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• An Axelrod-like model describes the evolution of topics in the social debate.
• The introduction of new topics has little effect on cultural groups.
• Renewal of topics influences substantially cultural overlaps.
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a b s t r a c t

We consider an open-ended set of cultural features in the Axelrod model of cultural
dissemination. By replacing the features in which a high degree of consensus is achieved
by new ones, we address here an essential ingredient of societies: the evolution of topics
as a result of social dynamics and debate. Our results show that, once cultural clusters
have been formed, the introduction of new topics into the social debate has little effect
on them, but it does have a significant influence on the cultural overlap. Along with the
Monte Carlo simulations, we derive and numerically solve an equation for the stationary
cultural overlap based on amean-field approachwhich reproduces the qualitative behavior
of the model.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Agent-Based Modeling has become one of the major techniques to study complex adaptive systems, being currently a
paradigm in fields as diverse as ecology, sociology, economics or engineering. The use of agent-based models (ABM) [1,2] in
the study of social phenomena provides a powerful theoretical framework that gives useful insights about the fundamental
mechanisms at work in social systems. In ABMs, agents represent interacting entities (for example, individuals or groups of
individuals) and are characterized by a set of internal states. In particular, in opinion ABMs, agents are provided with a set of
opinion variables [3]. In 1977, Axelrod [4] proposed an ABM for the dissemination of culture based on the idea of homophily,
i.e., the tendency of individuals to interact with similar ones and, as a consequence, become even more alike. According
to this idea, the likelihood for an individual to imitate a cultural trait from another individual will depend on how many
other traits they have already in common. For low values of the initial cultural diversity, the resulting dynamics converges
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Fig. 1. In this illustrative figure, each layer represents a different feature (f = 1, 2, . . . , F ), while nodes represent the agents. Each agent is depicted by
the same node in all the layers, and links stand for the contacts between agents. When the fraction of agents sharing the most abundant trait of a feature
reaches the value ϕ (left panel, layer F ), consensus on the topic is assumed and it is replaced by a new emerging topic through the initialization of traits in
layer F (right panel). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

to a global monocultural state, characterized by agents that share every cultural trait. In contrast, for high values of initial
diversity multiculturality prevails. This change of macroscopic behavior has been characterized as a non-equilibrium phase
transition [5–7]. In fact, the use ofmethods and tools of statistical physics for describing the spread of cultural traits, opinions,
or conventions in terms of non-equilibrium phase transition is nowadays well established [3]. In particular, this approach
has proved to be effective for describing ordering dynamics that generate global consensus as an emergent phenomenon
in systems characterized by a big number of interacting agents, and nowadays the number of different models that present
such ordering transition is extensive. For example, we can cite the opinion dynamics of the simple Sznajd model [8], or
systems where individuals adopt the local majority state [9], or approaches based on a nonlinear interaction between
opinion vectors [10]. Similar models have also been used for the description of linguistic dynamics, as for the Naming game
models [11,12], or for application to market phenomena, as in the case of the Minority Game [13].

Turning back to the Axelrod’s Model, we can cite several studies which focus on specific issues of this model, such as the
effects of the network’s topology [14,15], clustering [16], cultural drift (modeled as noise) [17,18], local social pressure [19],
confidence thresholds [20], media (represented by an external field) [21,22], mobility and segregation [23–25], and dynamic
networks [26]. In addition to the Axelrod model, other types of dynamics for vectors of opinions have been proposed,
including binary [27–29] and continuous variables [30] for the opinions, as well as multilayer structures [31].

Although the Axelrod model can capture some realistic features of societies [32], it does not take into account a key
characteristic of real-world social dynamics, namely, the evolution of topics in the social debate. This fact defines an open-
ended systemwhere new themes enter the social debatewhile older ones are archived.While, for example, in the nineteenth
century slaverywas discussed and in the first half of the twentieth century therewas a debate onwomen’s suffrage, currently
these themes are not any more at debate. Instead, new issues arise and become the center of the political discourse.

In this work, we consider a model that takes into account the open-ended nature of the social debate. This particular
aspect of social dynamics has beenpreviously dealtwith in other ABMused to describe the exchange of linguistic conventions
[33–35]. In the case of the Axelrodmodel, an open set of cultural features is easily introduced by substituting the topicswhich
achieve a high degree of consensus. This is implemented reinitializing with random traits the cultural feature that achieves
a level of agreement greater than a threshold ϕ. The parameter ϕ can be interpreted as the resistance of the society, that is,
the minimum level of agreement required to assume consensus on an issue. Our numerical results show that the emergence
of new topics for discussion into the social debate has little effect on cultural groups once they have been consolidated,
but it does have a considerable effect on cultural overlaps. Along with Monte Carlo simulations, we have also performed a
mean-field analysis. Although the mean-field approach reproduces qualitatively some aspects of the numerical results, it
substantially underestimates the value of the cultural overlap, a fact that highlights the influence of the topology and the
correlations between the different cultural features in the Axelrod dynamics.

