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COMPUTATIONAL SOCIAL SCIENCES

The study of  social phenomena by means of computing and statistical data processing. 
CSS has revolutionated the Scientific Method.
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SOCIAL SCIENCES —— Fields & Scope
Generally include:



DIGITAL REVOLUTION

WHAT WE HAVE...
Large Datasets (Increasing amount of data)
Big Data era - New data sources: GIS data, sensor data, economic data, etc...
New Technologies and Computing Devices (Tablets, Smartphones,..)
Social Media Platforms (Facebook, Twitter, MySpace...)
Advances in High Performance Computing  (HPC)





VELOCITY

VARIETY

VOLUME The size of generated and stored data (large amount of data)

The speed at which the data is generated and processed/analyzed

Type and nature of data. It refers to heterogeneous data assets that require 
new forms of processing to guarantee enhanced decision making. It is more 
complicated to extract value from unstructured data (text, multimedia content).

The 4Vs of Big Data

We generate a huge amount of data, but what is really important is that  
the toughest challenge begins now     

VERACITY Quality of the collected data/ Uncertainty of data

In the last years, Big Data practitioners have proposed 
additional Vs: VALUE, VARIABILITY, VISUALIZATION



DATA ARE REALLY BIG, 
                   BUT CHALLENGES TOO 

COLLECTED       ANALYSED      AGGREGATED         
                      TRANSMITTED      SHARED      VISUALIZED…

Large	sample	size	
High	Dimensionality	

We	need	to	overcome	
the	current	limitations



To	the	extent	that	we	better	understand	
human	 behavior,	 	 we	 will	 understand	
more	 precisely	 the	 world	 in	 which	 we	
live	 and,	 only	 then,	 we	 will	 be	 able	 to	
build	 a	 more	 fair,	 sustainable	 and	
advanced	Society.

Big Data/ ICT/ Complexity/ Society

-  Network Analysis (Complex Networks Theory)
-  Modeling
- Computational Tools
- Statistical Data Analysis
- Multilevel Complex Systems Perspective
- The Design of More Realistic Scenarios
- New Approaches to evaluate, manage, predict/
 forecast the instabilities of a given system
- Knowledge Transfer & Applications...Our Modern & Interconnected Society

INNOVATION/ ECONOMIC GROWTH/
MANY CHALLENGES

ICT TECHNOLOGIES

- New Paradigm
- Integrative Vision
- Collective Behavior
- Interaction with the Environment
- Adaptability
- Emergent Properties
- Non-equilibrium Dynamics
- Analysis of the Different Scales 
  of the System...

- Large Volume of Data/ Information
- Real-Time Data Collection
- Data of Incalculable Value
- Blurring Geographical Boundaries
- Collective Participation & Dissemination of Knowledge
- Participatory Experiments, Observatories...

- WE, HUMANS, are also Complex
- NO Physical Law is able to explaining
  how we behave in different contexts.
- We permanently interact with each other 
  in an ever-changing sorrounding.
- Large-Scale Experiments to unveil the clues of      
human behavior & to test theoretical predictions.

HUMAN
BEHAVIOR

Multidisciplinary  Vision
Scientific Method
Tools & Useful Simulations for  
Policymakers
Training New Generations
Learning, Applicability, Planning
Better Society (Progress)

What about us?
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COMPLEXITY SCIENCE:    What does it allow us?

• To understand the general principles that govern the behavior of a wide set of real systems in 
order to be able to predict, model and control their functioning. 

• To develop new models and algorithms to analyze the emerging properties of social and 
technological systems and evaluate the potential failures of them.

• To progress enough in the basic theoretical aspects and in the application of the 
generated knowledge to achieve a more precise characterization of real systems.

• To develop powerful tools to deal with new forms of interaction between individuals. 
Methodological transformation of current modeling paradigms.

• To foster interdisciplinarity.

Integrative/ Multidisciplinary Approach  (COMPLEXITY SCIENCE)

APPROACH:



COMPLEXITY SCIENCE
Understanding, Evaluating, Managing, Predicting/Forecasting the Behaviour of Complex Systems

Systems are treated as a whole with a focus beyond traditional boundaries
THE WHOLE IS MORE THAN THE SIMPLE SUM OF ITS PARTS

VS
REDUCTIONIST APPROACH  (Detrimental Influence in many areas,

reduce phenomena to simple terms, NO emergent properties... )

Interconnected & Interdependent elements
Emergent Properties & Behavior
Non-Linearity
Self-Organization
Networked Hierarchical Connectivities

Multiple Levels of Organization
Sensitivity to Initial Conditions
Systems change over time
Limited predictability
Adaptability... 

