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The basic reproduction number is one of the conceptual corner-
stones of mathematical epidemiology. Its classical definition as
the number of secondary cases generated by a typical infected
individual in a fully susceptible population finds a clear analytical
expression in homogeneous and stratified mixing models. Along
with the generation time (the interval between primary and
secondary cases), the reproduction number allows for the charac-
terization of the dynamics of an epidemic. A clear-cut theoretical
picture, however, is hardly found in real data. Here, we infer
from highly detailed sociodemographic data two multiplex con-
tact networks representative of a subset of the Italian and Dutch
populations. We then simulate an infection transmission process
on these networks accounting for the natural history of influenza
and calibrated on empirical epidemiological data. We explicitly
measure the reproduction number and generation time, record-
ing all individual-level transmission events. We find that the
classical concept of the basic reproduction number is untenable
in realistic populations, and it does not provide any conceptual
understanding of the epidemic evolution. This departure from the
classical theoretical picture is not due to behavioral changes and
other exogenous epidemiological determinants. Rather, it can be
simply explained by the (clustered) contact structure of the pop-
ulation. Finally, we provide evidence that methodologies aimed
at estimating the instantaneous reproduction number can oper-
ationally be used to characterize the correct epidemic dynamics
from incidence data.
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M athematical and computational models of infectious dis-
eases are increasingly recognized as relevant quantitative
support to epidemic preparedness and response (1-3). Indepen-
dent of the type of modeling approach, our understanding of
epidemic models is generally tied to two fundamental concepts.
One is the basic reproduction number Ry, which is the average
number of secondary cases generated by a typical infectious indi-
vidual over the entire course of the infectious period in a fully
susceptible population (4). The other is the generation time Ty,
the time interval between the infection time of the infector and
her/his infectees (5, 6). These quantities are the cornerstones
of our understanding of basic epidemic models, as they encom-
pass the condition for the occurrence of an epidemic outbreak
(Ro > 1) and the epidemic doubling time. Both the reproduction
number and generation time are determined by the biological
characteristics of the pathogen (e.g., probability of transmission
given a contact), the pathogen-host system (e.g., timeline of
pathogen replication inside the host), and the contact patterns of
the population in which the infection spreads (4, 7). The concept
of the reproduction number has been extended to stratified mod-
els (8) and to heterogeneous contact networks (9) to account for
more complex interaction patterns. Furthermore, the definition
of Ro has been generalized by the effective reproduction number
R(t) (i.e., the average number of secondary cases generated by
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an infectious individual at time ¢), thus relaxing the hypothesis of
a fully susceptible population (10).

Ry and Tg are mathematically well defined in the early stages
of the epidemic in homogeneous models and are widely used in
predictive approaches (10, 11). However, several studies have
cautioned on the importance of the local contact structures
(e.g., households, extended families, communities) in estimat-
ing the value of Ry (12-17). Theoretical work has explored
the definition of the reproduction number in models entailing
community and household structure (18-24), although an oper-
ational way to compute Ry is still lacking. For more complex
models closely resembling the actual structure of the human pop-
ulations (e.g., accounting for households, schools, workplaces)
(25-34), the estimation of Ry mainly relied on the direct count
of secondary cases generated by the index case of the outbreak
(RN*) and/or the analysis of the growth rate of the simulated
epidemics. However, both methods have limitations and show
marked differences in the estimated values (31, 32). Indeed,
Rinde js computed from the analysis of the index case of an
outbreak, which is not necessarily representative of a “typi-
cal” infectious individual. In addition to this, growing evidence
shows that the classic exponential early growth of the epidemic
is an oversimplification often not backed by real-world data (35,
36). For this reason, statistical methods were developed for the
analysis of R(t), assuming that the variations of this quantity
are mostly due to the impact of the performed intervention
strategies and behavioral changes in the population (10, 16, 17,
37). Unfortunately, for these methods, disentangling the role of
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connectivity patterns from interventions and behavioral changes
in the definition of the reproduction number is challenging due
to the lack of microscale data on human contact patterns for
large fractions of the population. In summary, a clear operational
way to compute R is still lacking, and no predictive modeling
studies have thus far focused on the harder task of analyzing the
dynamics of the reproduction number over time.

