2014).

56. T. Yamagishi, N. Mifune, Y. Li, M. Shinada, H. Hashimoto, Y. Horita, A. Miura, K. Inukai,
S. Tanida, T. Kiyonari, H. Takagishi, D. Simunovic, Is behavioral pro-sociality game-specific?
Pro-social preference and expectations of pro-sociality. Org. Behav. Human Decis. Proc.
120, 260–271 (2013).

57. F. Exadaktylos, A. M. Espín, P. Brañas-Garza, Experimental subjects are not different. Sci.
Rep. 3, 1213 (2013).

58. The Behavioural Insights Team, www.behaviouralinsights.co.uk.
59. World Health Organization, www.who.int/topics/obesity/en.
7 of 8

http://www.behaviouralinsights.co.uk
http://www.who.int/topics/obesity/en
http://advances.sciencemag.org/


R E S EARCH ART I C L E

D

Acknowledgments: We thank P. Brañas-Garza, A. Cabrales, A. Espín, A. Hockenberry, and A. Pah, as
well as our two anonymous reviewers, for their useful comments. We thank K. Gaughan for his
thorough grammar and editing suggestions. We also acknowledge the participation of 541 anon-
ymous volunteers who made this research possible. We are indebted to the BarcelonaLab program
through the Citizen Science Office promoted by the Direction of Creativity and Innovation of the
Institute of Culture of the BarcelonaCity Council ledby I. Garriga for their help and support for setting
up the experiment at the Dau Barcelona Festival at Fabra i Coats. We specially want to thank
I. Bonhoure, O. Marín from Outliers, N. Fernández, C. Segura, C. Payrató, and P. Lorente for all the
logistics in making the experiment possible and to O. Comas (director of the DAU) for giving us this
opportunity. Funding: This workwas partially supported byMineco (Spain) through grants FIS2013-
47532-C3-1-P (to J.D.), FIS2013-47532-C3-2-P (to J.P.), FIS2012-38266-C02-01 (to J.G.-G.), and FIS2011-
25167 (to J.G.-G. and Y.M.); by Comunidad de Aragón (Spain) through the Excellence Group of Non
Linear and Statistical Physics (FENOL) (to C.G.-L., J.G.-G., and Y.M.); byGeneralitat de Catalunya (Spain)
through Complexity Lab Barcelona (contract no. 2014 SGR 608; to J.P. and M.G.-R.) and through
Secretaria d’Universitats i Recerca (contract no. 2013 DI 49; to J.D. and J.V.); and by the European
Union through Future and Emerging Technologies FET Proactive Project MULTIPLEX (Multilevel
Complex Networks and Systems) (contract no. 317532; to Y.M., J.G.-G., and J.P.-C.) and FET Proactive
Project DOLFINS (Distributed Global Financial Systems for Society) (contract no. 640772; to C.G.-L.,
Poncela-Casasnovas et al. Sci. Adv. 2016; 2 : e1600451 5 August 2016
Y.M., and A.S.). Author contributions: J.P., Y.M., and A.S. conceived the original idea for the ex-
periment; J.P.-C., C.G.-L., J.V., J.G.-G., J.P., Y.M., J.D., and AS contributed to the final experimental
setup; J.V., .J.D., and J.P.-C.wrote the software interface for the experiment; J.P.-C.,M.G.-R., C.G.-L., J.G.-G.,
J.P., Y.M., and J.D. carried out theexperiments; J.P.-C.,M.G.-R., C.G.-L., and J.G.-G. analyzed thedata; J.P.C.,
M.G.-R., C.G.-L., J.G.-G., J.P., Y.M., J.D., and A.S. discussed the analysis results; and J.P.-C., M.G.-R., C.G.-L.,
J.V., J.G.-G., J.P., Y.M., J.D., and A.S. wrote the paper. Competing interests: The authors declare that
they have no competing interests.Data andmaterials availability:All data needed to evaluate the
conclusions in the paper are present in the paper and/or the Supplementary Materials. Additional
data related to this paper may be requested from the authors.

