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Abstract

Seasonal influenza surveillance is usually carried out by sentinel general practitioners

(GPs) who compile weekly reports based on the number of influenza-like illness (ILI) clinical

cases observed among visited patients. This traditional practice for surveillance generally

presents several issues, such as a delay of one week or more in releasing reports, popula-

tion biases in the health-seeking behaviour, and the lack of a common definition of ILI case.

On the other hand, the availability of novel data streams has recently led to the emergence

of non-traditional approaches for disease surveillance that can alleviate these issues. In

Europe, a participatory web-based surveillance system called Influenzanet represents a

powerful tool for monitoring seasonal influenza epidemics thanks to aid of self-selected vol-

unteers from the general population who monitor and report their health status through Inter-

net-based surveys, thus allowing a real-time estimate of the level of influenza circulating in

the population. In this work, we propose an unsupervised probabilistic framework that com-

bines time series analysis of self-reported symptoms collected by the Influenzanet platforms

and performs an algorithmic detection of groups of symptoms, called syndromes. The aim

of this study is to show that participatory web-based surveillance systems are capable of

detecting the temporal trends of influenza-like illness even without relying on a specific case

definition. The methodology was applied to data collected by Influenzanet platforms over

the course of six influenza seasons, from 2011-2012 to 2016-2017, with an average of

34,000 participants per season. Results show that our framework is capable of selecting
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temporal trends of syndromes that closely follow the ILI incidence rates reported by the tra-

ditional surveillance systems in the various countries (Pearson correlations ranging from

0.69 for Italy to 0.88 for the Netherlands, with the sole exception of Ireland with a correlation

of 0.38). The proposed framework was able to forecast quite accurately the ILI trend of the

forthcoming influenza season (2016-2017) based only on the available information of the

previous years (2011-2016). Furthermore, to broaden the scope of our approach, we

applied it both in a forecasting fashion to predict the ILI trend of the 2016-2017 influenza

season (Pearson correlations ranging from 0.60 for Ireland and UK, and 0.85 for the Nether-

lands) and also to detect gastrointestinal syndrome in France (Pearson correlation of 0.66).

The final result is a near-real-time flexible surveillance framework not constrained by any

specific case definition and capable of capturing the heterogeneity in symptoms circulation

during influenza epidemics in the various European countries.

Author summary

This study suggests how web-based surveillance data can provide an epidemiological sig-

nal capable of detecting the temporal trends of influenza-like illness without relying on a

specific case definition. The proposed framework was able to forecast quite accurately the

ILI trend of the forthcoming influenza season based only on the available information of

the previous years. Moreover, to broaden the scope of our approach, we applied it to the

detection of gastrointestinal syndromes. We evaluated the approach against the traditional

surveillance data and despite the limited amount of data, the gastrointestinal trend was

successfully detected. The result is a near-real-time flexible surveillance and prediction

tool that is not constrained by any disease case definition.

Introduction

Seasonal influenza is an acute contagious respiratory illness caused by viruses that can be easily

transmitted from person to person. Influenza viruses circulate worldwide causing annual epi-

demics with the highest activity during winter seasons in temperate regions and produce an

estimated annual attack rate of 3 to 5 million cases of severe illness and about 250 to 500 thou-

sand deaths around the world [1]. National surveillance systems monitor the influenza activity

through a network of general practitioners (GPs) who report the weekly number of influenza-

like illness (ILI) cases among the overall patients [2]. These traditional surveillance systems

usually represent the primary source of information for healthcare officials and policymakers

for monitoring influenza epidemics. However, due to the lack of specificity of influenza symp-

toms, they adopt quantitative indicators (influenza-like illness (ILI) or acute respiratory illness

(ARI) being the two most common) which are defined at country level, while no defined stan-

dard exists at the international level [3–5]. One main reason might be that classification of ILI

cases in GPs’ reports is usually based on common clinical symptoms observed among patients

and, as with any syndromic-based disease surveillance, case definitions of “influenza-like ill-

ness” can vary [6–10]. They typically include fever, cough, sore throat, headache, muscle aches,

nasal congestion, and weakness. Some previous works from hospital-based studies [11, 12],

age-specific antiviral trials [7, 13, 14] and national surveillance activities [15] aimed at explor-

ing suitable ILI case symptomatic descriptions but, so far, no unique definition has been widely
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adopted by the various national surveillance systems worldwide. For this reason, seasonal

influenza surveillance in European countries remains rather fragmented. Only in recent years,

some state members have adopted the case definition provided by the European Center for

Disease Control and Prevention (ECDC) which defines an ILI case as the sudden onset of

symptoms with one or more systemic symptoms (fever or feverishness, malaise, headache,

myalgia) plus one or more respiratory symptoms (cough, sore throat, shortness of breath)

[16]. Nevertheless, a significant fraction of European countries still adopts their own clinical

case definition to compile seasonal influenza surveillance weekly reports. S2 Table highlights

the existing issue in the heterogeneity of the ILI case definition in Europe [16–18].

In general, differences in seasonal influenza epidemics across European countries are char-

acterised by heterogeneity in sentinel systems, climatic conditions, human mobility systems, as

well as social contacts [19, 20]. The result is a consequent heterogeneity in the prevalence of

the disease among the population in the various countries which can present differences in

severity during the same influenza season. This diversity makes it hard to have a unified, one-

fits-all approach to influenza surveillance, let alone a unified ILI definition. Moreover, the ILI

definition might change over time even for national sentinel systems [21]. For example, in

Italy, the National Institute of Health (Istituto Superiore di Sanità) adopted the ECDC defini-

tion only in 2014 [22]. France is a peculiar example as it had double surveillance (ILI and ARI)

up till 2014 (Casalegno et al. [3] assessed the performance of various influenza case definitions

in France between 2009-2014). Mandl et al. [2] explicitly addressed the variation in the defini-

tion of ILI over time.

In recent years the availability of novel digital data streams has given rise to a variety of

non-traditional approaches for monitoring seasonal influenza epidemics [23–25]. Such new

digital data sources can be exploited to capture additional surveillance signals that can be used

to complement GPs surveillance data [26–29]. In this context, some so-called participatory

surveillance systems have emerged in several countries around the world with the aim of mon-

itoring influenza circulation through Internet reporting of self-selected participants [30–32].