Here, we study the very definition and measurability of Ry,
R(t), and Tg with data-driven microsimulation models of the
infection transmission process based on a highly detailed syn-
thetic population of agents, where we can have complete access
to microlevel data (e.g., keeping track of all interactions of the
simulated agents and the entire transmission chain) (25-30).
Namely, we consider an infection transmission model where
the pathogen spreads on two high-resolution synthetic multiplex
contact networks inferred from real-world sociodemographic
data. We simulated the progression of a simple influenza trans-
mission model accounting for the natural history of the disease
and calibrated to match empirical epidemiological data on the
inferred multiplex networks. We measure basic quantities, such
as Ro, R(t),and Tg, and show that the heterogeneity and cluster-
ing of human contact patterns (e.g., contacts between household
members, classmates, work colleagues) determine a nontrivial
variability of R(t) and T'g(t). This evidence, contrasted with the
results from null models, highlights the challenges in measuring
Ry and Ty in real-world systems. This raises questions about
the adequacy of their definitions given the complex temporal
dynamics of R(t) and Tg(t), both of which highly deviate from
the classical theory. Our study suggests that epidemic inflection
points, often ascribed to behavioral changes or control strategies,
could also be explained by the natural contact structure of the
population. Finally, we show that Bayesian analyses of the instan-
taneous reproduction number over time represent valuable tools
for understanding complex epidemic dynamics, provided that
reliable estimates of T'g are available.

Results

We use detailed sociodemographic data to generate two multi-
plex networks describing the contact patterns of about 500, 000
agents, each representative of a subset of the Italian and Dutch
populations (Materials and Methods discusses the methodology).
The effective contacts through which the infection can spread
are determined by the copresence of two individuals in the same
settings. This effectively defines a weighted multiplex network
(38-40) made by four layers representing the network of contacts
between household members, schoolmates, work colleagues, and
casual encounters in the general community (Fig. 14) (15, 26,
34, 41, 42). Each node in the household layer represents one
individual of the real population and is linked only to the other
nodes representing members of her/his own household. A second
layer represents contacts in school (i.e., every node represents
one student or teacher and has contact only with other individu-
als attending/working in the same school). A third layer accounts
for contacts in workplaces, and a fourth layer encodes contacts in
the community, where we assume a complete network [i.e., each
individual has a certain (low) probability of infecting any other
individual of the population]. The four layers are characterized
by remarkably different degree distributions (Fig. 1B). This rep-
resentation of links between individuals readily highlights the
typical strong clustering of human populations, where individuals
tend to meet the same set of contacts (e.g., household members,
schoolmates, colleagues) on a regular basis (43—45).

The influenza-like transmission dynamics are defined through
a susceptible, infectious, removed (SIR) scheme (Fig. 1C). Ess-
entially, susceptible individuals can acquire the infection through
contacts with infectious individuals, and as soon as they are
infected, they proceed to the infectious stage. Infectious indi-
viduals then move to the removed compartment according to a

Liu et al.

SCHOOL LAYER

=

WORKPLACE LAYER

B 030 p0=7
0251 Household 0O =[]
020! School 9% =[(tt)+(t,-ty]
= - Workplace ry ! o
= 015 & " e ”
010 o e e 'Y
0.05 X . L tq t, t, t;
T R T
k 3 =
Fig. 1. Model structure. (A) Visualization of the multiplex network repre-

senting a subsample of 10,000 individuals of the synthetic population. Note
that the community layer is a complete graph, although not all edges are
visible for the sake of readability of the illustration. (B) Degree distributions
in the school, household, and workplace layers. (C) Schematic represen-
tation of the infection transmission model along with examples of the
computation of individual reproduction number and generation time for
the simulated transmission chains. |, infectious; R, removed; S, susceptible.

removal rate [such that an infectious individual spends an expo-
nential amount of time (the removal time or infectious period)
in the infectious stage before recovering]. We keep the transmis-
sion scheme as simple as possible (e.g., avoiding the introduction
of other classes, such as a latent compartment, the distinction
between symptomatic and asymptomatic individuals, hospital-
ized individuals, and so on) to avoid confounding effects. Of
course, more refined models are needed to answer complex
questions, such as the impact of control strategies.