2. Renewal of social debate topics in the Axelrod model

In Axelrod’s original model of cultural dissemination,N cultural agents occupy the nodes of a network whose links define
the social contacts among them. Each agent i is assigned to a culture modeled as a vector of F integer variables {σf (i)}
(f = 1, . . . , F ), the cultural features, that can assume q values, σf = 0, 1, . . . , q − 1, the traits of the feature. The features
of each agent i are initialized by random assignment of traits from a uniform distribution. The parameter q represents the
initial cultural diversity. At each time step, a random agent i is chosen and allowed to imitate an unshared feature trait of a
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Fig. 2. (A) Time evolution of the agreement level, i.e., fraction of agents sharing the most abundant trait, on a given feature. When the level of agreement
reaches the value ϕ = 0.95, the feature is reinitialized by random assignment of traits. (B) Cumulative number of resetting events (features reinitializations)
as a function of time, for different features. The panels show the evolution of a representative realization in a random regular network of degree k = 6.
Different colors represent different features. Other values are q = F = 10, N = 103 . See the text for further details. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)

randomly chosen neighbor j, with a probability proportional to their cultural overlap ωij, which is defined as the fraction of
common cultural features,

ωij =
1
F

F∑
f=1

δσf (i),σf (j) , (1)

where δx,y is the Kronecker’s delta defined as δxy = 1 if x = y and δxy = 0 otherwise.
In this work, we consider the incorporation of new topics into the social debate as consensus is reached in other topics,

modeling this situation through the reinitialization of the features in which a given level of agreement has been reached.
Explicitly, when the proportion of agents sharing the most abundant trait of a feature f exceeds a threshold ϕ (0 < ϕ ≤ 1),
consensus on the topic is assumed and the topic is replaced by a new one. To this end, see Fig. 1, the feature f of each agent
is drawn randomly from a uniform distribution on the integers {0, 1, . . . , q − 1}. The parameter ϕ (here called resistance)
represents the minimum level of agreement required to assume consensus on a topic. Note that for ϕ = 1 Axelrod’s original
model is recovered.

3. Results and discussion

In this section we present the numerical results of our Monte Carlo simulations along with analytical results obtained
for a mean-field approximation. In order to compare the numerical results with the analytical ones, for the simulations we
consider the case of random regular networks. Random regular networks are random networks of fixed degree k, which
means that all nodes are equivalent [36]. However, for completeness, at the end of this section we present some results
for regular lattices, which allow us to compare the behavior of the proposed model with that of Axelrod’s original model.
The results shown below are obtained by averaging over a large number (typically 100) of networks and different initial
conditions.

The system is initialized by a random assignment of agent’s cultures, that is, for every node in the network the F features
are drawn randomly from a uniform distribution on the set of integers {0, 1, . . . , q − 1}. The process is stopped when the
system reaches a stationary state, characterized by quasi-constant values of the observables between resetting events. Note
that, while Axelrod’s original model is characterized by two types of frozen states in which all the pairs of agents have
overlap either 1 or 0, the dynamics here proposed prevents the monocultural frozen state. Nevertheless, the simulations
of the proposed dynamics show a cyclical behavior after a limited number n of resetting events, n being of the order of
magnitude of F . After n resetting events all the observables take, within a range of fluctuations, the same value at the time
prior to each resetting event. In our case, we run the dynamics a number of steps involving 100 × n resetting events before
measuring the observables.

To illustrate the dynamics proposed here, Fig. 2 displays the time evolution of a characteristic realization for F = 10,
q = 10, and a value of ϕ = 0.95. Panel (A) shows the evolution of the level of agreement on each feature, i.e., the fraction of
agents sharing the most abundant trait of a given feature. Different colors represent the different features f = 1, 2, . . . , F .
As shown, when the level of agreement on a feature f reaches the value ϕ = 0.95, the feature f is initialized by assigning at
random a new value to the corresponding cultural component in the cultural vectors of all the agents. This leads to a value
close to 1/q for the level of agreement on the reset feature. Panel (B) shows the time evolution of the cumulative number of
features initializations; each line represents a different feature. As it can be seen, the symmetry of the dynamics, according
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Fig. 3. (A) Average cultural overlap ⟨ω⟩ in the steady state versus the number of traits q, for different values of the resistance ϕ. The inset shows the values
of the overlap versus the resistance ϕ, for different values of the number of traits q. (B) Fraction of agents sharing the most abundant trait ⟨Zmax/N⟩ in the
steady state versus the number of traits q, for different values of the resistance ϕ. Other values are F = 10, N = 103 . Each point is obtained by averaging
over 100 independent realizations in random regular networks of degree k = 6. All standard errors are below 5%.

to which there are not prevalent features, entails a similar evolution of the cumulative number of resetting events for the
different features.