One of these systems, the Influenzanet project [30], has been established in Europe since 2011

and it is now present in ten European countries. In this study, we excluded from the analysis

the country of Sweden, due to the fact that the Swedish cohort is solicited upon invitation

when required and not on an annual basis [33]. The system relies on the voluntary participa-

tion of the general population through a dedicated national website in each country involved

in the project. Data are obtained on a weekly basis through an online survey [34] where partic-

ipants are invited to report whether they experienced or not any of the following symptoms

since their last survey: fever, chills, runny or blocked nose, sneezing, sore throat, cough, short-

ness of breath, headache, muscle/joint pain, chest pain, feeling tired or exhausted, loss of appe-

tite, coloured sputum/phlegm, watery/bloodshot eyes, nausea, vomiting, diarrhoea, stomach

ache, or other symptoms. Differently, from most traditional surveillance systems, this partici-

patory form of online surveillance allows the collection of symptoms in real-time and directly

from the general population, including those individuals who do not seek health care assis-

tance. The list of proposed symptoms has been chosen to include the various ILI definitions

adopted by national surveillance systems in Europe and, at the same time, to get a comprehen-

sive list of symptoms that could be clearly articulated and understood by participants and

would allow the detection of various circulating flu-related illnesses. Even though participatory

systems generally suffer from self-selection biases, causing the sample to be non-representative

of the general population [35], previous works have shown that the web-based surveillance

data collected by Influenzanet can provide relevant information to estimate age-specific influ-

enza attack rates [36, 37], influenza vaccine effectiveness [34, 38, 39], risk factors for ILI [39–

41], and to assess health care seeking behaviour [39, 42]. Moreover, it has been largely
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demonstrated that weekly ILI incidence rates computed from the web-based surveillance data

by applying the ECDC case definition to the set of self-reported symptoms correlate well with

the weekly ILI incidence reported by GPs surveillance [37, 39, 43].

An additional advantage of collecting symptoms directly from individuals among the gen-

eral population in the various Influenzanet countries is that it is straightforward to compare

the prevalence and the temporal dynamics of specific symptoms or groups of symptoms from

one country to the other. In a previous work focused on France [44], the authors proposed

population-level indicators based on self-reported symptoms and analysed crowdsourced inci-

dence estimates comparing them to official estimates provided by sentinel systems.

In this work, we propose an approach that aims at addressing the heterogeneity of seasonal

influenza epidemiological signals in the various European countries, focusing on the individ-

ual symptoms collected directly from the general population. The goal is to develop a mathe-

matical framework able to extract, in an unsupervised fashion, the groups of symptoms that

are in good correlation with the ILI incidence, as detected by traditional surveillance systems

for each country without imposing an a priori a specific ILI case definition. By using the daily

occurrence of symptoms in form of matrix, we employ an approach based on Non-negative

Matrix Factorization (NMF) [45], to extract latent1 features of the matrix that correspond to

linear combinations of groups of symptoms. We assume that a specific combination of

reported symptoms is the symptomatic expression of one or more illnesses experienced by the

participants, i.e. of the syndromes affecting the individual. We can then select those groups of

symptoms that better correlate with the sentinel-based ILI incidence, which will become our

best approximation for the actual influenza-like illness signal for a specific country.

The overall encouraging results suggest that such methodology can be employed as a near

real-time flexible surveillance and prediction tool not constrained by any disease case defini-

tion. Thus, it can be employed to monitor a wide range of symptomatic infectious diseases or

to nowcast the influenza trend, to help to devise public health communication campaigns.

Materials and methods

Ethics statement

This study was conducted in agreement with country-specific regulations on privacy and data

collection and treatment. Informed consent was obtained from all participants enabling the

collection, storage, and treatment of data, and their publication in anonymized, processed, and

aggregated forms for scientific purposes. In addition, approvals by Ethical Review Boards or

Committees were obtained, where needed according to country-specific regulations. In The

United Kingdom, the Flusurvey study was approved by the London School of Hygiene and

Tropical Medicine Ethics Committee (Application number 5530). In France, the Grippenet.fr

study was approved by the Comité consultatif sur le traitement de l’information en matiére de

recherche (CCTIRS, Advisory committee on information processing for research, authoriza-

tion 11.565) and by the Commission Nationale de l’Informatique et des Libertés (CNIL,

French Data Protection Authority, authorization DR-2012-024). In Portugal, the Gripenet

project was approved by the National Data Protection Committee and also by the Ethics Com-

mittee of the Instituto Gulbenkian de Ciência.

Data collection

Influenzanet. Since the winter season of 2011-2012, the Influenzanet platforms share a

common and standardized data collection approach throughout the nine European countries

involved, namely: Belgium (BE), Denmark (DK), France (FR), Ireland (IE), Italy (IT), the

Netherlands (NL), Portugal (PT), Spain (ES) and the United Kingdom (UK). In each of the
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Influenzanet countries, the national platform is coordinated by a team of local researchers

from Universities, Research Institutions or Public Health Institutions and consists of a website

where individuals can register and have access to a personal account where they can insert and

update their data. The platforms are disseminated among the general population through

press releases, public media campaigns, specific dissemination events (e.g. science fairs) or

word of mouth. Participation is voluntary and anonymous, and all the residents of the partici-

pating countries can enrol. Upon registration, individuals are asked to complete an online

Intake Questionnaire covering basic questions such as age, gender, household size and compo-

sition, home location, workplace, etc. [46]. Participants can also create accounts on behalf of

other members of their family or household, thus enabling, for instance, parents to record data

for their children. Registered participants are then reminded weekly, via an e-mail newsletter,

to fill in a Symptoms Questionnaire [46] in which they are presented with a list of general,

respiratory and gastrointestinal symptoms (18 in total, reported in Table 1) and asked whether

since the last time they visited the platform they experienced any symptoms among those

listed. In this study, we employed data collected by the Influenzanet platforms in the nine

European countries over the course of six influenza seasons, from 2011-2012 to 2016-2017.