We simulate the transmission dynamics as a stochastic process
for each specific individual, each with her/his own characteris-
tics (e.g., age, individual infectiousness, membership to a specific
household or school, and so on), and accounting for the cluster-
ing of contacts typical of human populations. For instance, an
agent can transmit the infection in a given school only if she/he
studies or works there. In each layer, the infection transmission
between nodes is calibrated in such a way that the fractions of
cases in the four layers are in agreement with literature values
(namely, 30% of all influenza infections are linked to transmis-
sion occurring in the household setting, 18% of all influenza
infections are linked to transmission occurring in schools, 19%
of all influenza infections are linked to transmission occurring
in workplaces, and 33% of all influenza infections are linked to
transmission occurring in the community) (26, 27, 33). Moreover,
we set these layer-specific transmission rates such that the repro-
duction number of the index case (RI*) is 1.3 [in agreement
with typical values reported for influenza in the literature (46)].
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Finally, without loss of generality, we fix the removal time to 3 d
(15, 47, 48).

In SI Appendix, we report all of the details of the transmis-
sion model (SI Appendix, section 1.1). In the text, we also report
the corresponding analysis of R(¢) and Tg(¢) for a stochastic
implementation of a homogeneous mixing SIR model at the indi-
vidual level, where all individuals are identical and are in contact
with the same fixed probability. Along with the homogeneous
SIR model, we also studied a set of alternative null models with
an increasing level of complexity from the homogeneous model
to the data-driven model (details are in SI Appendix, sections
1.2-1.5). Null models include annealed (edges are constantly
rewired) and quenched (edges are fixed over time) configura-
tion models. Results reported in the text refer to the synthetic
population for Italy.

Effective Reproduction Number and Generation Time. The first
quantities generally investigated in epidemic models are the inci-
dence (of new infections) as a function of time and the associated
growth rate of the epidemic. In homogeneous models, the num-
ber of new cases increases exponentially at a nearly constant
rate r (5, 49, 50) during the early phase of the epidemic. This
is not the case in the data-driven model, where we find a non-
monotonous behavior: an increasing trend over the initial phase
of the epidemic occurs followed by a marked decrease about
20 d before the epidemic peak (Fig. 24). Such a result is in sharp
contrast with the classic theory, where the epidemic growth rate
is expected to slowly and monotonically decrease over time in
the early epidemic phase (Fig. 24). This suggests that, in con-
trast to simple SIR models where the basic reproduction number
can readily be defined through the relation Ry =1+ rTy (5),
it is difficult to find a proper definition of the basic reproduc-
tion number in populations characterized by realistic connectivity
patterns.

The daily effective reproduction number and generation time
can be computed from the microsimulations by keeping track of
the exact number of secondary infections generated by each indi-
vidual infected at time ¢ in the simulations (Fig. 1C). We find that
R(t) increases over time in the early phase of the epidemic, start-
ing from RN = 1.3 to a peak of about 2.1 (Fig. 2B). In contrast,
in the homogeneous model, which lacks the typical structures
of human populations, R(¢) is nearly constant in the early epi-
demic phase and then rapidly declines before the epidemic peak
(Fig. 24) as predicted by classical mathematical epidemiology
theory (4). The pattern found in the data-driven model can
also be partly explained by the variation of the average degree
induced by the infection of individuals with a higher number
of adequate contacts [an effect already observed in heavy-tailed
networks (51)], thus leading to an average growth of the repro-
duction number. The temporal dynamics of R(¢) does not show
a constant phase, implying that Ry loses its meaning as a funda-
mental indicator in favor of R(t). Although we report the results
averaged over 50,000 realizations of the model, this result is sup-
ported by our analysis of the outcome of each single simulation,
highlighting that the early time increase of R(t) is a common pat-
tern in the performed simulations (SI Appendix, section 2.1). In
Fig. 2C, we show an analogous analysis of the estimated genera-
tion time in the data-driven model. We find that the generation
time is considerably shorter than the duration of the infectious
period (i.e., 3 d in our simulations). The estimated average Tyg
over the whole epidemic is 2.67 d (= 11% shorter than the the-
oretical value), with a more marked shortening right before the
epidemic peak (Fig. 2C). This differs from what is predicted by
the classic theory and the analysis of the homogeneous model
(Fig. 2C), where the length of the infectious period corresponds
to the generation time (6).