The usual order parameter for Axelrod’s original model is Smax/N , where Smax is the average number of agents of the
most abundant culture. Large values (close to unity) of the order parameter represent cultural globalization. In particular,
in the ordered state (Smax/N = 1) all the agents belong to the same cultural group, that is, they share all the cultural traits.
Nevertheless, the model here proposed (ϕ < 1) precludes this monocultural state. Actually, due to the open nature of the
cultural features it is no longer possible to characterize cultures through unanimous consensus on all the topics, being more
convenient to impose a less restrictive condition. In this sense, the cultural overlap averaged over all the links ⟨ω⟩ constitutes
a measure of multiculturalism. The averaged overlap ⟨ω⟩ is defined as:

⟨ω⟩ =
1
E

∑
i

∑
j̸=i

Aijωij , (2)

where E is the number of links, Aij is the element (i, j) of the adjacency matrix (Aij = 1 if i and j are linked and 0
otherwise), and ωij is the cultural overlap of agents i and j defined in (1). Large values of the average overlap (⟨ω⟩ ∼ 1)
correspond to a state close to monoculturalism, while low values (⟨ω⟩ ∼ 0) correspond to multiculturalism. In Panel (A)
of Fig. 3, we plot the average cultural overlap ⟨ω⟩ as a function of the initial cultural diversity q, for different values of the
resistance ϕ. The behavior of the parameter ⟨ω⟩ strongly depends on q. For large q, corresponding to the disordered phase,
it displays low values which are not dependent on ϕ. In contrast, for small q, the ordered phase is strongly influenced by
the resetting mechanism. In fact, we can observe that simulations with ϕ < 1 present a smaller overlap in relation to
the one corresponding to Axelrod’s original model (ϕ = 1). This fact implies that the emergence of new themes in the
social debate generate a strong impact on cultural overlap, causing a decrease in its values. We can better characterize this
behavior plotting the average overlap as a function of ϕ for fixed q values corresponding to the ordered phase. As can be
appreciated in the inset of Fig. 3, the overlap presents a weak linear growth in dependence of ϕ, with an abrupt jump in
correspondence of ϕ = 1. This intriguing behavior will be explored in more detail at the end of the section by means of a
mean-field approximation.

As a complementary observable, we have also computed the fraction of agents sharing the most abundant cultural trait,
Zmax/N , whichmeasures partial opinion convergence. Here Zmax stands for the number of agents that share themost common
trait σf of the feature f with the highest level of agreement:

Zmax = max{max{
∑
j̸=i

δσf (i),σf (j) : i = 0, 1, . . . ,N} : f = 0, . . . , F − 1} (3)

In Panel (B) of Fig. 3, we plot Zmax/N as a function of the initial cultural diversity q, for different values of the resistance ϕ.
As it is shown, the only effect of the features resetting in the partial opinion convergence is limited to low values of q (those
corresponding to the ordered state in Axelrod’s original model). On the other hand, this discrepancy for low values of q is
almost the minimum difference that the constraint imposed by the value of ϕ allows. This means that the incorporation of
new topics into the social debate has a minimal effect on the convergence of the rest of the topics in which there is already
a high degree of consensus. In fact, surprisingly, the stationary value of Zmax/N , at low q values, is very close to the set ϕ

value. This fact suggests that, in the ordered phase, it always exists at least one cultural trait so pervasive to present a partial
convergence very close to the highest value allowed by the resetting mechanism.