Traditional ILI surveillance. Seasonal influenza is traditionally monitored by national

networks of general practitioners (GPs) who report the weekly number of visited patients with

influenza-like illness symptoms according to the national ILI case definition. Despite some

practical limitations, mainly due to a heterogeneous population coverage and a considerable

delay in disseminating data, such traditional surveillance data are generally considered as

ground truth. Therefore, we used the traditional ILI surveillance data to evaluate the perfor-

mance of our framework developed on the Influenzanet data. In this study, we used the weekly

ILI incidence data for 6 influenza seasons, from 2011-2012 to 2016-2017, collected from the

ECDC dedicated web page [47] for all countries, except France, for which, instead, we obtained

the weekly data on the ILI incidence and gastrointestinal infections directly from the national

network, called Réseau Sentinelles [48]. All reports were accessed and downloaded in March

2017.

Data preprocessing

In general, the inclusion criteria of participants in the data analysis vary depending on the spe-

cific aim of the study [35, 39, 49, 50]. In our case, we included only the individuals registered

on the Influenzanet national platforms who filled in at least one Symptoms Questionnaire

(hereafter referred to as “survey”) per season. This was done to focus the analysis on partici-

pants for which we have some information. We had to necessarily exclude individuals who

have registered on the platforms but who have not submitted any symptoms survey during any

influenza season. This corresponds to the exclusion of 0.3% of the registered participants.

Table 1. List of Influenzanet Symptoms.

Fever Chills Runny/blocked nose Sneezing

Sore throat Cough Shortness of breath Headache

Muscle/joint pain Chest pain Feeling tired (malaise) Loss of appetite

Coloured Sputum/Phlegm Watery, bloodshot eyes Nausea Vomiting

Diarrhoea Stomach ache Sudden Onset

List of the 18 symptoms presented to Influenzanet participants in the weekly Symptoms Questionnaire, plus the sudden onset variable, i.e. if symptoms appeared

suddenly over a few hours.

https://doi.org/10.1371/journal.pcbi.1006173.t001
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Moreover, to reduce the noise due to low participation rates at the beginning of the data

collection of each influenza season, we consider as starting point the first week for which the

number of surveys corresponded at least to 5% of the total number of the surveys filled during

the week with the highest participation for that season. This refers to the fact that at the begin-

ning of the season, which is a period when the epidemic is still well below the epidemic thresh-

old, the participation (i.e. the number of symptoms surveys) is rather low and therefore the

signal to noise ratio can be very low too. Furthermore, we included only one survey per each

week—the latest one—if more than one survey was submitted during the same week by the

same participant. This exclusion corresponds to a small fraction of discarded surveys, approxi-

mately 5% of the total number of surveys; moreover, the distribution of the discarded symp-

toms and the submission time of the dropped surveys, are homogeneous2. This exclusion

criterion is essential to express the number of self-reported symptoms as probabilities in the

final ILI syndrome emerging from our framework and to interpret the aggregation of symp-

toms as an “incidence”.

S1 Table in the supporting information presents descriptive statistics for each country,

namely: (i) the number of seasons analysed, (ii) the average number of participants per season,

(iii) the average number of weekly surveys per season, (iv) the average percentage of surveys

with at least one symptom, (v) the average number of surveys per participant per season and

(vi) the average number of weeks within a single season.

Temporal syndrome modeling and non-negative matrix factorization

In this section, we describe the methodology employed to extract the latent features from the

self-reported symptoms collected by the various Influenzanet platforms of the participating

countries. Our approach relies on the assumption that a specific group of self-reported symp-

toms corresponds to the symptomatic expression of one or more illnesses, hereafter called syn-
dromes, circulating among the population sample of Influenzanet. In our study we consider

the 18 symptoms presented in the weekly Symptoms Questionnaire plus an additional symp-

toms-related variable, called “Sudden onset”, referring to the sudden appearance of symptoms,

typically over the course of the previous 24 hours (see Table 1). This totalizes 19 symptom vari-

ables that we hereafter designate interchangeably as “symptoms”. The symptoms were treated

as binary boolean variables having value 1 if the symptom is present and 0 if the symptom is

absent. We then aggregated the reported symptoms across all participants to build a matrix

X = [xij], whose elements contain the occurrences of each symptom j 2 {1, ‥, J} during each

day i 2 {1, ‥, I}. In other words, each element of the matrix corresponds to the number of

times each symptom has been reported on each day of the influenza seasons under study. The

result is a high-dimensional sparse matrix that can be linearly decomposed through a Non-

negative Matrix Factorization (NMF) technique [45]. We opted for NMF since its non-nega-

tivity constraint offers the advantage of a straightforward interpretation of the results as posi-

tive quantities that can then be associated with the initial symptoms. This approach can be

considered as a “blind source separation” problem [51] in which neither the sources nor the

mixing procedure is known, but only the resulting mixed signals are measured.

In our case, the time series corresponding to the daily symptoms counts are measured by

the Influenzanet platforms and can be considered as the result of a linear mixing process

driven by unknown sources, i.e. the latent syndromes. In the following we will use inter-

changeably the terms syndrome, source or component. According to this consideration, each

element xij of the matrix X can be expressed as follows:

xij ¼
X

k2f1;::;Kg

wik hkj þ eij; ð1Þ
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where the coefficients hkj describe the set of the unknown K sources, the factor wik represents

the time-dependent mixing coefficients, and the terms eij correspond to the approximation

error. The mixing equations Eq (1) can be equivalently expressed in matrix notation as:

X ¼WHþ E ð2Þ

where:

W ¼ ½wik� ; H ¼ ½hkj� ; E ¼ ½eij� ð3Þ

It is worth stressing that in this representation the matrix X is known, while the matrices W

and H are unknown and determined by the NMF algorithm. In particular, we used a variation

of the NMF algorithm that minimizes the Kullback-Leibler divergence loss function [52]

defined as follows:

argmin
W;H

X

i;j
xij log

xij
x̂ij

 !