NEW PARADIGM



 • The simultaneous characterization of the interactions and dynamics at a local scale and 
the study of their integration into a global and coherent dynamics at a system-wide 
scale.

• New methods, tools and techniques for mapping and measuring the relationships 
among people and organizations. 

• Social network analysis (SNA) offers a useful mathematical and visual analysis of human 
relationship.

• An importan role in influencing learning and in the diffusion of behaviors, technology, etc.

• Extract and intelligently exploit knowledge from data collected, promote innovation 
processes and diversify opportunities in all fields.

• Different applications: viral marketing, organizational dynamics, law enforcement, etc

• To foster new opportunities for collaborative research.

SOCIAL NETWORK ANALYSIS -  NETWORK THEORY:

RELATIONSHIPS BETWEEN ACTORS, KEY ACTORS,  ACTOR’S LOCATION IN THE 
NETWORK, NETWORK STRUCTURE, CENTRALITY MEASURES, etc.



Social Networks: Nodes of individuals, organizations, groups which are connected by diffferent 
kinds of interdependencies. Social Networks can be studied by means of Graph Theory. 

Graph: A mathematical abstraction consisting of a set of N nodes or vertices, connected by a set of 
E edges or links.

Erdős-Rényi Regular Small world Scale free

Social Network Analysis (SNA): The study of social structures through the use of networks 
and graph theory. It is focused on the importance of relationships among interacting units/
actors (people, groups, organizations), and provides a powerful analysis of the patterns of 
human interactions.

Different techniques, tools and methods for collecting data, visualization and statistical analysis 
are used in the field.

APPLICATIONS: Disease spreading (how does an infectious disease spread in a population?), inter-
organizational collaboration, decision-making processes…

Network analysis gives a solid and detailed vision of different aspects of social phenomena.
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Criminal Justice
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Analytics

THEORIES, METHODS, COMPUTATIONAL TOOLS:

Social Network Analysis (NETWORK THEORY)
Statistical tools
Data mining techniques
Agent- Based Modeling
Machine learning (more accurate algorithms)
Natural Language processing
Simulation models

Large Datasets (Increasing amount of data)
Big Data era - New data sources: GIS data, sensor data, economic data, etc...
New Technologies and Computing Devices (Tablets, Smartphones,..)
Social Media Platforms (Facebook, Twitter, MySpace...)
Advances in High Performance Computing  (HPC)

WHAT WE HAVE...

Integrative/ Multidisciplinary Approach  (COMPLEXITY SCIENCE)

APPROACH:

PRESSING CHALLENGES:
The Digital Revolution has generated a 
significant  amount of data, but... Do we know 
how to make optimal, appropriate and 
ethical use of that information?

We need to develop new metrics and 
algorithms and the Mathematics of "Big Data "

Understand how the Society of the Future will 
be and what we can do to be prepared for 
the changes (Security, New Protocols, 
Governance, Data protection,...)
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Computational social sciences

The study of social phenomena by means of Computing and 
Statistical Data Processing

APPLICATIONS:

SOCIAL SCIENCES:
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CHALLENGES:

• Data alone do NOT represent knowledge
• Lay down the foundation for the quantitative modeling of large-scale 

social phenomena in complex and realistic real-world contexts.
• To face the new challenges to data-driven and data-intensive 

applications.
• To pave the way for the transition from an analogue to a digital 

society.
• Patterns of behavior found through extensive data mining will feed 

improved versions of current models which can then be used to 
implement policies aimed at improving the citizens quality of life.

• Identify the best course of action to transfer the acquired knowledge 
from basic sciences to the application level. 

• To develop new algorithms and standards for data processing.
• To be able to anticipate the consequences of new regulations, 

actions or systems failures.
• Guarantee the quality and consistency of data.
• How to store, protect and catalog the data? 
• To work on ethical and legal regulations.



ONLINE Social Systems



STRUCTURE & DYNAMICS OF INFORMATION 
IN ONLINE SOCIAL NETWORKS

               A: Interaction Network between Twitter users/ 

B: Most representative communities 

A

B

“Structural and Dynamical Patterns 
on Online Social Networks: The 

Spanish May 15th Movement as a 
case study”, PLoS ONE 6(8): e23883 

(2011)

Indignados Movement, Spain.
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Video: BIFI Institute ©

In the online world, the “average individual approach” does not work in general.  