The small effect of the emergence of new debate topics on the rest of the cultural features of the agentsmakes it of further
interest to study how it affects the dynamics of cultural groups. In Axelrod’s originalmodel, cultural domains are composed of
agents that share all the traits, that is, two agents i and j belong to the same cultural domain if, and only if, their corresponding
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Fig. 4. (A) Scaled number of different cultural groups ⟨Ng/N⟩ versus the number of traits q, for different values of the resistance ϕ. (B) Evolution of the
probability for an agent to remain in the same cultural group between two consecutive reset events, for different values of the resistance ϕ and for a number
of traits q = 80. Here, two agents belong to the same cultural group if they share, at least, F−1 cultural traits. Other values are F = 10,N = 103 . Each point is
obtained by averaging over 100 independent realizations in random regular networks k = 6. All standard errors are below2%. See the text for further details.

cultural vectors are equal {σf (i)} = {σf (j)} for all f ∈ {1, 2, . . . , F}. As exposed above, the model here proposed (ϕ < 1) bans
the formation of homogeneous cultural domains and it is more convenient to impose a less restrictive condition. To this end,
we relax the definition of cultural groups by allowing that two agents belong to the same cultural group if they share, at
least, F − 1 cultural traits. According to the new condition, the resetting of a feature should not lead to the disintegration of
all the groups so defined. Note that previous condition is not transitive, that is, if agents i and j disagree on a trait u, while
agents j and k disagree on a different trait v, agents i and k disagree on traits u and v and cannot belong to a common cultural
group. Consequently, to establish a partition, we apply the following algorithm: first, we consider the largest set in which
all the agents share the same F − 1 cultural traits. Once a cultural group is established according to the previous criterion,
we consider the rest of the agents and repeat the same process until all the agents are assigned to a cultural group (which
can be unitary).

The observable ⟨Ng/N⟩, whereNg is the number of cultural groups (as defined above) in the final state, provides ameasure
of the disorder of the system [21].

Fig. 4 shows the numerical results for the cultural groups, as defined above, on a random regular network of sizeN = 1000
and degree k = 6. In panel (A) of Fig. 4 we show the average fraction of different cultural groups ⟨Ng/N⟩ as a function of the
initial cultural diversity q, for different values of the resistance ϕ. As it can be seen, the resistance has little influence on the
number of cultural groups in the steady state, as it is expected that the resetting process does not have a strong effect on
the dynamics of the cultural groups. We also show in Panel (B) of Fig. 4 the time evolution of the probability p that an agent
remains in the same cultural group between two consecutive reset events, for a number of traits (q = 80) corresponding to
the transition between ordered and disordered phases and for different values of the resistance ϕ. As it is shown, there is a
transient where the probability to remain in the same group increases with time. This transient corresponds to a number
of resets equal to the number of cultural features F . After this transient, the permanence probability p is constant and close
to one (p > 0.95 for resistance values ϕ ≥ 0.8). This means that, once the cultural groups have been consolidated, the
emergence of new topics in the social debate does not have a strong effect on them. Furthermore, the higher the resistance,
the greater the probability of permanence and, therefore, the less influence of the renewal of topics on the structure of the
cultural groups.

In order to explore the abrupt transition between full and partial consensus phases at ϕ = 1, we take advantage of the
mean-field approximation, implemented by Castellano et al. in [5]. Strictly following their approach, we can compute the
average overlap:

⟨ω(t)⟩ =

F∑
m=1

m
F
Pm(t) . (4)

Here ⟨ ⟩ stands for the ensemble average and Pm(t) denotes the probability that a random link connects two agents that agree
onm topics, that is, with overlapm/F .

According to Ref. [5] the time evolution of Pm(t), in the mean-field approximation, is given by the master equation:

dPm
dt

=

F−1∑
u=1

u
F
Pu

{
δm,u+1 − δm,u

+ (k − 1)
F∑

n=0

(PnWn,m − PmWm,n)

}
, (5)



A.R.Hernández et al. / Physica A 509 (2018) 492–500 497

Fig. 5. Schematic representation of the approximation used to compute the average overlap ⟨ω(t)⟩. The blue line represents the mean-field evolution of
the average overlap for the Axelrod model. The red dots represents a snapshot of the average overlap for single features which, for the steady state, are
randomly distributed along the interval [0, τ ]. (For interpretation of the references to color in this figure legend, the reader is referred to the web version
of this article.)

whereWn,m is the transition probability of a n-type link to am-type link due to the updating of a neighboring link. As before,
δ represents the Kronecker’s delta. Neglecting correlations among adjacent links, the second-order transition probabilities
are given by:

Wn,m =
F − n
F

⟨ω(t)⟩ δm,n+1 +
n
F

δm,n−1 . (6)

Using Eqs. (4)–(6) we can obtain Pm integrating the differential equation:

dPm
dt

=

F−1∑
u=1

u
F
Pu

{
δm,u+1 − δm,u

+ (k − 1)
F∑

n=0

Pn

(
F − n
F

F∑
i=1

i
F
Pi δm,n+1 +

n
F

δm,n−1

)

− (k − 1)
F∑

n=0

Pm

(
F − m

F

F∑
i=1

i
F
Pi δn,m+1 +

m
F

δn,m−1

)}
, (7)

with the initial condition: Pm(0) =
F !

m!(F−m)!