Submitted 1 March 2016
Accepted 2 July 2016
Published 5 August 2016
10.1126/sciadv.1600451

Citation: J. Poncela-Casasnovas, M. Gutiérrez-Roig, C. Gracia-Lázaro, J. Vicens, J. Gómez-Gardeñes,
J. Perelló, Y. Moreno, J. Duch, A. Sánchez, Humans display a reduced set of consistent behavioral
phenotypes in dyadic games. Sci. Adv. 2, e1600451 (2016).
 ow
8 of 8

 on A
ugust 5, 2016

http://advances.sciencem
ag.org/

nloaded from
 

http://advances.sciencemag.org/


doi: 10.1126/sciadv.1600451
2016, 2:.Sci Adv 

2016)
Perelló, Yamir Moreno, Jordi Duch and Angel Sánchez (August 5,
Gracia-Lázaro, Julian Vicens, Jesús Gómez-Gardeñes, Josep 
Julia Poncela-Casasnovas, Mario Gutiérrez-Roig, Carlos
phenotypes in dyadic games
Humans display a reduced set of consistent behavioral

this article is published is noted on the first page. 
This article is publisher under a Creative Commons license. The specific license under which

article, including for commercial purposes, provided you give proper attribution.
licenses, you may freely distribute, adapt, or reuse theCC BY For articles published under 

. here
Association for the Advancement of Science (AAAS). You may request permission by clicking 
for non-commerical purposes. Commercial use requires prior permission from the American 

licenses, you may distribute, adapt, or reuse the articleCC BY-NC For articles published under 

http://advances.sciencemag.org. (This information is current as of August 5, 2016):
The following resources related to this article are available online at

http://advances.sciencemag.org/content/2/8/e1600451.full
online version of this article at: 

 including high-resolution figures, can be found in theUpdated information and services,

http://advances.sciencemag.org/content/suppl/2016/08/01/2.8.e1600451.DC1
 can be found at: Supporting Online Material

http://advances.sciencemag.org/content/2/8/e1600451#BIBL
 5 of which you can access for free at: cites 40 articles,This article 

trademark of AAAS 
otherwise. AAAS is the exclusive licensee. The title Science Advances is a registered 
York Avenue NW, Washington, DC 20005. Copyright is held by the Authors unless stated
published by the American Association for the Advancement of Science (AAAS), 1200 New 

 (ISSN 2375-2548) publishes new articles weekly. The journal isScience Advances

 on A
ugust 5, 2016

http://advances.sciencem
ag.org/

D
ow

nloaded from
 

https://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
http://www.sciencemag.org/site/help/about/permissions.xhtml#perm
http://advances.sciencemag.org/content/2/8/e1600451.full
http://advances.sciencemag.org/content/suppl/2016/08/01/2.8.e1600451.DC1
http://advances.sciencemag.org/content/2/8/e1600451#BIBL
http://advances.sciencemag.org/


 
 

advances.sciencemag.org/cgi/content/full/2/8/e1600451/DC1 
 

 

Supplementary Materials for 
 

Humans display a reduced set of consistent behavioral phenotypes in 

dyadic games 
 

Julia Poncela-Casasnovas, Mario Gutiérrez-Roig, Carlos Gracia-Lázaro, Julian Vicens, 

Jesús Gómez-Gardeñes, Josep Perelló, Yamir Moreno, Jordi Duch, Angel Sánchez 

 

Published 5 August 2016, Sci. Adv. 2, e1600451 (2016) 

DOI: 10.1126/sciadv.1600451 

 

This PDF file includes: 

 

 Technical implementation of the experiment 

 Running the experiment 

 Translated transcript of the tutorial and feedback screen after each round 

 Other experimental results 

 fig. S1. System architecture. 

 fig. S2. Age distribution of the participants in our experiment. 
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S.1. Technical implementation of the experiment

To conduct the experiment and collect the data we implemented a local network architecture

(see ig. 1) which consisted of 25 mobile devices (tablets), a router, and a laptop running a web

server and a database server. The system was designed to allow playing synchronized sessions,

to collect and store user data safely, and to control in real time the experiment while the users

were playing against each other.

The game was accessible through a web application specifically designed for tablets. All

the interactions that users made through the game interface were immediatelly sent to the server

through a client API -no data was stored in the tablets-. The server also provided a server API

to control and monitor the status of each experiment session.

The software of the experiment was developed using Django framework and Javascript.

Both APIs were implemented using RESTful services and JSON objects for the exchange of

data between server and clients, which was stored in a MySQL database.