Few individuals receive a lot of messages while others are mainly senders.



DIFFERENT CONTAGION PATHS
(Epidemic & Rumor Models, Threshold Models...)

 MODELING CONTAGION 
IN ONLINE SOCIAL SYSTEMS

An idea, behavior, product is adopted and transmitted in a 
population by individuals known as Potencial Adopters. 
They are previously exposed to the behavior of other 
individuals in their contact networks. It is a local process. 

THRESHOLD MODELS 
In the Threshold models the decision of adopting certain 
behavior/idea depends on a critical proportion of contacts 
that have already adopted such behavior, so that a 
particular individual/agent will only adopt it, if his number 
of active contacts is higher than a certain threshold. 

The decisions to adopt are taken independently with 
probability p for each successive contact.

Contagion dynamics: At each time step, infected individuals 
propagate the contagion to susceptible neighbours with 
probability λ. Infected individuals can recover at a rate μ (SIR 
models), or they can revert to the susceptible state with 
probability μ ( SIS models).
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This has allowed: 

- Blurring the geographical boundaries.
- Quick access to information.
- Strengthen the relationship between individuals (online 
world).
- To group together many social agents around a common 
issue/goal.
- Deeply modify the dynamics of Information.
- Making our World more global.

ACCESS TO FREE LARGE DATA SETS
storing, processing data &

also make sense of all  the information available

RENOVATED INTEREST IN THE STUDY 
OF LARGE SOCIAL SYSTEMS  

STRUCTURE
- Formation and evolution of 
interaction networks.
- Topological properties of 
individuals.
-Emergent properties of the 
system.

- Propagation of information.
- Adoption of certain behaviors.

DYNAMICS

Epidemic- and Rumor- like Dynamics MODELS 

- J. Borge-Holthoefer, R. A. Baños, S. González-Bailón and Y. Moreno, “Cascading Behavior in Complex Socio-technical Networks”, Journal of Complex Networks 1, 3-24 (2013)



 “The Dynamics of Protest Recruitment through an Online Network”, Scientific Reports 1, 197 (2011).
S. González-Bailon, J. Borge-Holthoefer, A. Rivero, and Y. Moreno

We study recruitment patterns in Twitter network and find evidence of Social Influence and 
Complex Contagion.  

We also identify the network position of early participants (i.e. the leaders of the recruitment process) 
and of the users who acted as seeds of message cascades (i.e. the spreaders of information). 
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Inter- and intra-modular cascading 
events for the topics under consideration 
(left: ‘grassroots’; right: ‘elections’). 
Binned representation of the relationship 
between the number of nodes in a 
cascade that unfolds in the same 
community of the initial seed and the size 
of the cascade itself. Proportions have 
been normalized column-wise, i.e. by the 
total number of cascades with the same 
size. 

“The Role of  Hidden Influentials in the Diffusion of Online Information Cascades”, EPJ Data Science 2:6 (2013).
R. A Baños, J. Borge-Holthoefer and Y. Moreno 
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Time-constrained information cascade 

- Time-constrained cascades: Nodes are disposed in 
concentric circles indicating the time when they 
received a specific tweet.  
- Links between them represent the follower/friend 
relationship: an arrow from i to j indicates that j 
follows i, as any tweet posted by i is automatically 
received by j.  
- Red nodes are those who posted a new message at 
the corresponding time, whereas gray nodes only 
listened to their friends. 



HIDDEN
INFLUENTIALS

The success of an activity cascade might greatly depend on 
intermediate spreaders characteristics, and not only on the 
properties of the seed nodes. That being so, a large seed kout 
(i.e. its follower set) may be a sufficient but not a necessary 
condition for the generation of large-scale cascades.

- Here, we have to consider the important role 
of a new class of actors: The Hidden 
Influentials:
Hidden influentials, i.e., relatively smaller (in terms of 
connectivity and centrality) nodes which, on the aggregate, can 
make chain reactions turn into global cascades.

These nodes do not occupy key topological positions that 
would a priori identify them as influential, and yet they play a 
major role promoting system-wide events. Therefore, getting 
these nodes involved has a multiplicative impact on the size of 
the cascades.