A closer look at the transmission process in the different lay-
ers of the multiplex network helps in understanding the origin
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Fig. 2. Fundamental epidemiological indicators. (A) Mean daily exponen-
tial epidemic growth rate, r, over time of the data-driven and homogeneous
models. The colored area shows the density distribution of r(t) values
obtained in the single realizations of the data-driven model. Results are
based on 50,000 realizations of each model. Results are aligned at the epi-
demic peak, which corresponds to time t=0. Inset shows the logarithm
of the mean daily incidence of new influenza infections over time, which
does not follow a linear trend. (B) Mean R(t) of data-driven and homoge-
neous models. The colored area shows the density distribution of R(t) values
obtained in the single realizations of the data-driven model. (C) The three
lines represent the mean Tg(t) of data-driven and homogeneous models.
The colored area shows the density distribution of Tg(t) values obtained
in the single realizations of the data-driven model. The horizontal dotted
gray line represent the constant value of the duration of the infectious
period.

of the deviations of R(¢) and Tg(t) from the classical theory
(Fig. 3). Specifically, we found that the average degree of infec-
tious nodes as well as R(¢) tend to peak in the workplace layer
(81 Appendix, section 2.2), and at least to some extent, the same
happens in the school layer. However, R(t) generally decreases
in the household and community layers (Fig. 34). Indeed, R(t)
in the household layer tends to be more uniform across the
different nodes and thus, follows a general decreasing trend sim-
ply led by the depletion of susceptible contacts. We also found
that, in the household layer, Tg is remarkably shorter than in
all other layers (Fig. 3B)—with an average fluctuating around
2.6 d, close to the value reported by analyzing real data for house-
hold transmission (26). To provide a simple illustration of the
saturation effect in households, let us consider a household of
three, with one index case and two susceptible members. If, at
time ¢, the index case infects exactly one of the two susceptibles,
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Fig. 3. Layer-specific patterns. (A) Mean R(t) for the data-driven model in

the four layers. The colored area shows the density distribution of R(t) values
obtained in the single realizations. (B) Mean Tg(t) for the data-driven model
in the four layers. The colored area shows the density distribution of Tg(t)
values obtained in the single realizations.

then at time ¢ + 1, the index case has to compete with the other
infectious individual to transmit the infection; the resulting gen-
eration time is shorter, simply because she/he cannot infect any
other household member, although she/he may still be infectious.
A similar argument was used in ref. 52 to explain why observed
generation times are shorter than the infectious period. This evi-
dence calls for considering within household competition effects
when providing empirical estimates of the generation time (or
serial interval) from household studies. Saturation effects are
also responsible for shortening Tg in the other transmission set-
tings, with the exception of the general community (Fig. 3B).
All of the observed patterns of R(¢) and Tg(t) are robust with
respect to changes in the sociodemographic structure of the pop-
ulation (i.e., we simulated the infection spreading in both the
Italian and Dutch synthetic populations), influenza transmission
intensity (measured in terms of R"**), and the distribution of the
removal time (we tested exponential and gamma distributions).
These analyses are reported in SI Appendix, sections 2.4-2.6.