S.2. Running the experiment

The experiment was carried out during the game festival (Festival del Joc) DAU Barcelona

http://lameva.barcelona.cat/daubarcelona, in December 2014, over a period

of two days. We collected data from 541 subjects in total, who were recruited by our team

among the game fair attendees. Due to space limitations, the experiment took place in multiple

sessions over those two days, in groups of 15 − 25 people. The average age among our 541

subjects was 31.3 (SD=14.3) (see ig. 2 for the age distribution of the population), with 64.5%

males and 35.5% females.

Each person was given a tablet to play the game using the tablet’s browser. Before the actual

experiment started, the subjects were shown a tutorial in their tablets, to learn (i) the basic rules

f S

f S



of how to play the game, (ii) an explanation about the meaning of the payoff matrix and their

possible choices, and (iii) a couple of examples of game rounds equivalent to the ones they

would face during the actual game. Also, some of our team members were walking around the

room answering questions from the subjects during the tutorial period (but not during the actual

game). Nonetheless, we did not instruct them to play in any particular way nor with any one

particular goal in mind. In fig. S3 we show the tutorial screens. After a player had read the

tutorial, she pressed a button to indicate the system that she was ready to start playing. Once

everyone was ready, the game administrator started the game.

Each game session was carried out for a random number of rounds, between 13 and 18.

The players did not know the total number of rounds they were going to play. For each round,

subjects were randomly assigned different opponents, and nobody knew who they were playing

against. In each round of the game, the players had 40 seconds to make their action choice. If

they did not choose anything, a random choice was generated by the system (and saved in our

database, properly labeled to be discarded in the analysis). After a player had made a decision

in a particular round, she had to wait until all other players were done too, before obtaining

the outcome of the round and proceeding to the next game round (fig. S3j). Finally, in order

to encourage the experimental subjects’ decisions with real material (economic) consequences,

they were informed that they would receive lottery tickets proportionally to the payoff they ac-

cumulated during the rounds of dyadic games they played. The four prizes in the corresponding

lottery were coupons redeemable at participating neighboring stores, worth 50 euros each.

S.3. Translated transcript of the tutorial and feedback screen
after each round

Before the experiment started, and for each group of subjects, we showed them a tutorial in the

same tablets used to play the game. The format and presentation of the game examples used



in the tutorial were identical to those of the real experiment. We present next the translation

into English of the text from every screen of the tutorial (the original was made available to the

participants in Castilian/Spanish and Catalan.

Tutorial Screen #1. See fig. S3(a). Welcome to Dr. Brain. The game, designed to study

how we make decisions, is made of several rounds with different opponents located in the DAU.

During the experiment we don’t expect you to behave in any particular way: there are no wrong

nor incorrect answers. You will simply have a limited time to make your decisions. In these next

screens we will teach you how to play Dr. Brain. Use the side arrow keys to move within

the tutorial, and when you are done you will be able to start the rounds. This game has been

thought by scientists from the Universitat of Barcelona (UB), Universitat Rovira i Virgili (URV),

Instituto de Biocomputación and Sistemas Complejos (BIFI)-Universidad de Zaragoza (UZ)

and Universidad Carlos III in Madrid (UC3M). It is an experiment to study and understand

how we humans make decisions.

Tutorial Screen #2. See fig. S3(b). The rules of Dr. Brain. It is important that you don’t

talk to other players during the experiment. Keep focused! The decisions made during the

experiment and the accumulated points will determine your chances of wining prizes: the more

points, the more tickets you will get for the raffle. If you leave the game while it is in progress,

you won’t be able to come back in!

Tutorial Screen #3. See fig. S3(c). This is the screen you will see when the rounds of the

game start. In each one of them, we will assign you a random partner to play.

Tutorial Screen #4. See fig. S3(d). Each round has a table that represents your opponent’s

possible actions as well as yours. Your opponent and you will follow the same rules in the

round. In this way, depending on what each one of you choose, you will win more or less. The

rows represent your choice, the columns represent your opponent’s. For each choice, it is listed

how much you will win, and how much your opponent will.



Tutorial Screen #5. See fig. S3(e). Pay attention, the tables may change from round to

round, and the rules may be different. You may win more or less points, o what seemed more

interesting may be different now.

Tutorial Screen #6. See fig. S3(f). To play you must choose one of the two options, repre-

sented by a color. Your opponent plays following the same rules as you, described in the table,

but you won’t know his choice until after the end of the round.

Tutorial Screen #7. See fig. S3(g). Every round of the game lasts 40 seconds, you have to

choose one of the two actions during that time. If you don’t choose anything, the computer will

do it for you randomly and you will move on to play the next round. Don’t worry, 40 seconds is

plenty of time!