- Hubs often act as cascade firewalls rather 
than spawners
For a cascade to be successful in terms of the number of users 
involved in it, key nodes should be engaged. These nodes are 
not the hubs, which more than often behave as firewalls, but 
belong to a middle class that either has a high multiplicative 
capacity or bridges the modules that make up the system.



Distribution of users according
 to Network Position and Message Activity

• The vertical axis tracks the number of protest 
messages that users received by the number of 
protest messages they sent; the most visible users 
(those who were mentioned more often) are above 
the dashed line.


• The horizontal axis tracks the number of other 
accounts a user is following by the number of 
followers the user has; the most central and 
popular users in this baseline network are on the 
left of the dashed line. 


Users who are central in the overall communication 
network are not necessarily the most visible users in the 
stream of protest information flow.

Distribution of activation time
 and cascade sizes.

 S. González-Bailón, J. Borge-Holthoefer, and Y. 
Moreno, “Broadcasters and Hidden Influentials 

in Online Protest Diffusion”, American 
Behavioral Scientist 57, 943 – 965 (2013)



Geographical distribution of the protests 
 The maps are based on profile location information



USER 1 USER 2

TO
PI
CS

#NEVERALONE

#LOVE

#ANNIVERSARY

#EMOTIONAL

#CATLADY
#LATTE #COFFEE

#FOODPORN

#LUNCHUSERS

#INSTADAILY

t1
t2

t3

#COFFEE #FOODPORN #LUNCH

Insta
daily

#LATTE

!

#INSTADAILY

#LOVE

#LOVE #ANNIVERSARY

#EMOTIONAL #NEVERALONE #CATLADY

t1
t2

t3

#FOODPORN #LUNCH#LATTE

!

#LOVE

#LOVE #ANNIVERSARY

#NEVERALONE #CATLADY

2 4 5User 1 User 2 2 3 3
0.00

0.05

0.10

0.00 0.25 0.50 0.75 1.00
Average Similarity

No
rm

ali
ze

d F
req

ue
nc

y

Friends
Random

98,506,315

TWEETS

Twe
ets

 wi
th h

ash
tag

s (1
6,
93
5,
62
5)

Dis
tin

ct h
ash

tag
s (4

,3
20
,4
29

)

Use
rs w

ith 
twe

ets
 (1,
28
6,
81
6)

Use
rs w

ith 
has

hta
gs 

(77
4,
59
6)

Cen
tral

 us
ers

 (9,
63
2)

Cen
tral

 us
ers

’ fri
end

s (4
,1
90
,2
44

)

Cen
tral

 us
ers

 in 
sec

ond
 cra

wli
ng 

(6,
29
6)

“Topical Homophily in Online Social Systems” 
Felipe Maciel Cardoso, Sandro Meloni, Andre Santanche & Yamir Moreno

https://arxiv.org/abs/1707.06525

Homophily



Onymity vs Anonymity
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“Effects of Network Structure, Competition and Memory Time on Social Spreading Phenomena”, 
Physical Review X 6, 021019 (2016), 

J. P. Gleeson, K. P. O’Sullivan, R. A. Baños, Y. Moreno 

MEMES SPREAD



Sentiment Analysis

Political Campaign:
Predict election

Outcomes

Consumer
Confidence

Market
Trends

Opinions about a 
product/ REVIEWS:
Positive-Negative

Sentiment Analysis is the field of study that analyzes people’s opinions, sentiments, 
attitudes, and emotions towards entities such as products, services, organizations, 
individuals, etc. It consists of an application of text analytics techniques for the 
identification of subjective opinions in text data and determines if they are positive, 
negative or neutral.

One of the most sought-after topics in Computer Science



Twitter 
Activity

TOP-DOWN 
APPROACH INDIVIDUAL LEVEL

Individuals & their relations

COLLECTIVE LEVEL

COLLECTIVE LEVEL INDIVIDUAL LEVEL

EMOTIONAL EXPRESSION
(Tweets)

SOCIAL 
INCLUSION

SENTIMENT
POLARIZATION

DIGITAL TRACES
Public Messages exchange in Twitter Activity

84,698 USERS/    556,334 TWEETS, 15M Spain

PSYCHOLINGUISTICS (SentiStrengh Tool), 
SENTIMENT ANALYSIS (LIWC: Linguistic Inquiry & Word Count Lexicom),
DYNAMIC CASCADES ANALYSIS:
We adopt a definition based on Time-Constrained Cascades

Understanding the role of tweet content in the size 
and reach of collective discussions in Twitter
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- Activity and information cascades are larger in the 
presence of negative collective emotions and when users 
express themselves in terms related to social content.
- The sentiment expressed in the first tweet of a cascade 
does not significantly impact the size of the cascade.
- The collective emotions in the cascade are responsible 
for its size in terms of spreaders/listeners.
- The cognitive content of the tweets of a cascade plays no 
role in their spread. 
- Cascades with large ratios of social-related terms have 
distributions of listener and spreader sizes that scale with 
system size.