� xij þ x̂ij; ð4Þ

where:

x̂ij ¼
X

k

wikhkj: ð5Þ

To minimise the Kullback-Leibler divergence loss function, we adopted the multiplicative

update rules described in [53]. Note that different initialisation of the matrices W and H might

lead to different local minima, making the interpretation of the results not straightforward. To

overcome this issue, we used an initialization technique called Non-negative Double Singular

Value Decomposition [54], that is based on a probabilistic approach equivalent to the probabi-

listic latent semantic analysis (pLSA) [55], employed in the context of semantic analysis of text

corpora. Since the two approaches of NMF and pLSA are equivalent (see [56] for more details),

the results of our matrix decomposition can be probabilistically interpreted as a mixture of

conditionally independent multinomials, that we call p(i, j). We can then write:

pði; jÞ � pði; jÞ ¼
X

k

pðkÞ pði; jjkÞ

¼
X

k

pðkÞ pðijkÞ pðjjkÞ;
ð6Þ

where:

pði; jÞ ¼ xij=N; N ¼
X

i;j

xij ð7Þ

and N is the total number of symptoms counts.

According to Eq (6), the total number of symptoms counts will be proportionally split

among K latent sources according to p(k), which is the probability to observe a specific compo-

nent k; p(i|k) is the probability to observe a component k in a day i and p(j|k) is the probability

Unsupervised extraction of epidemic syndromes from influenza surveillance symptoms

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006173 April 8, 2019 7 / 21

https://doi.org/10.1371/journal.pcbi.1006173


to observe a specific symptom j in a component k, and they can be expressed as follows:

pðijkÞ ¼ wik=
X

i

wik ;
X

i

pðijkÞ ¼ 1;

pðjjkÞ ¼ hkj=
X

j

hkj ;
X

j

pðjjkÞ ¼ 1;

pðkÞ ¼
X

i

wik

X

j

hjk=N ;
X

k

pðkÞ ¼ 1:

ð8Þ

At this point, Eq (8) allows to determine the probability p(i, k) that, rescaled on the total

number of symptoms counts N, yields the desired decomposition procedure, yik, which repre-

sents the contribution of a specific component k in a day i, given by the following expression:

yik ¼ N pði; kÞ ¼ N pðkÞ pðijkÞ ð9Þ

Thus, the final step in our approach is to determine the optimal number of components

kmin to be used for the decomposition. A natural upper bound for k would be the total number

of symptoms, i.e. 19. We need to determine the number of components with the best trade-off

between a model that best approximates the original matrix X and at the same time does not

overfit the data. Each time we minimize the loss function Eq (4) for a specific number of com-

ponents k, we obtain a candidate decomposition. To determine the best decomposition, we

use an approximated model selection criterion, known as the Akaike Information Criterion

(AIC) [57]. In particular, we employ the corrected version of the Akaike Information Criterion

(AICc) proposed in [58], valid for finite sample sizes. For each of the candidate decompositions

generated by the various values of k, we estimate the value of AICc(k), expressed as:

AICcðkÞ ¼ � 2LðkÞ þ 2P þ 2
PðP þ 1Þ

N � P � 1
; ð10Þ

where L(k) is the log-likelihood of the model with k components, defined in [56] as:

LðkÞ ¼
X

i;j

xij log pði; jÞ: ð11Þ

P is the number of parameters of the model defined as:

P ¼ K ðI þ J � 2Þ � 1; ð12Þ

where K is the upper bound for the number of components, I is the total number of days and J
is the total number of symptoms. The best candidate decomposition is the one that minimizes

Eq (10) and we denote it as AICc(kmin). The final result is a model, that we call yikmin , consisting

of kmin components that best approximate the original matrix X.

Data analysis

We applied the aforementioned framework to the data collected by the Influenzanet platforms

in nine European countries throughout six influenza seasons (from 2011-2012 to 2016-2017).

For each country, we applied the decomposition algorithm to the symptoms’ matrix X as rep-

resented in Eq (2) and, based on the AIC, we obtained the “optimum” number of components,

kmin, for the decomposition. The daily counts of the emerged components are eventually

aggregated weekly to allow the comparison with the weekly incidence reported by the tradi-

tional GPs surveillance. Among the kmin latent components, i.e. syndromes, extracted for each

country, we identified the one that correlates better with the time series reported by the
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traditional GPs surveillance. In the following, we denote this component as IN_NMF. This

component corresponds to the combination of symptoms that more closely represent the ILI

time series recorded by the traditional surveillance, and hence, it can be used to build a data-

driven, unsupervised ILI case definition, which is the ultimate goal of this study.

To further evaluate the IN_NMF signal selected for each country, we also computed the

Pearson correlation between: (i) the IN_NMF and the time series obtained by applying the

ECDC case definition to the Influenzanet data (hereafter called IN_ECDC); (ii) the IN_NMF

and the ILI incidence reported by the national surveillance systems per country (hereafter

called GP); and (iii) the IN_ECDC and the GP. The reported correlations refer to the time

series over the entire period analysed (2011-2017).

Additionally, we explored the predictive power of the proposed methodology in the follow-

ing way: first, we trained the NMF decomposition framework with Influenzanet data only

from 2011 to 2016 and then, we employed the resulting symptom weights to infer the weekly

IN_NMF estimates during the 2016-2017 season. To assess the quality of this signal, we evalu-

ated the Pearson correlation of the forecasted IN_NMF time series for 2016-2017 with both

the GP time series and the IN_ECDC time series.

Moreover, to broaden the scope of our framework in identifying syndromes not related to

ILI (e.g. gastrointestinal versus respiratory), we employed it to identify the syndrome related to

gastrointestinal episodes by performing the Pearson correlation with data provided by the tra-

ditional official surveillance in France. We focused on the case of France due to the immediate

data availability from the official surveillance. The Réseau Sentinelles in fact comprises a unique

program of data collection about gastrointestinal illness episodes [59]. The identified compo-

nent is denoted as IN_Gastro. For the entire analysis and simulations we used the Python pro-

gramming language (Python Software Foundation, version 2.7, https://www.python.org/).