(
1
q

)m (
q−1
q

)F−m
, which correspond to randomly, unbiased and uncorrelated

initial traits. Once obtained the values of Pm, we can compute the average overlap ⟨ω(t)⟩.
Until this point, we did not consider the effect of the resetting mechanism. In order to do that, we first notice that the

resetting mechanism induces the mean overlap of a single feature, ⟨ωi(t)⟩, to behave cyclically. The overlap, which starts at
1/q, reaches ϕ as a consequence of the Axelrodmechanism. After that, the resettingmechanismwill bring it back to 1/q (see
Fig. 5) . In the steady state it is reasonable to assume that the features overlaps are randomly distributed between one reset
and another. Following these assumptions, the mean overlap considering the resetting mechanism, ⟨ωR⟩, can be estimated
as:

⟨ωR⟩ ∼
1
F

F∑
i=1

⟨ωi(t)⟩ ∼
1
τ

∫ τ

0
⟨ω(t)⟩dt , (8)

where τ corresponds to the t value where ⟨ω(t)⟩ = ϕ. In this estimation we considered that, after a long enough transient,
the resetting of the different features distributed their overlaps values homogeneously over the time. It follows that the
time-averaged value of the overlap of a feature constitutes an estimator of the overlap averaged over all the features.

Fig. 6 displays the average overlap in the stationary state ⟨ωR⟩ as a function of the resistance ϕ, for different values of
the number of cultural traits q according to the mean-field estimation. As shown, the mean-field estimation reproduces
the qualitative behavior of the numerical results, displaying an abrupt transition at ϕ = 1. Furthermore, the comparison
between numerical results (inset in panel (A) of Fig. 3) and theoretical predictions (Fig. 6) highlights that the mean-field
approach underestimates the cultural overlap value. The reasons for this underestimation in the mean-field approximation
rely on the assumptions on which it was based. On one hand, in the Axelrod dynamics, cultural clusters are associated to
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Fig. 6. Mean-field estimation of the average overlap ⟨ω⟩ as a function of the resistance ϕ, for different values of the number of traits q. As shown,mean-field
prediction qualitatively captures the abrupt transition at ϕ = 1. Other values are F = 10 k = 6. See the text for further details.

topological clusters, which are totally absent in themean-field approximation. On the other hand, the homophilymechanism
enhances correlations among the different features, while the mean-field approximation neglects those correlations. Note
that these two characteristics of the Axelrod dynamics, namely the formation of cultural clusters associatedwith the contact
network and the correlation between the different cultural features, establish a connection between the formation of cultures
and interpersonal relationships. Notwithstanding the quantitative disagreement betweenMC simulations and the analytical
approximation, the latter does capture the behavior of the model, and thus, provides mechanistic hints about what is going
on in the system’s dynamics.

In order to test the robustness of the proposed dynamics under the election of the network, we have studied the system
for a regular lattice (k = 4) as in Axelrod’s original model. Panels (A) and (B) of Fig. 7 show the same results of Fig. 3, in this
case for a lattice. In Panel (A) of Fig. 7,we plot the average cultural overlap ⟨ω⟩ in the stationary state as a function of the initial
cultural diversity q, for different values of the resistance ϕ. In the same way, Panel (B) of Fig. 7 shows the fraction of agents
sharing the most abundant cultural trait Zmax/N as a function of q, for different values of ϕ. As can be seen by comparing
Figs. 7 and 3, the results are qualitatively similar for both network topologies. However, random networks exhibit a larger
critical value of q than latices, highlighting the fact that network heterogeneity promotes cultural convergence, as has been
previously observed for the classical Axelrod’s model [14,15]. As an additional test of robustness, we have also simulated
the system for different number F of cultural features in random regular networks. Panel (C) of Fig. 7 shows the stationary
cultural overlap ⟨ω⟩ for F = 2, whereas panel (D) shows the same observable for F = 50. As shown, regardless of the
different nature of the transition [5], the main difference between Axelrod’s original model (ϕ = 1) and the here proposed
modification (ϕ < 1) is maintained, that is, the renewal of the cultural features significantly decreases the cultural overlap.