- Social integration of participants in the Movement, as 
measured through social network metrics, increases with 
their level of engagement and of expression of 
negativity.
- Users are more integrated in the Movement, measured 
by their k-core centrality, if they exhibit higher levels of 
engagement and express stronger negativity.
- Highly integrated and influential users have a lower 
tendency to express social content in tweets.
- Social activation becomes salient in the periphery of the 
Movement rather than in its core.ht
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Dashed lines show the result of 
power-law fits.



Human Behavior
We are complex, heterogeneous, sometimes unpredictable, but with an extraordinary capacity to help strangers in 

the most unimaginable and unprofitable circumstances. Possibly, that is where our greatness lies.

The are many factors that influence human behavior: 

Personal Attitude Influence of the Environment Cultural Aspects

Social Interaction InfographicGenetics



• We are heterogeneous (still, we are able to reach agreements, consensus)

• We don’t know the laws that govern human behavior 

   Certainly, we do not behave like molecules of an Ideal Gas, and many methods of Physics fail when it comes to   
       analyze collective human behavior. 

   Mean Field Theory———FAILS—-—The “average individual” does not exist.

• We cooperate more than any other species, but we cooperate a lot with unrelated individulas. 
Coooperative behaviors can not be explained by kin selection. This particular problem related to altruism 
and cooperation was one of the major difficulties to which Darwin’s Evolutionary Theory had to face. 

• Game theory (mathematical modeling of strategic interaction among rational and irrational agents) is extremely 
useful to unravel human behavior and also provides analytical tools for understanding a wide range of 
phenomena that occur in real life. The Prisoner's Dilemma is the best-known and studied model 
in game theory.

The Physics of Human Behavior: a Conundrum



In a world in which the interaction networks and relationships between individuals are becoming more and  
more complex, different hypotheses have emerged to explain the foundations and mechanisms of human 
cooperation. Real-world situations can be modeled and analyzed as a game by means of Game Theory, 
specially, in fields such as: Biology, Sociology, Economics, etc. 

The Prisoner’s Dilemma is the best-known and studied model in game theory. It shows how cooperation 
requires a commitment from both players in order to obtain mutual beneficial outcomes. 

Prisoner Dilemma is a formalized incentives game, which considers two types of players:
- Cooperators: who pay a cost to help other people
- Defectors: who avoid paying this cost while reaping benefits from cooperators

From an individual/unilateral perspective, not cooperating is always the best strategy:
If the other player cooperated, I would get more benefits if I would not.
If the other player did not cooperate, the best thing for me would also be not to cooperate.

However, mutual cooperation is better than not cooperating unilaterally. This is the dilemma!

GAME THEORY
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A

R: Reward for mutual cooperation
(Cooperate/Cooperate)

S: Sucker's Payoff
(Cooperate/Defect)

T:Temptation to Defect
(Defect/Cooperate)

P: Punishment for Mutual Defection
(Defect/Defect)
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T > R > P > S

Prisoner’s Dilemma: Payoff Matrix



GAME THEORY- Different Games
R

 >
T 

> 
P 

> 
S 

T 
> 

R
 >

 P
 >

 S

Conflict between safety  & 
social cooperation

(cooperation is a risky choice)

2 Nash Equilibria
Both players cooperate/defect

Mutual cooperation/ mutual defection 
are Nash Equilibria

T 
> 

R
 >

 S
 >

 P

 

Nash Equilibrium
One dominan strategy equilibrium:

Both players defect

Conflict between individual rationality and 
mutual benefit.

 In equilibrium, each prisoner chooses to defect 
even though both would gain more if they 

cooperate.

2 Nash Equilibria
  Two pure strategies equilibria

and a mixed strategy of cooperation 
and defection (Mixed equilibrium).

Mixed strategy is inefficient.