The 2009 H1N1 Influenza Pandemic in Italy. To test the robustness
of the results in a more realistic epidemic transmission model,
we used the data-driven modeling framework to model the 2009
influenza pandemic in Italy. One of the characteristic signatures
of the 2009 HIN1 pandemic was the presence of a differential
susceptibility by age (34, 53, 54); this is included in the model
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by using values estimated for Italy as reported in the literature
(55). We also consider prepandemic immunity by age in the pop-
ulation according to serological data (55). Vaccination is not
considered, as vaccination started only during the tail of the pan-
demic and had a very limited uptake in Italy (vaccination cover-
age < 1%) (56). As in the previous section, the model has four
unknown parameters: the four layer-specific transmission rates.
They are calibrated through a Bayesian Markov chain Monte
Carlo (MCMC) approach on seroprevalence data by age collected
in Italy before and after the 2009 HIN1 influenza pandemic (55).
Model details are provided in ST Appendix, section 1.1.

The calibrated model is able to well capture the seropositive
rates by age at the end of the pandemic (Fig. 44). The estimated
growth rate from the influenza-like illness (ILI) cases reported
in Italy over the course of the 2009 HIN1 influenza pandemic
clearly shows an increasing trend during the early phase of the
epidemic followed by a sharp drop about 3 weeks before the
epidemic peak (Fig. 4B). The trend observed in the data is consis-
tent with that obtained in model simulations (Fig. 4C). Fitting a
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Fig.4. The 2009 H1N1 influenza pandemic in Italy. (A) Seroprevalence rates
by age as observed in a serosurvey conducted at the end of the 2009 H1N1
influenza pandemic in Italy (55) and as estimated by the calibrated model.
(B) Epidemic growth rate over time r(t) as estimated from the weekly inci-
dence of new ILI cases in Italy over the course of the 2009 HIN1 influenza
pandemic and the best-fitting linear model from week 35 to week 41 in 2009
(scale on the left axis). Weekly incidence of new ILI cases in Italy over the
course of the 2009 H1N1 pandemic (scale on the right axis). Data are avail-
able at the ISS Influnet website (old.iss.it/flue/). Note that, over the period
from week 35 to week 51 in 2009, schools were regularly open in Italy. (C)
Temporal pattern of the mean weekly exponential epidemic growth rate (r)
resulting from the analysis of the data-driven model calibrated on the 2009
H1N1 influenza seroprevalence data. The colored area shows the density dis-
tribution of r(t) values obtained in the single realizations of the data-driven
model.
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linear regression model to the estimated growth rate over time
in the ILI data results in an estimated coefficient of 0.064 (SE
of 0.033), while the mean value obtained with a linear regression
model of case incidence from all stochastic realizations is 0.064
(95% CI, —0.207-0.305). An increase in the initial growth rate
of the epidemic has also been observed for other diseases and
countries (57-59). Although alternative explanations may exist
(60), our results provide a plausible explanation for these pat-
terns based on the intrinsic structure of human contact networks.
In terms of the dynamics of R(¢) and Tg(t), the model calibrated
on the 2009 influenza pandemic confirms the noticeable devia-
tions of the data-driven model from the homogeneous modeling
framework (SI Appendix, section 2.3).

Discussion

Our simulation results clearly highlight how the heterogene-
ity and clustering of human interactions (e.g., contacts between
household members, classmates, work colleagues) alter the stan-
dard results of fundamental epidemiological indicators, such as
the reproduction number and generation time over the course
of an epidemic. Our results seem to be consistent in different
countries (SI Appendix, section 2.4), suggesting that the observed
patterns are due to the structure and clustering of human con-
tact patterns rather than country-specific features. Furthermore,
the analysis of alternative null models, such as degree-preserving
and layer-preserving configuration models (S Appendix, section
2.7), shows markedly different behaviors than those exhibited by
the data-driven model, suggesting that the multiplex structure
and the strong clustering effect typical of human populations, not
captured by null models, are at the root of the observed behavior.
Our numerical study questions the measurability of Ry in
realistic populations and its adequacy even as an approximate
descriptor of the epidemic dynamics. However, it is still possible
to characterize the dynamics of an epidemic in terms of its effec-
tive reproduction number over time by estimating R(¢) from the
daily number of new cases by using Bayesian approaches (11,
17) (Materials and Methods). In Fig. 5, we show the compari-
son between R(t) as inferred from the time series of cases and
R(t) resulting from the microsimulation data of the transmission
chain for one stochastic model realization (other realizations are
shown in SI Appendix, section 2.8). The overall good agreement
between the estimated and actual values shows that it is possible
to operationalize the estimation of R(t) to provide projections of
the epidemic dynamics. The goodness of the obtained estimates
depends on the knowledge of the distribution of the generation
time (Fig. 5) and on the availability of a reliable time series of
cases not markedly affected by noise and underreporting (10).