Tutorial Screen #8. See fig. S3(h). Example: If you pick RED and your opponent picks

GREEN. You (red) win 8 and your opponent (green) wins 6.

Tutorial Screen #9. See fig. S3(i). Example: If you pick PURPLE and your opponent picks

YELLOW. You (purple) win 11 and your opponent (yellow) wins 0. If your adversary chooses...

If you choose... You win... He wins... What do you choose?

Feedback Screen after a typical round of the game. See fig. S3(j). Almost there, thanks

for your patience! You and your opponent have both chosen YELLOW. You and your opponent

have earn 5 each. Next game starts in... (countdown)

S.4. Other experimental results

S.4.1. Fraction of cooperation by age and gender

We did not find any significant differences in the fraction of cooperative actions in the whole

(T, S)-plane by age when separating young players (≤ 15 years old) from adults (> 16 years

old) (see ig. 4) nor between males and females (see ig. 5).f S f S



S.4.2. Fraction of cooperation by game round

We did not observe large differences in the fraction of cooperative actions in the whole (T, S)-

plane when separating by game round, with the exception of the first few rounds of the session

(see fig. S6 for heatmaps of cooperation and fig. S7 of heatmaps of relative differences in coop-

eration).

S.4.3. Number of actions per (T, S)-plane point and Standard Error of the
mean fraction of cooperation

The total number of actions generated by our 541 subjects was 8, 366. The (T, S)-plane was

discretized into a 11 × 11 lattice, and the (T, S) point for any given pair of opponents and for

any given round was randomly generated in such a way that subjects had uniform probability

to be assigned to any point in the (T, S)-plane. Thus, the average number of actions per (T, S)

point is 69. In fig. S8 we show the total number of actions per point in the (T, S)-plane for all

subjects.

On the other hand, in ig. 9, we show the Standard Error of the mean fraction of cooperative

actions for all the actions and all the players in the experiment, for the whole (T,S)-plane. We

observe that the values for the Standard Error of the mean are uniformly distributed across the

entire (T,S)-plane, except for the upper-left triangle of the HG, where the error is clearly lower

than in the rest of the regions. This seems to indicate that at a population level, most people

chose the same action at least in that particular region.

S.4.4. Time evolution of the fraction of cooperation

Our experiment was designed to avoid learning or memory effects as much as possible, making

each subject play knowingly in different game conditions and against different anonymous op-

ponents in every round. In the left panel of fig. S10, we show the average fraction of cooperative

f S



actions as a function of the round number over the whole population, and we observe how there

is only a very small decline in cooperation as the round number increases, specially during the

first two or three rounds. Also, note that the dispersion of the values is larger in the last few

rounds, since every subject play a random total number of rounds between 13 and 18 rounds.

Similarly, we show in the right panel of fig. S10 the average fraction of cooperative actions as a

function of the round number, separating the actions into the different games. In this case we

do observe a small decline of cooperation in the case of the Prisoner’s Dilemma (PD) and the

otherft (SG), and a small increase in cooperation in the Harmony (HG), while the fraction of

cooperative actions doesn’t show any particular trend for the Stag Hunt (SH).

S.4.5. Rationality and Risk aversion

We measure the level of rationality (only under the assumption of self-interest) among our

subjects using only their actions in the Harmony and/or Prisoner’s Dilemma games. According

to Game Theory, the rational action in the Harmony game is to cooperate, while in the Prisoner’s

Dilemma it is to defect.

In fig. S11 we show the distributions of the fraction of rational actions chosen by the subjects

in the Harmony game (HG), in the Prisoner’s Dilemma (PD), and in both games combined,

along with the corresponding mean values among the population (vertical purple lines). We

observe that an important subset of individuals presents a fraction of rational actions near 1.0

(around 50% of subjects when calculated with either game independently, and around 30% when

calculated with both games combined). However, there are also some others that act irrationally

(around 5% or 10% as calculated with either game). Note that the average value of rationality

of the whole population when both games are considered in the statistics, is around 75% (see

purple vertical lines in fig. S11).

Moreover, we checked the time evolution of the fraction of rational actions in the population,



as defined by their actions in the Harmony (HG) and Prisoner’s Dilemma (PD) games together,

and independently (fig. S12), and we do not observe any significant increase or decrease of

rationality as a function of the round number in any case.