4. Summary and concluding remarks

In the Axelrod model for cultural dissemination, we have considered the incorporation of new topics into the social
debate by resetting the features in which the fraction of agents sharing the most abundant trait exceeds a threshold ϕ. This
parameter ϕ, that we call resistance, represents the minimum level of agreement required to assume consensus on a topic.
The introduction of an open-ended set of topics through this resetting mechanism avoids the frozen monocultural state of
Axelrod’s original model. We have performed extensive numerical simulations which show that, for high enough values
of the initial cultural diversity, the dynamics leads to a multicultural society fragmented into clusters characterized by a
high degree of cultural agreement. Remarkably, we show that the renewal of the social discussion topics does not have a
considerable effect on the distribution of consolidated cultural clusters. This preservation of group cohesion can be consistent
with the idea that individuals take a position on emerging issues of social debate in accordance with the trend of the cultural
group they belong to. However, this renewal of discussion topics has a significant influence on the cultural overlaps, with
the result that cultural clusters are less homogeneous than in the case of a closed set of discussion topics.

In addition,we have performed amean-field analysis based on two assumptions, namely, the presumption that the agents
interact with each other in proportion to their average abundance and the disregard of correlations between the different
features. Although the mean-field analysis qualitatively reproduces the numerical results, it yields an underestimation
of the mean cultural overlap. This underestimation of the mean-field approximation highlights the key role of the local
interactions in the Axelrod dynamics, where cultural and topological clusters are closely linked, as well as the imitation-
driven correlations among the different cultural features. Altogether, ourwork opens the path to considermore sophisticated
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Fig. 7. Panels (A) and (B) show the case when the agents are located in the nodes of a regular lattice (k = 4), whereas panels (C) and (D) explore different
number F of culture features in a random regular network (k = 6). (A) Asymptotic average cultural overlap ⟨ω⟩ versus the number of traits q, for different
values of the resistance ϕ and F = 10. (B) Fraction of agents sharing the most abundant trait ⟨Zmax/N⟩ in the stationary state versus q, for different values
of ϕ and F = 10. (C) Average cultural overlap ⟨ω⟩ versus q, for different values of the resistance ϕ and F = 2. (D) Cultural overlap ⟨ω⟩ versus q, for different
values of ϕ and F = 50. N = 103 in all the panels, and each point is obtained by averaging over 100 independent realizations. All standard errors are below
5%. See the text for further details.

models, in which agreement is not frozen once reached and to include higher-order correlations, for instance, by introducing
updating rules that involve more than one (possibly correlated) features.

Acknowledgments

A. R. H. thanks COSNET Lab at the Institute BIFI for partial support and hospitality during the realization of most of this
work. C. G. L. and Y. M. acknowledge support from the Government of Aragón, Spain through a grant to the group FENOL, by
MINECO, Spain and FEDER, Spain funds (grant FIS2017-87519-P) and by the European Commission FET-Open Project Ibsen,
Spain (grant 662725).

References

[1] M.W. Macy, R. Willer, From factors to factors: computational sociology and agent-based modeling, Ann. Rev. Sociol. 28 (1) (2002) 143–166.
[2] L. Tesfatsion, K.L. Judd, Handbook of Computational Economics: Agent-Based Computational Economics, vol. 2, Elsevier, 2006.
[3] C. Castellano, S. Fortunato, V. Loreto, Statistical physics of social dynamics, Rev. Modern Phys. 81 (2) (2009) 591.
[4] R. Axelrod, The dissemination of culture a model with local convergence and global polarization, J. Confl. Resolut. 41 (2) (1997) 203–226.
[5] C. Castellano, M. Marsili, A. Vespignani, Nonequilibrium phase transition in a model for social influence, Phys. Rev. Lett. 85 (16) (2000) 3536.
[6] D. Vilone, A. Vespignani, C. Castellano, Ordering phase transition in the one-dimensional Axelrod model, Eur. Phys. J. B 30 (3) (2002) 399–406.
[7] F. Vázquez, S. Redner, Non-monotonicity and divergent time scale in Axelrod model dynamics, Europhys. Lett. 78 (1) (2007) 18002.
[8] K. Sznajd-Weron, J. Sznajd, Opinion evolution in closed community, Internat. J. Modern Phys. C 11 (06) (2000) 1157–1165.
[9] P.L. Krapivsky, S. Redner, Dynamics of majority rule in two-state interacting spin systems, Phys. Rev. Lett. 90 (23) (2003) 238701.

[10] V. Schwämmle, M. González, A. Moreira, J.S. Andrade Jr., H. Herrmann, Different topologies for a herding model of opinion, Phys. Rev. E 75 (6) (2007)
066108.