Conclusion

The analysis presented here takes advantage of “in silico” numer-
ical experiments to open a window of understanding in the
analysis of realistic epidemic scenarios. Although a lot of theo-
retical work has been done to define the reproduction number in
nonhomogeneous models (19-24), a unified theory is still lack-
ing. While we are not providing a theoretical framework for the
computation/definition of the reproduction number and the gen-
eration time on realistic contact networks, we provide evidence
that estimates of R(¢) can be used to characterize the epidemic
without resorting to untenable assumptions that may eventu-
ally mislead our understanding of the epidemic transmission
potential and temporal dynamics.

Materials and Methods

Data-Driven Contact Network. The model considers a weighted multiplex
network (38) G:(GH, Gs, Gw, G¢), where H, S, W, and C represent house-
hold, school, workplace, and community layers, respectively. Let us define V
as the set of all nodes, which is common to all layers, and E,, as the set of
edges in layer . We can thus characterize each layer G, = (V, E,,) by the
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Fig. 5. Estimation of R(t). (A) Daily R(t) as inferred from the daily incidence
of new infections for one stochastic model realization. Tg is assumed to be
exponentially distributed with an average of 3 d. (B) The same as A but the
distribution of Tg has been derived from the analysis of the transmission tree
of the selected model simulation. (C) The same as A but using the distribution
of Tg over time as derived from the analysis of the transmission tree of the
selected model simulation. The goodness of the estimate of R(t) increases with
a more precise knowledge of the generation time value and distribution.

layer-specific adjacency matrix A, where elements a7 = w, > 0 if there is
a link between nodes j and j in layer « and ajj = 0 otherwise.

Homogeneous Mixing Network. This model assumes a single fully connected
network. Following the notation introduced above, we have a; = w for each
i and j, where w=1/(N — 1) and N is the total number of individuals in the
population.

The Epidemic Transmission Model. On each of the introduced networks, we
simulate the influenza transmission process as an SIR model. The SIR model
assumes that individuals can be in one of the following three states: sus-
ceptible, infectious, and removed. Two types of transitions between states
are possible: (i) from susceptible to infectious and (ii) from infectious to
removed. The transition from susceptible to infectious requires a contact
between an infectious individual and a susceptible individual. Specifically,
given that, at time step t, node j is infectious and its neighbor node i is
susceptible, the probability that j infects i (i.e., i changes its status from
susceptible to infectious) is given by 8 = pw, where p is the transmission
probability per contact and w is the contact weight. However, the transition
from infectious to removed does not involve contact between individuals.
Given that, at time step t, node i is in the infectious state, it has a probability
~ to recover at time step t + 1.

Estimation of R(t) from Transmission Events Time Series. Following the same
approach used in refs. 11 and 17, we assume that the daily number of new
cases C(t) at time t can be approximated by a Poisson according to the
following equation:

t
C(t) = Pois (R(t) > placit - s)>,

s=1

where ¢ is the generation time distribution and R(t) is the effective repro-
duction number at time t. The likelihood L of the observed time series of
cases from day 1 to T is thus given by
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T t
=11~ (C(t), R(®) > ls)C(t — s))

t=1 s=1

where here, P(k, \) is the probability mass function of a Poisson distribu-
tion (i.e., the probability of observing k events if these events occur with
a known rate \). The posterior distribution of R(t) is then explored using
MCMC sampling.
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