Regarding the definition of risk-aversion, we choose to define it as the number of cooperative

actions in the SG together with the number of defective actions in the SH (over the total sum of

actions in both quadrants for a given player). The rationale behind such a combined measure

of risk aversion is the avoidance of the bias of pure cooperativeness: were we to measure risk

aversion only in the SH (instead of combining both SH and SG), for a group that defects a lot

everywhere in the (T, S)-plane, it would appear as if they are more risk averse than they really

are, while a mostly cooperative group would appear as less risk averse than they really are. A

similar reasoning would apply to only using the SG quadrant for the measure, and therefore we

have looked at the actions in both the coordination and anti-coordination games together.

In fig. S13 we represent the average values of risk-aversion according to this definition,

for each one of the phenotypes, and the population as a whole. While Envious, Trustful, and

Un players exhibit intermediate levels of risk aversion (0.52, 0.52 and 0.54, respectively), Pes-

simists exhibit a significantly higher value (0.73), consistent with their fear of facing the worst

possible outcome and their choice of the best worst-case scenario. In contrast, the Optimist

phenotype shows a very low risk aversion (0.32), in agreement with the fact that they aim to ob-

taining the maximum possible payoff, risking the possibility that their counterpart do not work

with them towards that goal.

S.4.6. Response times

We have also examined the response times of the individuals in our experiment, separating the

data by cooperation/defection actions, and as a function of the round number. Figure S14 shows

that the average response time is around 15 seconds. We did not find any dependence with the



round number nor with the type of action. Finally, fig. S15 displays the distributions of response

times for all individuals, for each of the two possible actions.

S.4.7. Clustering Analysis

We hypothesized that there are distinct, well-defined types of individuals (or phenotypes) in our

dataset, that can be told apart by using an unsupervised clustering algorithm. Hence, we run a

K-means clustering algorithm on our data (using the Scikit-learn Python package) to analyze its

clustering structure. We represent each participant in the dataset by a four-dimensional vector,

corresponding to her average fraction of cooperative actions in each one of the four dyadic

games (Prisoner’s Dilemma, Stag Hunt, Snowdrift and Harmony).

The K-means unsupervised clustering algorithm groups the data into a user-defined number

of clusters, by both minimizing the dispersion within each cluster and maximizing the distance

between the centroids of each pair of clusters. For a given number of clusters, k = 2, 3, 4, ..., 20,

we run the algorithm 200 times on our data (with different seeds for the algorithm in every run),

and obtain the average value of the BD-index (see subsection below for formal definition),

which is a measure of how optimal is that K-scheme. This way we can pick which one is the

best cluster scheme. In fig. S16 we show the average value and the Standard Deviation (SD)

of the DB-index, as a function of the number of clusters in the partition. This representation

will have a minimum around the optimum number of clusters for a given dataset. Conversely,

it would be monotonically decreasing if the data set lacks any significant cluster structure.

We found that there is an optimum around a scheme with 5 or 6 clusters (black line in

indicates that the partition schemes found in different realizations of the algorithm for k = 5

are much more similar to each other in terms of their corresponding DB-index, than in the case

of k = 6), we pick k = 5 as our optimum clustering partition. Note also that the SD is very

fig. S16). However, due to the fact that the SD is considerably smaller for 5 than for 6 (which



large for any partition with 6 or more clusters, which also points to the lack of robustness of

those partition schemes.

It is also important to mention that this clustering approach does not allow us to compare

our results against the ’ground truth’, since that is unknown to us. We can only test for its

robustness, and we do this in multiple ways. We present the results from the same algorithm,

also run 200 times, but this time on a randomized version of our data. This data randomization

is done as follows: we take the 8, 366 actions of the 541 subjects and create an ’action pool’ with

them. From this pool of data we draw (with replacement) to obtain the new, randomized sets of

actions for each person, in such a way that we preserve the number of times each subject has

played and the particular (T, S) points she played in, but now her actions are randomized. With

this randomization procedure we preserve the average fraction of cooperative actions in the

population, but destroy any possible correlations among the actions of any given subject. Note

in fig. S16 that with the randomized version of the data (green line), there is no local minimum

for the DB index, and the best partition would be to have as many clusters as possible, which is

an indication of the lack of internal structure of the randomized data.