Results

ILI selection of components

S1 Fig in the supporting information depicts an exploration on the relative AIC values of a

series of candidate models (AICc(k) − AICc(kmin), with k 2 [1, 6]), estimated according to Eq

(10). For the majority of the countries, the optimal decomposition consisted of kmin = 2 com-

ponents, with the exceptions of the Netherlands and Belgium with kmin = 3, and France with

kmin = 4. S2, S3, S4, and S5 Figs in the supporting information depict for each country the

respective time series of all the emerging kmin components and their symptoms composition.

The component selected by our framework is highlighted by a blue square. These results show

how our approach is capable of taking into account differences in ILI definition between coun-

tries since we can select the components that best correlate with the national ILI signal.

ILI component analysis

In the left panel of Fig 1, the IN_NMF component for each country is shown in comparison to

the ILI signal as recorded by the traditional surveillance, GP. To allow for visual comparison,

the IN_NMF time series has been rescaled on the GP time series with a fixed scaling factor.

Specifically, the IN_NMF has been rescaled on the highest peak among all the GP time series

for each country, hence the lower peak of the IN_NMF for the other peaks of the GP time

series. Consequently, the performance of the selected ILI component cannot be evaluated in

terms of amplitude and error with respect to the peak estimate.

In the right panel of Fig 1, the break-down of symptoms for each country’s IN_NMF com-

ponent is expressed in terms of probabilistic contributions, denoted as p(j|k), as described in

Eq (6). In terms of symptoms’ composition, IN_NMF appears to be stable across the various
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Fig 1. Qualitative comparison between the IN_NMF and the national surveillance ILI incidence (GP) time series and IN_NMF

component composition. Left panel: qualitative comparison between the IN_NMF and the national surveillance ILI incidence (GP)

time series. To allow for easier visual inspection, the depicted IN_NMF syndromes are rescaled by a fixed factor to the respective GP

incidence. On the y-axis, the sample size of the GP incidence is reported. Right panel: contribution of each symptom to the

automatically selected IN_NMF component. The bars are coloured for readability purposes only.

https://doi.org/10.1371/journal.pcbi.1006173.g001
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countries and consistent with the expected set of symptoms clinically associated with ILI. The

top contributing symptoms are fever, chills and feeling tired, often reported in combination

with a sudden onset of symptoms. Notably, each of these top three symptoms contributes for

about 10% or more of the overall component composition. This is consistent across all the

nine countries and it is the most important result of this study since it represents the basis

towards the development of a common ILI definition. Small heterogeneities in the component

composition across countries are most likely due to differences in the ILI case definitions used

by sentinel doctors in each country which are reflected in the data that we use as ground truth.

In principle, this issue might be overcome by using seroprevalence data as ground truth.

For the sake of comparison, we have examined how our framework performs with respect

to other similar approaches. For example, Goldstein et al. [60] have used two inference meth-

ods to estimate incidence curves from symptoms surveillance data. The first method essentially

assumes that the distribution of symptoms is known. In our case, we have no such assumption;

instead, we extract the symptoms and their probabilistic distribution from the observed data

without making any a priori assumption on the distribution of symptoms. The second infer-

ence method proposed by Goldstein et al. [60] is closer to our framework and falls under the

umbrella of the term “blind source separation”. The Non-negative Matrix Factorization can be

formulated as an expectation-maximization problem [61]. The difference with our approach is

that they assume as an initial condition that the expected weekly incidence is equal to 1 for

each infection in their survey sample. Their approach is sensitive to the ratio of flu/non-flu dis-

tribution while NMF manages to overcome this problem.

ILI model evaluation

Table 2 reports all the Pearson correlations between the different time series as mentioned in

the Data Analysis section. For all countries, the correlation between the IN_NMF component

and the IN_ECDC is very high, ranging from 0.82 to 0.92 (row (i)), thus showing that the

Table 2. Pearson correlations with the ground-truth data per country.

NL BE IT FR UK ES PT DK IE

(i) IN_NMF vs IN_ECDC for the seasons 2011-2017

0.91 0.92 0.86 0.83 0.92 0.86 0.84 0.90 0.82

(ii) IN_NMF vs GP for the seasons 2011-2017

0.88 0.80 0.69 0.79 0.74 0.65 0.66 0.71 0.38

(iii) IN_ECDC vs GP for the seasons 2011-2017

0.79 0.72 0.80 0.86 0.75 0.67 0.63 0.68 0.23

(iv) IN_NMF forecast vs GP for the season 2016-2017

0.85 0.82 0.69 0.80 0.60 0.84 0.80 0.76 0.60

(v) IN_NMF forecast vs IN_ECDC for the season 2016-2017

0.85 0.82 0.86 0.93 0.67 0.59 0.88 0.80 0.71

(i) Pearson correlation between the time series of IN_NMF with the respective time series produced when applying the ILI definition on the Influenzanet data

(IN_ECDC). (ii) Pearson correlation between IN_NMF and the respective ILI incidence reported by the national surveillance systems per country (GP). (iii) Pearson

correlation between ILI incidence obtained by applying the ECDC case definition to raw Influenzanet data (IN_ECDC) and ILI incidence reported by the national

surveillance systems per country (GP). (iv) Pearson correlation between the forecasted 2016-2017 IN_NMF and ILI incidence reported by the national surveillance

systems per country (GP) for the season 2016-2017. (v) Pearson correlation between ILI incidence obtained by applying the ECDC case definition to raw Influenzanet

data (IN_ECDC) and the respective forecasted IN_NMF for the 2016-2017. Note that the reported correlations are not averages per ILI seasons per country but the

correlation of the time series of the entire period (2011-2017 for (i),(ii) and (iii) and 2016-2017 for (iv) and (v)) between the IN_NMF and the respective GP time series

for each country.

https://doi.org/10.1371/journal.pcbi.1006173.t002
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IN_NMF signal captures symptoms highly compatible with those present in the ECDC ILI def-

inition applied to the Influenzanet data. However, by carefully examining rows (ii) and (iii),

we note slight variations per country. For the Netherlands, Belgium, and Ireland the ILI inci-

dence reported by the traditional surveillance (GP) was more strongly correlated with the