Defecting provides the higher 
benefits against a cooperator, but defection 

is risky since defectors are penalized.
The best strategy is to do the opposite of 

what your opponent does.

S 
> 

P,
  R

 >
 T

The expected  payoff is higher for cooperation
regardless other player's actions.

Cooperation is the only strict best response
to itself and to defection.

Unique Nash Equilibrium
Non Dilemma Game

No collective action problem
SG

SG

Harmony Game

Snow Drift Game

Stag Hunt Game

Prisoner’s Dilemma Game



HARMONY GAME

PRISONER'S DILEMMA GAME

SNOW DRIFT GAME

STAG HUNT GAME

T:  Temptation to defect

R: Reward for mutual cooperation

P: Punishment for mutual defection

S: Sucker's payoff

GAMES Payoff Matrixes

Nash equilibrium is a term used to describe a scenario where no player can profitably 
deviate given the strategies of the other players. 

A pure strategy is one strategy according to which a certain behavior (or "move") is 
chosen with certainty in a given context.



Interactions among living organisms, from bacteria colonies to 
human societies, are inherently more complex than interactions 
among particles and non-living matter. Group interactions are a 
particularly important and widespread class, representative of 
which is the public goods game. In addition, methods of statistical 
physics have proved valuable for studying pattern formation, 
equilibrium selection and self-organization in evolutionary 
games.  

Here, we review recent advances in the study of evolutionary 
dynamics of group interactions on top of structured 
populations, including lattices, complex networks and 
coevolutionary models. We also compare these results with those 
obtained on well-mixed populations. The review particularly 
highlights that the study of the dynamics of group interactions, 
like several other important equilibrium and non-equilibrium 
dynamical processes in biological, economical and social 
sciences, benefits from the synergy between Statistical Physics, 
Network Science and Evolutionary Game Theory.

“Evolutionary dynamics of group 
interactions on structured populations: 

a review” 

Journal of the Royal Society Interface 10,  
20120997 (2013). M.Perc et al.

Square Lattice Honeycomb Lattice

Kagomé Lattice Triangular Lattice

1. Introduction
2. Lattices
3. Complex networks

4. Coevolutionary rules
5. Outlook
6. Summary
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We propose a generalization of 
the Hawk-Dove Game for an 

arbitrary number of agents: the 
N-person Hawk-Dove Game

W. Chen, C. Gracia-Lazaro, Z. 
Li, L. Wang, and Y. Moreno, 
“Evolutionary Dynamics of N-
person Hawk-Dove games”, 
Scient ific Reports 7:4800 
(2017).

Evolutionary 
Game Theory
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Phase diagrams for the N-person Hawk-
Dove Game with threshold. Diagrams 
show the different regimes in the N-person 
HDG-T for a sample size of N=5 and an 
infinite population. 

Different panels correspond to different 
thresholds T=0.2, 0.4, 0.6, 0.8 respectively. 
Within the bi-stability regime both full-dove 
state and full-hawk state can be reached 
from different initial conditions, while the 
bi-stability+stability regime corresponds 
to coexistence state together with full-dove 
state. In the doves regime, the dynamics 
always leads to a full-dove state. The 
resource is taken R=1.



LARGE-SCALE COLLECTIVE EXPERIMENTS
Some experiments…



LARGE-SCALE COLLECTIVE EXPERIMENTS

A Large-Scale Experiment in real time
with 1229 students, December 2011, 

Zaragoza, Spain

SO MANY QUESTIONS:
• What are the mechanisms that promote cooperation in 

humans?

• What is the interplay of social context and cooperative 
behavior?

• How do we behave in different strategic scenarios?

• Can we build realistic models of how individuals behave and 
use them to study societal and organizational dynamics?

• Are we able to predict when a collective behavior emerge and 
unfold? 

• Are the laws that govern the Online world the same as those of 
the Offline world?

• Can we describe with accuracy the different collective 
phenomena associated to human behavior?



- The level of cooperation reached in both networks is the same, comparable with the level of 
cooperation of smaller networks or unstructured populations. 

- Subjects respond to the cooperation that they observe in a reciprocal manner, being more likely to 
cooperate if, in the previous round, many of their neighbors and themselves did so.

- Our results suggest that population structure has little relevance as a cooperation promoter or inhibitor 
among humans.