[11] A. Baronchelli, L. Dall’Asta, A. Barrat, V. Loreto, Topology-induced coarsening in language games, Phys. Rev. E 73 (1) (2006) 015102.
[12] E. Brigatti, A. Hernández, Finite-size scaling analysis of a nonequilibrium phase transition in the naming game model, Phys. Rev. E 94 (5) (2016)

052308.
[13] A. De Martino, M. Marsili, Statistical mechanics of socio-economic systems with heterogeneous agents, J. Phys. A: Math. Gen. 39 (43) (2006) R465.

http://refhub.elsevier.com/S0378-4371(18)30747-7/b1
http://refhub.elsevier.com/S0378-4371(18)30747-7/b2
http://refhub.elsevier.com/S0378-4371(18)30747-7/b3
http://refhub.elsevier.com/S0378-4371(18)30747-7/b4
http://refhub.elsevier.com/S0378-4371(18)30747-7/b5
http://refhub.elsevier.com/S0378-4371(18)30747-7/b6
http://refhub.elsevier.com/S0378-4371(18)30747-7/b7
http://refhub.elsevier.com/S0378-4371(18)30747-7/b8
http://refhub.elsevier.com/S0378-4371(18)30747-7/b9
http://refhub.elsevier.com/S0378-4371(18)30747-7/b10
http://refhub.elsevier.com/S0378-4371(18)30747-7/b10
http://refhub.elsevier.com/S0378-4371(18)30747-7/b10
http://refhub.elsevier.com/S0378-4371(18)30747-7/b11
http://refhub.elsevier.com/S0378-4371(18)30747-7/b12
http://refhub.elsevier.com/S0378-4371(18)30747-7/b12
http://refhub.elsevier.com/S0378-4371(18)30747-7/b12
http://refhub.elsevier.com/S0378-4371(18)30747-7/b13


500 A.R.Hernández et al. / Physica A 509 (2018) 492–500

[14] K. Klemm, V.M. Eguíluz, R. Toral, M. San Miguel, Nonequilibrium transitions in complex networks: A model of social interaction, Phys. Rev. E 67 (2)
(2003) 026120.

[15] B. Guerra, J. Poncela, J. Gómez-Gardeñes, V. Latora, Y.Moreno, Dynamical organization towards consensus in the Axelrodmodel on complex networks,
Phys. Rev. E 81 (5) (2010) 056105.

[16] N. Lanchier, et al., The axelrod model for the dissemination of culture revisited, Ann. Appl. Probab. 22 (2) (2012) 860–880.
[17] K. Klemm, V.M. Eguíluz, R. Toral, M. San Miguel, Global culture: A noise-induced transition in finite systems, Phys. Rev. E 67 (4) (2003) 045101.
[18] K. Klemm, V.M. Eguıluz, R. Toral, M. San Miguel, Globalization, polarization and cultural drift, J. Econom. Dynam. Control 29 (1) (2005) 321–334.
[19] M. Kuperman, Cultural propagation on social networks, Phys. Rev. E 73 (4) (2006) 046139.
[20] L. De Sanctis, T. Galla, Effects of noise and confidence thresholds in nominal andmetric axelrod dynamics of social influence, Phys. Rev. E 79 (4) (2009)

046108.
[21] J.C. González-Avella, M.G. Cosenza, K. Tucci, Nonequilibrium transition induced by mass media in a model for social influence, Phys. Rev. E 72 (6)

(2005) 065102.
[22] J.C. González-Avella, M.G. Cosenza, K. Klemm, V.M. Eguíluz, M.S. Miguel, Information feedback and mass media effects in cultural dynamics, 2007,

arXiv preprint arXiv:0705.1091,
[23] C. Gracia-Lázaro, L.F. Lafuerza, L.M. Floría, Y. Moreno, Residential segregation and cultural dissemination: An Axelrod-Schelling model, Phys. Rev. E

80 (4) (2009) 046123.
[24] C. Gracia-Lázaro, L. Floria, Y. Moreno, Selective advantage of tolerant cultural traits in the axelrod-schelling model, Phys. Rev. E 83 (5) (2011) 056103.
[25] J. Pfau, M. Kirley, Y. Kashima, The co-evolution of cultures, social network communities, and agent locations in an extension of Axelrod’s model of

cultural dissemination, Physica A 392 (2) (2013) 381–391.
[26] C. Gracia-Lázaro, F. Quijandría, L. Hernández, L.M. Floría, Y. Moreno, Coevolutionary network approach to cultural dynamics controlled by intolerance,

Phys. Rev. E 84 (6) (2011) 067101.
[27] G. Deffuant, D. Neau, F. Amblard, G. Weisbuch, Mixing beliefs among interacting agents, Adv. Complex Syst. 3 (2000) 87–98.
[28] M. Laguna, G. Abramson, D.H. Zanette, Vector opinion dynamics in a model for social influence, Physica A 329 (3) (2003) 459–472.
[29] E.J. Biral, P.F. Tilles, J.F. Fontanari, The consensus in the two-feature two-state one-dimensional Axelrod model revisited, J. Stat. Mech. Theory Exp.