IN_NMF component, than with the ILI incidence obtained by applying the ECDC ILI defini-

tion to the Influenzanet data (IN_ECDC). For the United Kingdom, Spain, Denmark, and Por-

tugal, the IN_NMF components perform equally well as the IN_ECDC. For Italy and France,

the IN_NMF component had a slightly lower correlation (about 11% and 7% less respectively)

with the traditional surveillance data (GP) than the IN_ECDC. Ireland is the only country for

which we obtain a low correlation between the traditional surveillance data (GP) and both the

IN_NMF and IN_ECDC, probably due to the limited number of participants in Influenzanet

(see S1 Table in the supporting information). Despite this, the IN_NMF performs much better

than the IN_ECDC in capturing the ILI incidence trend in Ireland (0.38 vs 0.23). This varia-

tion in performance is not an issue for the goal of this work since our focus is on paving the

way towards a common cross-country ILI definition rather than finding the perfect signal that

correlates best with the traditional national surveillance. Also, the loss in performance of

IN_NMF vs GP with respect to IN_ECDC vs GP for Italy and France is only a small percent-

age. One might argue that, since it has been observed that people tend to go to the doctor if

their symptoms are more severe or if the duration of the disease is longer [62], the high corre-

lation between the IN_NMF time series and the GP time series might be attributable to the fact

that participatory surveillance only captures individuals with perceived severe symptoms, who

did visit a doctor for their illness. Unfortunately, we cannot assess the severity of self-reported

symptoms, but we can assess the fraction of participants who claimed they have visited a

healthcare provider for their symptoms and, in line with previous studies, we found that the

vast majority of participants did not seek medical consultation. Specifically, the percentages of

participants who did seek medical consultation per country are: NL 12%, BE 22%, IT 23%, FR

26%, UK 14%, ES 17%, PT 17%, DK 11%, IE 16%.

Moreover, to investigate the performance of our framework with respect to healthcare seek-

ing behaviour, we employed two different approaches. First, we trained our framework only

with the subset of self-reported symptoms from participants who consulted a medical doctor

for their symptoms, obtaining the following Pearson correlations with the GP time series: NL

0.83, BE 0.82, IT 0.87, FR 0.92, UK 0.88, ES 0.82, PT 0.82, DK 0.69, IE 0.51. Secondly, we

trained our framework only with the subset of self-reported symptoms from participants who

did not consult a medical doctor for their symptoms, obtaining the following Pearson correla-

tions: NL 0.77, BE 0.59, IT 0.69, FR 0.78, UK 0.72, ES 0.54, PT 0.48, DK 0.64, IE 0.29. We

notice that since by default our framework selects as ILI component the one that best correlates

with the official surveillance, the IN_NMF signal emerged represents better the data reported

by the official surveillance systems. Unsurprisingly, the correlations are higher when we com-

pare the same population of individuals who did seek medical consultation for their illness. On

the other hand, it is of extreme importance that our framework is capable of extracting a rele-

vant signal in the latter case since the population of individuals who do not seek healthcare is

complementary to the one depicted by the official surveillance data.

Finally, in order to assess the impact of the exclusion criterion for which we do not take

into account duplicate reports from the same individual in a single week, we have determined

the mean percentage of the symptoms discarded per country: NL 0.04%, BE 0.03%, IT 0.09%,

FR 0.06%, UK 0.16%, ES 0.05%, PT 0.12%, DK 0.03%, IE 0.10%. Indeed, the duplicate report

exclusion corresponds to a small number of symptoms discarded each week and the distribu-

tion of all discarded symptoms is homogeneous.
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ILI prediction evaluation

The results of the prediction analysis described in the Data Analysis section are shown in S6

Fig. The fourth row of Table 2 (iv) reports the correlations of the forecasted IN_NMF time

series and the national surveillance for the season 2016-2017 (GP). The correlation between

the two time series is good for all the countries, ranging from 0.60 to 0.85. In supplementary

information we depict the results of the prediction analysis described in the Data Analysis sec-

tion. As already stated above, for the sake of visual comparison, the IN_NMF time series has

been rescaled to the highest peak of the GP time series for each country, hence the lower peak

for the other peaks. Consequently, the two time series cannot be evaluated in terms of ampli-

tude and error.

In Table 2 row (v), we also report the correlation between the forecasted IN_NMF time

series and the IN_ECDC time series emerged from applying the ECDC definition to the Influ-

enzanet data for the season (2016-2017). Also, in this case, the predicted trend of the ILI com-

ponent have high correlations, ranging from 0.59 to 0.93.

Even if the focus of the paper is on the possibility of extracting a symptoms-based data-driven

definition of ILI that is country specific, the forecasting capabilities of the framework represent

an additional strengthening factor (the forecasting potential of using participatory surveillance

data, in combination with additional epidemiological signals has also been explored in a previ-

ous paper [29]). To further assess the robustness of the forecasts produced by the NMF frame-

work, we have compared their accuracy with respect to a null model in two different ways.

1. We trained a model following our NMF framework on the shuffled counts of symptoms

observed among the users during the seasons of 2011-2016. Then, the resulting model was

employed to infer the IN_NMF trend of the Influenzanet data collected in 2016-2017.

Despite being trained on randomly shuffled data, the selected ILI component correlates

well with the incidence estimated by sentinel doctors, but the combinations of symptoms in

the syndrome are rather inconsistent (see S7 Fig in Supporting Information). Pearson cor-

relations per country are: BE 0.81, DK 0.76, ES 0.74, FR 0.91, IE 0.66, IT 0.85, NL 0.85, PT

0.88, UK 0.61.

2. We trained a model following our NMF framework on the data from seasons 2011-2012 to

2015-2016, and then, we used it to predict the ILI component of season 2016-2017, ran-

domly shuffling the resulting symptoms. In this case, the Pearson correlations are extremely

low: BE 0.25, DK 0.08, ES -0.04, FR 0.25, IE 0.03, IT -0.15, NL 0.30, PT 0.07, UK 0.13. This

provides us with a measure of how worse our predictions become with a random combina-

tion of symptoms.