C. Gracia-Lázaro , A. Ferrer , G. Ruíz , A. Tarancón , J. A. Cuesta , A. Sánchez, and Y. Moreno, “Heterogeneous networks do not promote cooperation 
when humans play a Prisoner’s Dilemma”, Proceedings of the National Academy of Sciences USA 109, 12922-12926 (2012).

1229 players (coming from 42 schools of Aragon) - 44% male, 56% female  

Heterogeneous Networks
do not promote cooperation among humans  

playing a PD game
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C. Gracia-Lázaro , A. Ferrer , G. Ruíz , A. Tarancón , J. A. Cuesta , A. Sánchez, and Y. Moreno, “Heterogeneous networks do not 
promote cooperation when humans play a Prisoner’s Dilemma”, Proceedings of the National Academy of Sciences USA 109, 
12922-12926 (2012).

The level of cooperation declines and is independent of the network of contacts. Fraction of cooperative actions (level of cooperation) per 
round during the experiment (A) and the control (B) for both networks and histograms of cooperative actions in the lattice (C) and the 

heterogeneous network (D). The histograms (C and D) show the number of subjects ranked according to the fraction of cooperative actions 
that they perform along the experiment in the two networks.
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- The structure of the population does not affect the global level of cooperation.
- Why?: because players’ behavior does not depend on the payoff differences.

predict (9–11). This finding is especially remarkable for the
heterogeneous network, on which no previous results are avail-
able, and it is in stark contrast with the predictions that this kind
of networks should be particularly efficient in promoting co-
operation (11–13). In the control, the initial level of cooperation
is already at these low values. This behavior is consistent with
previous findings in experiments with smaller lattices (15, 18) as
well as unstructured populations (22, 23). Regarding the slow
decay undergone by these curves after the first quick drop in
the level of cooperation, we believe that this finding is associated
with a process of learning (see below). However, the most re-
markable result that Fig. 2 provides is that, quite unexpectedly, the
network does not have any influence in the evolution of the level of
cooperation. In fact, both curves are nearly identical—the slightly
lower values obtained for the lattice are likely to arise from the
small difference in the initial level of cooperation—despite the very
different nature of the networks of contacts between the players.
The experimental result that we have just reported is in very

good agreement with the theoretical prediction in ref. 19. This
finding prompts us to investigate in detail the players’ behavior,
because the reason why this prediction was different from earlier
ones is the use of the update rule observed in ref. 15. The dis-
tributions of subjects by their individual cooperation levels (av-
eraged over the whole experiment) depicted in Fig. 2 C and D
show some heterogeneity of behavior: a few subjects have a high
level of cooperation (above 70%), and a sizable fraction coop-
erated in less than 20% of the rounds, whereas the bulk of
subjects have intermediate levels of cooperation. Importantly,
the comparison of these distributions of actions, which turns out
to be statistically indistinguishable (Kolmogorov–Smirnov test
data in Table S1), provides additional evidence that the behavior
observed in the two networks is the same. This finding, along with
the identical behavior of the cooperation level, suggests that sub-
jects use the same strategies in the lattice and the heterogeneous
network, regardless of the fact that, in the latter, the number of
neighbors of each individual is heterogeneously distributed.
After considering the aggregate distribution of actions, let us

now look for deeper insights on the individual behaviors. As in
previous experiments on smaller lattices (15, 18) or unstructured
populations (22, 23), our results are compatible with a co-
existence of at least three basic strategies: cooperators (players
who cooperate with a high probability regardless of the context),
defectors (players who defect with a high probability regardless
of the context), and moody conditional cooperators (15) (players
whose action depends on their previous action as well as the level
of cooperation in their neighborhood). A search for moody
conditional cooperation shows the results depicted in Fig. 3. Fig.
3 A and B shows the fraction of cooperative actions occurred
after a cooperation/defection as a function of the level of co-
operation in the neighborhood. The plots are the fingerprint of
moody conditional cooperation: players are more prone to co-
operate the more their neighbors cooperate if they cooperated
than if they defected. Furthermore, Fig. 3 also supports the
striking finding that the strategic behavior of subjects is re-
markably similar whether they are playing on the lattice (Fig. 3A)
or the heterogeneous network (Fig. 3B). However, Fig. 3 C and
D shows that the next action of a subject cannot be predicted
knowing the largest payoff difference that he/she sees in the
neighborhood, thus confirming that subjects did not use payoff
differences as a guidance to update their actions.
Fig. 4 provides additional evidence of the significance of the