On the other hand, and recalling that the cooperation patterns in the heatmap for all users

seems to be a little less clear during the first few rounds (while the subjects seem to be picking

up the mechanics of the experiment), than during the rest of the experiment (see fig. S6), we

also test the clustering structure of our data when removing the first couple of rounds for every

subject. In this case, we observe that the cluster structure is even clearer, with an even more

significant minimum at k = 5 clusters, as indicated by the DB-index (fig. S16, red line).

On the other hand, we also wanted to test the robustness of our clustering analysis against

data perturbations, specifically by running it on just a subset of the original data. In order to do

so, we run the algorithm 200 times again, but in each realization we exclude a given number of

players and all their actions, randomly chosen (that is to say, we perform a leave-p-out analysis,



for different values of p). We do this for a scheme with k = 2, 3, 4, ..., 20 clusters, and leaving

out p = 100, 300, 400, and 450 subjects (out of the total 541), and calculate again the average

DB index for them. In fig. S17 we show the results from the leave-p-out procedure as they

compare to the original data (the black dashed line in fig. S17). We observe that the results of

the K-means analysis in our data are very robust when randomly removing p ≤ 300 subjects

from the original set and all their actions (that is up to 55% of the data): we observe that the

optimum in the DB index remains around the same value k = 5. However, the SD is larger for

all the leave-p-out cases, and for any given k or p, than for the analysis perform over the original

data set. This variability gets larger the more data is randomly excluded. Of course, if too much

of the data is removed (p ≥ 300 subjects), the K-means algorithm is no longer able to retrieve

the original optimum cluster structure, as can be inferred from the gradual disappearance of

the local minimum in fig. S17 as p increases. We remind the reader that a data set lacking any

cluster structure would render a monotonically decreasing DB index as a function of the number

of clusters.

S.4.8. DB index

The Davies-Bouldin index, or DB index (30), is a metric for evaluating and comparing cluster-

ing algorithms. It is minimized by the optimum clustering scheme, that is to say, by the partition

in a number of clusters such that it presents the minimum dispersion within each cluster, and

the maximum distance between all pairs of clusters. In particular, this metric performs an inter-

nal evaluation, that is, the validation of the goodness of the clustering partition is made using

quantities inherent to the data set. Hence, it does not do a validation against the ’ground truth’.

We picked this particular validation method because in this context there isn’t a known ground

truth for types of players (or ’phenotypes’).

Given a certain scheme or partition in N clusters, let Ci be a cluster of vectors, and let



~X` be an n-dimensional feature vector that represents subject ` (in our particular case, n = 4

dimensions), who is assigned to cluster Ci. The dispersion Si within cluster Ci is calculated as

Si =
1

Ti

Ti∑
`=1

‖ ~X` − ~Ai‖ (1)

where ~Ai is the centroid of cluster Ci, ‖ ~X` − ~Ai‖ denotes the Euclidean distance between the

vector ~X` and the centroid ~Ai, and Ti is the size of cluster Ci (that is, the number of subjects

assigned to that cluster).

Then for each pair of clusters i and j, we define the matrix

Rij =
Si + Sj

Mij

(2)

where Mij = ‖ ~Ai− ~Aj‖ is the separation between clusters i and j (that is, the distance between

their corresponding centroids).

Thus, we can define the DB index as

DB =
1

N

N∑
i=1

Di (3)

where Di = max
i 6=j

Rij .

S.4.9. Normalized Mutual Information Score

In order to compare the consistency between two independent runs of the K-means algorithm

in terms of the individuals’ composition of the clusters obtained, we use the Normalized Mutual

Information Score (37), as implemented in the Python package SciKit Learn).

The Mutual Information is a measure of the similarity between two clustering (or labeling)

systems U and V of the same data into disjoint subsets, and it is given by the relative entropy be-

tween the joint distribution and the product distribution. Mutual Information between clustering

systems U and V is then defined as



MI(UV ) =
U∑
i=1

V∑
j=1

P (i, j)log
P (i, j)

P (i)P ′(j)
(4)

P (i) is the probability of a random sample occurring in cluster U i and P ′(j) is the

probability of a random sample occurring in cluster Vj .

To obtain a Normalized Mutual Information Score in such a way that it is bounded between

0 (no mutual information) and 1 (perfect correlation), the Mutual Information is normalized

by
√

H(U) ∗H(V ), being H(U) the entropy of the clustering system U , and H(V ) that of

clustering V .