2015 (4) (2015) P04006.
[30] S. Fortunato, Damage spreading and opinion dynamics on scale-free networks, Physica A 348 (2005) 683–690.
[31] F. Battiston, V. Nicosia, V. Latora, M. San Miguel, Layered social influence promotes multiculturality in the Axelrod model, Sci. Rep. 7 (1) (2017) 1809.
[32] L. Valori, F. Picciolo, A. Allansdottir, D. Garlaschelli, Reconciling long-term cultural diversity and short-term collective social behavior, Proc. Natl. Acad.

Sci. 109 (4) (2012) 1068–1073.
[33] E. Brigatti, Conventions spreading in open-ended systems, Phys. Rev. E 78 (4) (2008) 046108.
[34] E. Brigatti, I. Roditi, Conventions spreading in open-ended systems, New J. Phys. 11 (2) (2009) 023018.
[35] N. Crokidakis, E. Brigatti, Discontinuous phase transition in an open-ended Naming Game, J. Stat. Mech. Theory Exp. 2015 (1) (2015) P01019.
[36] B. Bollobás, A probabilistic proof of an asymptotic formula for the number of labelled regular graphs, European J. Combin. 1 (4) (1980) 311–316.

http://refhub.elsevier.com/S0378-4371(18)30747-7/b14
http://refhub.elsevier.com/S0378-4371(18)30747-7/b14
http://refhub.elsevier.com/S0378-4371(18)30747-7/b14
http://refhub.elsevier.com/S0378-4371(18)30747-7/b15
http://refhub.elsevier.com/S0378-4371(18)30747-7/b15
http://refhub.elsevier.com/S0378-4371(18)30747-7/b15
http://refhub.elsevier.com/S0378-4371(18)30747-7/b16
http://refhub.elsevier.com/S0378-4371(18)30747-7/b17
http://refhub.elsevier.com/S0378-4371(18)30747-7/b18
http://refhub.elsevier.com/S0378-4371(18)30747-7/b19
http://refhub.elsevier.com/S0378-4371(18)30747-7/b20
http://refhub.elsevier.com/S0378-4371(18)30747-7/b20
http://refhub.elsevier.com/S0378-4371(18)30747-7/b20
http://refhub.elsevier.com/S0378-4371(18)30747-7/b21
http://refhub.elsevier.com/S0378-4371(18)30747-7/b21
http://refhub.elsevier.com/S0378-4371(18)30747-7/b21
arxiv:arXiv:0705.1091
http://refhub.elsevier.com/S0378-4371(18)30747-7/b23
http://refhub.elsevier.com/S0378-4371(18)30747-7/b23
http://refhub.elsevier.com/S0378-4371(18)30747-7/b23
http://refhub.elsevier.com/S0378-4371(18)30747-7/b24
http://refhub.elsevier.com/S0378-4371(18)30747-7/b25
http://refhub.elsevier.com/S0378-4371(18)30747-7/b25
http://refhub.elsevier.com/S0378-4371(18)30747-7/b25
http://refhub.elsevier.com/S0378-4371(18)30747-7/b26
http://refhub.elsevier.com/S0378-4371(18)30747-7/b26
http://refhub.elsevier.com/S0378-4371(18)30747-7/b26
http://refhub.elsevier.com/S0378-4371(18)30747-7/b27
http://refhub.elsevier.com/S0378-4371(18)30747-7/b28
http://refhub.elsevier.com/S0378-4371(18)30747-7/b29
http://refhub.elsevier.com/S0378-4371(18)30747-7/b29
http://refhub.elsevier.com/S0378-4371(18)30747-7/b29
http://refhub.elsevier.com/S0378-4371(18)30747-7/b30
http://refhub.elsevier.com/S0378-4371(18)30747-7/b31
http://refhub.elsevier.com/S0378-4371(18)30747-7/b32
http://refhub.elsevier.com/S0378-4371(18)30747-7/b32
http://refhub.elsevier.com/S0378-4371(18)30747-7/b32
http://refhub.elsevier.com/S0378-4371(18)30747-7/b33
http://refhub.elsevier.com/S0378-4371(18)30747-7/b34
http://refhub.elsevier.com/S0378-4371(18)30747-7/b35
http://refhub.elsevier.com/S0378-4371(18)30747-7/b36

	Robustness of cultural communities in an open-ended Axelrod's model
	Introduction
	Renewal of social debate topics in the Axelrod model
	Results and discussion
	Summary and concluding remarks
	Acknowledgments
	References