moody conditional cooperation by means of a nonparametric
bootstrap check. The series of actions taken by every individual is
randomly reassigned to other positions in the lattice or the
network, and the probability of cooperation is recomputed.
This action is done 106 times, and the results show that the two
probabilities become independent of the context. Of course, such
a reshuffling will not change the dependence on the player’s own

previous action, because the order of the actions is not altered;
consequently, there are still two distinct lines corresponding to
the probability of cooperation after cooperation or defection, but
the dependence on the number of cooperators in the previous
round is fully removed.
The existence of (almost pure) cooperators and defectors

aside from moody conditional cooperators can be further sup-
ported through a comparison with the same histograms but for
the control condition (Fig. S4), because for the latter, a larger
number of subjects are in the region that would correspond to
defectors. This finding can be interpreted as an indication that a
fraction of (probably) moody conditional cooperators changed to
a defective strategy, given that retaliation is ineffective in the
control condition. Furthermore, performing running averages of
the levels of cooperation during the experiment condition (Figs.
S5 and S6) shows that the number of subjects with levels of co-
operation that are below a given threshold increases with time—
irrespective of the precise value of the threshold. Not only does
this finding give support to the existence of this kind of players,
but it is consistent with a continuous (albeit small) flow of players
who change from moody conditional cooperation to defection—
a behavior that could be understood as a generalized form of a
grim strategy. Notice that this flow can account for the slow
decay observed all along the run of the experiment and control
observed in Fig. 2 A and B.
Finally, another important point that our experiment addresses

to some extent is the dependence of the actions on the connec-
tivity of the participants for the heterogeneous network. The
results are displayed in Fig. 5, where we represent the average
cooperation level c as a function of the connectivity of the players

B

C

A

D

Fig. 3. Players’ behavior depends both on the level of cooperation in the
neighborhood and their previous action. Frequency of cooperative actions
after a cooperative/defective action conditioned to the context (fraction of
cooperative actions in the neighborhood in the previous round) observed in
the lattice (A) and the heterogeneous network (B). Details of the linear fits
and comparison with randomizations to prove statistical significance can be
found in Table S2 and SI Results and Discussion. The plots show that there is
a relevant dependence on the context for subjects who cooperated in the
previous round (i.e., were in a cooperative mood): the cooperation proba-
bility increased with the fraction of cooperative neighbors, similar to the
conditional cooperators found in the work by Fischbacher et al. (24). How-
ever, after having defected, this dependence is less clear, and if anything, it
suggest an exploiting behavior—subjects who defected are less prone to
cooperate the more cooperation that they find. C and D show how subjects
who cooperated or defected are distributed according to the largest payoff-
per-link difference in their neighborhoods between the two actions. These
plots reveal that a player’s decision to cooperate or defect was independent
of the payoffs per link that they observed (information that was explicitly
provided during the experiment).

12924 | www.pnas.org/cgi/doi/10.1073/pnas.1206681109 Gracia-Lázaro et al.
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C. Gracia-Lázaro , A. Ferrer , G. Ruíz , A. Tarancón , J. A. Cuesta , A. Sánchez, and Y. Moreno, “Heterogeneous networks do not promote cooperation 
when humans play a Prisoner’s Dilemma”, Proceedings of the National Academy of Sciences USA 109, 12922-12926 (2012).



What is Reputation?
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Objectives:

- Is reputation the driving mechanism observed behind the levels of cooperation when 
individuals play a PD’ game?

- How can we quantify reputation?

Reputation is a weighted combination of average cooperation and last action, and it strongly conditions linking.
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Subjects try to hold a high reputation, but not the 
highest. The histogram of link lifetimes shows a fast 
exponential decay.

(A; average lifetimes are 2.75 rounds for m= 1, 3.21 for 
m= 3, and 3.23 for m= 5 ). This is a consequence of the 
fact that most individuals keep a record of 2 cooperative 
actions out of 3.
(B) or 2–4 out of 5.
(C); in other words, subjects often defect but not too much 
as that would ruin their reputation. This sporadic defection 
has a drastic effect on the linking dynamics because 
reputation is very much influenced by subjects’ last action.
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The level of cooperation is significantly higher when the past actions record of players 
to whom to connect is available.
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“What it lies in our power to do, 
                 It lies in our power not to do”

Aristotle
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http://cosnet.bifi.es
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