Gastrointestinal component evaluation

In the left panel of Fig 2, we show the time series for the incidence of acute diarrhoea episodes

(GP_Gastro) as detected by the official national surveillance in France, and the time series of

the syndrome identified by our framework (IN_Gastro). The Pearson correlation between the

extracted syndrome and the official surveillance data is 0.66.

In the right panel of Fig 2 we depict the probabilistic contribution of each symptom to the

IN_Gastro syndrome. Emerging symptoms, in this case, include also stomach ache, diarrhoea,

and vomiting, which are in line with our expectations. Even if respiratory symptoms like

runny nose or sneezing are also present, the contribution of fever and chills (which were the

main contributors to the IN_NMF signal) is almost negligible. This suggests a rather good

capability of our framework in discriminating between different syndromes. Despite
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limitations of the data availability, these preliminary findings indicate that the latent compo-

nents of the decomposition, not related to ILI, may express syndromes related to allergies,

common-cold or gastroenteritis. Understandably, additional adequate surveillance data are

required to make a firm statement and reach a robust interpretation of the syndromes.

Previous works have also focused on detecting gastrointestinal symptoms circulating

among the general population through digital unstructured data [33, 63–65] from participa-

tory surveillance, big data, such as Twitter, as well as national pharmacy sales data. These

examples show how crowdsourced digital health-related data, as well as passive digital traces

generated on the web by individuals from the general population, can complement traditional

and syndromic surveillance systems to estimate the circulation of gastrointestinal syndromes.

This is particularly important because only a fraction (about a third) of individuals who

reported gastrointestinal symptoms in France also declared that they visited a doctor. The

NMF framework applied to the subset of data from participants who did not visit a doctor for

their symptoms selected a component whose correlation with official surveillance data is 0.67

(with respect to a correlation of 0.66 when using all the data). This shows that people tend to

visit a doctor rarely and probably only if their symptoms are severe. The NMF framework is

capable of providing robust results even if we focus the analysis only on those individuals who

did not visit a doctor, for which we can safely assume that their symptoms were not severe.

Limitations and future work

This approach has several limitations. As far as data are concerned, crowdsourced digital data

are intrinsically biased due to the fact that the participants are self-selected and not representa-

tive of the general population, as extensively explored in a previous work [35]. However, such

sample biases do not affect the robustness and accuracy of the epidemiological signal detected

through participatory surveillance [37, 39, 43]. Previous works have shown that selecting

groups with specific reporting patterns or combining data sources can improve the representa-

tiveness [28, 66, 67]. Extending this study, we will incorporate in our framework the user attri-

butes to account for selection biases.

Other issues could rise from the variable reporting behaviours along the season, individuals’

interpretation of the terms used for surveillance, and the correctness of their self-assessments.

Some of these issues have been addressed partially in previous works [10, 40, 44, 50, 68]. In our

approach, we assume that self-reported symptoms are consistent since Influenzanet data have

been already proven to be accurate and reliable for ILI surveillance, even without providing

Fig 2. Composition of the IN_Gastro component and comparison with the incidence of acute diarrhoea detected by the national surveillance data

(GP_Gastro) for France. Left panel: Time series comparison between the IN_Gastro component and the incidence of acute diarrhoea detected by the

national surveillance data (GP_Gastro) for France. To allow for an easier visual inspection the depicted IN_Gastro syndrome is rescaled by a fixed

factor on the respective GP_Gastro incidence. On the y-axis, the sample size of the GP incidence is reported. Right panel: symptomatic contribution of

the automatically selected IN_Gastro component. The bars are coloured for readability purposes only.

https://doi.org/10.1371/journal.pcbi.1006173.g002
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any clinical confirmation. However, we are aware that one of the criticisms of online participa-

tory surveillance is the lack of virological confirmation of influenza cases that would instead

help to better assess the actual circulation of influenza in the population. To this respect, a

pilot study has been developed in the United Kingdom by the national Influenzanet platform,

called Flusurvey, which demonstrates that self-swabbing can be applied to an online cohort to

conduct virological laboratory testing [69].

Moreover, in this work, we have not compared the performance of other machine learning

algorithms besides NMF since this would go beyond the scope of this paper. Future work

could explore the performance of other methods and clustering algorithms. Among the many

algorithmic choices, LDA could be employed in a similar framework, since PLSA is simply a

special case of LDA and Faleiros et al. [70] showed that indeed NMF with Kullback-Leibler

divergence approximates the latent Dirichlet allocation (LDA) model under a uniform Dirich-

let prior distribution.

Finally, there are inherent socio-economic biases in influenza surveillance systems [71] due

to the fact that in some countries traditional surveillance is based on primary healthcare which

may be biased towards population with higher socioeconomic status. Even additional digital

unstructured data sources are more representative of these population groups, thus even com-

bining traditional and non-traditional data sources might fail in mitigating biases towards

more at-risk groups.

Discussion

The practice of seasonal influenza surveillance is affected by a lack of a common case definition

for influenza-like illness across countries. Moreover, the seasonal influenza epidemics in the

various European countries present a high degree of heterogeneity. To improve seasonal influ-

enza surveillance beyond these issues, we propose an unsupervised probabilistic framework

based on self-reported symptoms collected daily through a network of participatory web-based

influenza surveillance platforms in Europe called Influenzanet. Our approach, which relies on

a Non-negative Matrix Factorization of the daily symptoms matrix, is capable of producing an

epidemiological signal that does not rely on a specific a priori case definition and that follows

the temporal trend of influenza-like illness closely as detected by the traditional sentinel doc-

tors surveillance in each country. The emerging signal successfully captures the ILI incidence

trend estimated by the national surveillance data for all the nine countries included in this

study. We also demonstrate that the proposed approach can be employed to forecast the forth-

coming ILI incidence. Additionally, the proposed approach has the potential to be used to

identify other illnesses, as shown here for gastrointestinal syndromes, although additional tra-

ditional surveillance data is needed to validate the generalisability of our framework. We can

thus conclude that there is great potential in using symptoms directly collected from the gen-

eral population to inform unsupervised algorithmic approaches aimed at detecting circulating

bouts of illnesses without imposing an a priori case definition. The standardized technological

and epidemiological framework and the ability to monitor symptoms from the general popula-

tion, including individuals who do not seek medical assistance, provided by the Influenzanet

participatory surveillance platforms, are what enables the application of unsupervised algorith-

mic approaches such as the one presented in this work. In the next future, we will include data

from virologically confirmed influenza cases as ground truth to enhance the specificity of our

framework. Regarding the forecasting capabilities of the framework, approaches from existing

research on participatory flu surveillance suggest that the integration of real-time official data

sources with the crowdsourced digital ones [72] [73] provide better forecasting performance.