Note that this metric is independent of the absolute values of the labels: a permutation of

the class or cluster label values will not change the score value in any way, and furthermore, it

is symmetric, since switching the labels from clustering system U to clustering system V will

return the same score value.

In fig. S18 we present the average value of Normalized Mutual Information, 〈MI〉, for any

number of clusters in the original data, and in the randomized version of the data, over 2, 000

runs of the algorithm. We proceed as follows: we perform (1, 000) pair-wise comparison of

clustering schemes obtain in different runs, calculating its corresponding score in each case, so

then we can obtain an average. We observe how the score is significantly higher in the case of

the actual data, than when comparing with the results from a randomized version of the data

(for example, 〈MI〉 = 0.97, SD : 0.03, vs 〈MI〉 = 0.59, SD : 0.18 for actual and randomized

results at k = 5 clusters), which indicates that the individuals composition of the clusters in any

two runs of the algorithm on the real data are extremely correlated, but it is not the case for two

runs over randomized data. Finally, we also report that the score is at its highest value for k = 5

clusters.

where



S.4.10. Age and gender by phenotype

The average (SD) age by phenotype is: for the Envious is 29.9(13.9); 32.5(13.7) for the Op-

timist; 32.0(16.8) for the Undefined; 32.29(14.1) for the Cooperators, and 30.7(13.8) for the

Pessimist. We do not observe significant differences on the average age among different phe-

notypes nor with respect with the population average (31.3, SD: 14.3).

In fig. S19 we present the age distributions by phenotype, as they compare to the distribution

for the whole population. We do not observe significant differences for any of the distributions

by phenotype when comparing with that for the whole population nor by doing pair-wise com-

parisons of different phenotypes. The corresponding p-values for the KS-test (used to compare

the probability distribution of two samples) of each possible pairwise combinations are non-

significant: Envious vs Optimist: 0.31; Envious vs Undefined: 0.29; Envious vs Trustful: 0.32;

Envious vs Pessimist: 0.81; Optimist vs Undefined: 0.57; Optimist vs Trustful: 0.99; Optimist

vs Pessimist: 0.64; Undefined vs Trustful: 0.71; Undefined vs Trustful: 0.71; Undefined vs

Pessimist:0.68; Trustful vs Pessimist: 0.67. Similarly, the p-values for all comparisons between

clusters and the whole population are non-significant: Optimist vs all: 0.88; Envious vs all:

0.79; Undefined vs all: 0.68; Trustful vs all: 0.88; Pessimist vs all: 0.81.

The percentage of males for each phenotype is: 67% among the Envious, 64% among the

Optimist, 64% among the Undefined, 61% among the Cooperators and 64% among the Pes-

simists (while the percentage of males for the whole populations is 64%). The z-scores of the

comparison of gender distributions of each cluster vs the whole population by bootstrapping are

all non-significant: Envious vs all: -0.036; Optimist vs all: -0.460; Undefined vs all: -0.260 ;

Trustful vs all: -0.646; Pessimist vs all: -0.132.



S.4.11. Differences between experimental and numerical behavioral heatmaps

Assuming that each subject in our study plays using one and only one of the behavioural rules or

phenotypes, and preserving the relative fractions of each one of them present in the population

as found by the clustering algorithm, we can compute the differences between experimental and

numerical (or inferred) behavioral heatmaps for each phenotype. In fig. S20 it can be seen that,

even if occasionally the difference can reach up to 4 SD units for a particular (T, S) point, there

is no systematic bias in any of the different heatmaps. The average difference in the aggregate

case is of 1.39 SD units, while the difference by phenotype are: 1.91 SD units for Envious, 1.85

SD units for Optimist, 2.14 SD units for Pessimist, 1.79 SD units for Trustful, 1.12 SD units

for Undefined. Thus none of the phenotypes presents an average difference beyond the 99%

Confidence Interval (2.575 SD units). Indeed, only Pessimists present an average difference

out of 95% Confidence Interval (1.96 SD units), the rest are below such standard threshold.

We thus clearly show that the aggregation of the behavior of our volunteers into the proposed

phenotypes is not significantly different from what we have obtained in the experiment.

S.4.12. Dependence of cooperation on S − T

Inspired by the population-level observation about the patterns described by lines parallel to

S = T , and the fact that the population as a whole does not seem to distinguish between

SH and SG, we studied cooperation as a function of the combined variable (S − T ). The

results, represented in fig. S21, show a remarkable collapse of all curves into a single one,

indicating that the aggregate cooperation level can be described by (S − T ), as previously

pointed out by Rapaport (11, 13). In this respect, it is worth noting that (S − T ) represents

the maximum possible payoff difference for any game. For very negative values of (S − T ),

which corresponds to the PD game, the levels of cooperation are low but not zero, while for

positive values (corresponding to HG) they are high, with intermediate, increasing values of



cooperation for the region (S − T ) ∈ [−10, 0], which roughly corresponds to a combination of

the coordination and the anti-coordination games. This suggests that competition, in the sense

of ending up being better off than one’s counterpart, may be important for our experimental

subjects.

Further, we check whether these results are reproduced from our interpretation of the clus-

tering results and the corresponding simulations. In ig. 22 we plot together the results obtained

from numerical simulations that use the experimentally obtained classification. As shown, by

simply using the right fraction of each phenotype (behavioral rules) in the population, we can

recover the observed diagonal symmetry, thus further confirming our 5-phenotype hypothesis.

f S



Figure 1: System architecture.
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fig. S2. Age distribution of the participants in our experiment.
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ig Screenshots of the tutorial shown to participants before starting the experiment, and
feedback screen after a typical round of the game. See text for translation.
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ig 10 Average fraction of cooperative actions (and Standard Error of the Mean) among the
population as a function of the round number overall (left) and separating the actions by game
(right).
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ig 1 Distribution of fraction of rational actions among the 541 subjects of our experiment,
when considering only their actions in the Harmony game (HG), or the Prisoner’s Dilemma
(PD), or both together. The purple line indicates the mean value.
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ig 13 Values of risk-aversion averaged over the subjects in each phenotype. The phe-
notypes of Optimist and Pessimist show significantly lower and higher values than random
expectation, respectively. Error bars indicate 95% Confidence Intervals.

fig. S12. Fraction of rational actions as a function of the round number for the 541 subjects,
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ig 14 Average response times (and Standard Error of the Mean) as a function of the round
number, for all the participants in the experiment, and separating the actions into cooperation
(C) or defection (D).
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ig 15 Distributions of response times for all the participants in the experiment, and sepa-
rating the actions into cooperation (top) and defection (bottom).
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ig 16 Testing the robustness of the results from the K-means algorithm. We present the
average value of the DB-index over 200 independent runs of the algorithm on the data, as a
function of the number of clusters (black). The optimum number of clusters is 5 (we note that,
although a 6-cluster partition is also comparably good, the Standard Deviation (SD) is larger
in that case, indicating less stability across different runs). We also show the results for the
case of a randomization of the data (green). In this case, we observe that there is no local
minimum, indicating a lack of cluster structure. Finally, we observe that when excluding the
first two choices of every subject in our experiment (to account for excessive noise due to lack
of experience), the position of the optimum is located in a clearer way at 5.
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ig 17 DB-index as a function of the number of clusters in the partition of our data (dashed
black) as it compares to the equivalent results for different leave-p-out analyses. See text for
details. The bars correspond to the Standard Deviation over the 200 independent realizations of
the algorithm.
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ig 1 Average value for the Normalized Mutual Information Score, when doing pair-wise
comparisons of the clustering schemes from 2, 000 independent runs of the K-means algorithm,
both on the actual data, and on the randomized version of the data.
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ig 20 Difference between the experimental (second row) and numerical (or inferred, first
row) behavioral heatmaps for each one of the phenotypes found by the K-means clustering
algorithm, in units of SD. The difference between theory and experiment averaged over all
(T, S)-plane is 1.91 SD units for Envious, 1.85 SD units for Optimist, 2.14 SD units for Pes-
simist, 1.79 SD units for Trustful, 1.12 SD units for Undefined and 1.39 SD units for the overall
results in the Aggregation column.
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ig 21 Average level of cooperation over all game actions and for different values of T (in
different colours). We observe disparate results when cooperation fraction is represented as a
function of S (left) but we find a nice collapse of all curves when cooperation level is expressed
as a function (S − T ) (right).
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ig 22 Average level of cooperation as a function of (S − T ) for both hypothesis and
experiment. We consider the weight (number of decisions) in each cell when averaging over
cells with same (S−T ). The error bars and the grey area represents a 95% Confidence Interval
for the experimental points and the recreated curve respectively.
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