In our case, the weekly integration of sufficient traditional surveillance data in the framework
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could lead to a near-real-time selection of the component that better represents the symptoms

in the ILI syndrome circulating among the general population. Finally, the flexibility provided

by the participatory surveillance platforms in terms of symptoms that can be collected from

the general population enables the possibility to extend the framework to other diseases, pro-

vided that traditional surveillance data are available to train the framework.

Supporting information

S1 Table. Descriptive statistics of the Influenzanet data by country. Here, we present a few

statistics regarding the available Influenzanet data for each country; (i) the number of seasons

available, (ii) the average number of participants per country in a season, (iii) the average num-

ber of surveys of weekly surveys, (iv) the average percentage of surveys with at least one symp-

tom (v) the average number of surveys per participant per season, and (vi) the average number

of weeks within a single season.

(PDF)

S2 Table. ILI case definitions reported by the national surveillance systems of the various

countries of the Influenzanet platform. Here, we show the definitions of ILI case in the vari-

ous countries of the Influenzanet platform as reported by the national surveillance systems

and the WHO [17]. The table highlights the existing issue in the heterogeneity of the ILI case

definition in Europe. The ECDC case definition refers to the sudden onset of symptoms with

one or more systemic symptoms (fever or feverishness, malaise, headache, myalgia) plus one

or more respiratory symptoms (cough, sore throat, shortness of breath).

(PDF)

S1 Fig. Exploration of relative likelihood of each candidate model. The best model is the

one that minimizes Eq 10, denoted as AICc(kmin), and consist of K syndromes. For each coun-

try we depict the relative likelihood of each candidate model (AICc(k) − AICc(kmin)), where the

AICc(k) scores for each candidate model are compared against the AIC score of the best model

AICc(kmin). We depict only models with k up to 6 and not 19 for easier visual inspection. The

best model per country, with optimal number of syndromes is: (a) The Netherlands K = 3, (b)

Belgium K = 3, (c) Italy K = 2, (d) France K = 4, (e) UK K = 3, (f) Spain K = 2, (g) Portugal

K = 2, (h) Denmark K = 2, (i) Ireland K = 2. The best model is presented with dashed line.

(TIF)

S2 Fig. Complete set of extracted components for the Netherlands and Belgium. Compara-

tive Analysis of the consistency and time series of the amount yik which refers to the total num-

ber of counts associated to a syndrome k in day i for all the emerged syndromes for the

Netherlands and Belgium. The blue box indicates the syndrome selected as IN_NMF by the

algorithm. Right panel: contribution of each symptom to the automatically selected IN NMF

component. The bars are coloured for readability purposes only.

(TIF)

S3 Fig. Complete set of extracted components for Italy and France. Comparative Analysis

of the consistency and time series of the amount yik which refers to the total number of counts

associated to a syndrome k in day i for all the emerged syndromes for Italy and France. The

blue box indicates the syndrome selected as IN_NMF by the algorithm. Note that for France

the syndrome selected as IN_Gastro is the second component. Right panel: contribution of

each symptom to the automatically selected IN NMF component. The bars are coloured for

readability purposes only.

(TIF)
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S4 Fig. Complete set of extracted components for the UK and Spain. Comparative Analysis

of the consistency and time series of the amount yik which refers to the total number of counts

associated to a syndrome k in day i for all the emerged syndromes for UK and Spain. The blue

box indicates the syndrome selected as IN_NMF by the algorithm.Right panel: contribution of

each symptom to the automatically selected IN NMF component. The bars are coloured for

readability purposes only.

(TIF)

S5 Fig. Complete set of extracted components for Portugal, Denmark, and Ireland. Com-

parative Analysis of the consistency and time series of the amount yik which refers to the total

number of counts associated to a syndrome k in the day i for all the emerged syndromes for

Portugal, Denmark and Ireland. The blue box indicates the syndrome selected as IN_NMF by

the algorithm. Note that for Denmark and Ireland we have data only for the period 2014–

2017. Right panel: contribution of each symptom to the automatically selected IN NMF com-

ponent. The bars are coloured for readability purposes only.

(TIF)

S6 Fig. Assessment of the model’s robustness in forecasting. Left panel: qualitative compari-

son between the forecasted IN_NMF and the national surveillance incidence (GP) time series.

To allow for easier visual inspection, the depicted IN_NMF syndromes are rescaled by a fixed

factor to the respective GP incidence. On the y-axis, the sample size of the GP incidence is

reported. Right panel: contribution of each symptom to the automatically selected IN_NMF

component. The bars are coloured for readability purposes only.

(TIF)

S7 Fig. Assessment of the model’s robustness in forecasting with randomly shuffled symp-

toms. Left panel: qualitative comparison between the forecasted IN_NMF—that emerges if we

test our model on a randomly shuffled matrix of symptoms—and the national surveillance

incidence (GP) time series. To allow for an easier visual inspection the depicted IN_NMF syn-

dromes are rescaled by a fixed factor to the respective GP incidence. On the y-axis, the sample

size of the GP incidence is reported. Right panel: contribution of each symptom to the auto-

matically selected IN_NMF component. The bars are coloured for readability purposes only.

(TIF)

1Throughout this study we employ the term latent as used in computer science, i.e. referring to

variables that are hidden, not directly observed, but rather inferred through a mathematical

model. There is no reference to the medical use of the term that usually indicates an asymp-

tomatic infection.

2In the results section, we report the mean and standard deviation of the symptoms discarded

per country as well as the results of the framework with respect to including the duplicate

reports.
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