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Abstract

Our understanding of how diseases spread has greatly benefited from advances in network modeling.
However, despite of its importance for disease contagion, the directionality of edges has rarely been
taken into account. On the other hand, the introduction of the multilayer framework has made it
possible to deal with more complex scenarios in epidemiology such as the interaction between
different pathogens or multiple strains of the same disease. In this work, we study in depth the
dynamics of disease spreading in directed multilayer networks. Using the generating function
approach and numerical simulations of a stochastic susceptible-infected-susceptible model, we
calculate the epidemic threshold of synthetic and real-world multilayer systems and show that it is
mainly determined by the directionality of the links connecting different layers, regardless of the
degree distribution chosen for the layers. Our findings are of utmost interest given the ubiquitous
presence of directed multilayer networks and the widespread use of disease-like spreading processes in
abroad range of phenomena such as diffusion processes in social and transportation systems.

1. Introduction

Directionality in contact networks has often been disregarded, either because of the lack of data or in order to
simplify theoretical approaches [1]. This is the case of disease spreading models, which usually consider the
underlying networks as undirected [2, 3]. However, there are scenarios in which directionality has been found to
be a key feature. Relevant examples are the case of meerkats in which transmission varies between groomers and
groomees [4] and the transmission of HIV between humans, with male-to-female transmission being 2.3 times
greater than female-to-male transmission [5]. Similarly, when addressing the problem of diseases that can be
transmitted among different species, it is important to account for the fact that they might be able to spread from
one type of host to the other, but not the other way around. For example, the bubonic plague can be endemic in
rodent populations and spread to humans and other animals under certain conditions. If it evolves to the
pneumonic form, it may then spread from human to human [6]. Analogously, Andes virus usually spreads
within rodent populations, but it can be transmitted to humans and then spread via person-to-person contacts
[7]. These types of interspecies contagions and other similar cases can be studied using multilayer networks, in
which the network of each species is encoded in the layers and the possible interspecies interactions are given by
the links that connect the layers [8].

Human behavior by itself can also introduce asymmetric patterns of disease spreading, either via the
transmission mechanisms or via asymmetries in social mixing [9]. For instance, vaccination might induce
asymmetric interactions among vaccinated and unvaccinated individuals [10]. Similarly, large-scale cooperation
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[11] can hinder disease spreading via peer punishment (e.g. prohibiting traveling if infected) and peer rewarding
(e.g. free medical treatment from organizations). Both peer punishment and peer rewarding would deviate
individual interactions far from symmetry, also inducing directionality in disease contagion. Even more, the
own dynamics of the entities producing the diseases might be asymmetrical. For example, the interplay between
cancer and the immune system can show asymmetric relationships [12]. There are also diseases with long latent
periods that induce complicated dynamics between individuals who develop further the disease and those who
do not, such as the interaction between individuals in the primary infection phase of Tuberculosis and those in
the active state [13, 14]. For those cases, multilayer networks might be able to help disentangling dynamics that
would be otherwise hidden.

The use of directed multilayer networks is not constrained to diseases that can infect human populations.
Indeed, analogous scenarios can be found in the interface between wildlife and livestock, with diseases being
endemic in one of them and then being transmitted unidirectionaly to the other [15]. This directionality is
particularly relevant in the surveillance of diseases within the livestock industry, where the direction of the
livestock interchange between farms can uncover structural changes that would be otherwise hidden [16]. Even
more, the recent introduction of high resolution data of face-to-face interactions has also renewed the interest in
using directed networks both in human and animal populations [17, 18]. This data can be used to build temporal
multilayer networks in which the connections between layers, i.e. different time frames, have to be necessarily
directed in order to preserve the causality induced by time ordering [19].

In this work, we aim at characterizing the spreading of diseases in directed multiplex networks. We focus on
investigating how the epidemic threshold is influenced by the directionality of both interlayer and intralayer
links. In particular, we consider multiplex networks composed by two layers with either homogeneous or
heterogeneous degree distributions in the layers. Besides, we analyze several combinations of directionality: (i)
Directed layer—Undirected interlinks—Directed layer (DUD); (ii) Directed layer—Directed interlinks—
Directed layer (DDD); and (iii) Undirected layer—Directed interlinks—Undirected layer (UDU). For the sake of
comparison, we also include the standard scenario, namely, (iv) Undirected layer—Undirected interlinks—
Undirected layer (UUU). We then implement a susceptible-infected-susceptible (SIS) model on these networks
and study the evolution of the epidemic threshold as a function of the directionality and the coupling strength
between layers. In addition, we analytically derive the epidemic thresholds using generating functions, which
allows to provide theoretical insights on the underlying mechanisms driving the dynamics of these systems. Our
results show that the presence of directed links results in larger epidemic thresholds with respect to the case of
undirected networks, and that the system is more resilient when the interlayer links are directed. Therefore, our
conclusions are in line with previous works [20, 21] in that directionality is a key topological feature that should
not be disregarded as it can lead to new phenomenology and sizable dynamical effects.

2. The model

Multilayer networks are an extension of classical contact networks in which nodes are assigned to a given layer, 1,
and can be connected to nodes in the same layer or in other layers. As a result, it is possible to distinguish two
types of links: intralayer links, which connect pairs of nodes in the same layer, and interlayer links, which
connect pairs of nodes in different layers. This formulation is used to encode features that characterize the nodes
or the links that would be otherwise hidden, such as different types of interactions in protein networks or the
multiple transportation modes present in mass transit systems [8]. In particular, in this work we focus on two-
layer directed multiplex networks. That is, networks composed by two layers in which links, either within layers
or to other layers, can be directed. Furthermore, the term multiplex, in contrast to multilayer, implies that a
node can only be connected to its counterpart in the other layer. In other words, it is not possible to have more
than one link in each node going to the other layer [22].

First, we implement SIS dynamics on two layer multiplex networks. In this model, nodes can be either
susceptible or infected. The latter spread the disease to the former if they are in contact with a given probability.
One of the main characteristics of multiplex networks is the existence of several types of links. Thus, it is possible
to associate different spreading probabilities to each of these links [23]. In our model, we assume two spreading
probabilities: the interlayer spreading probability, -, and the intralayer spreading probability, 5. Hence, an
infected node transmits the disease with probability 3 to those susceptible neighbors of the same layer and with
probability v to those located in other layers. This distinction implies that it is possible to find a critical value of 3
for each value of yand vice versa. Thus, henceforth we will define the epidemic threshold as 8. and explore its
value as a function of 7.

In the simulations, all the nodes in the system are initially susceptible. The spreading starts when one node is
set to the infectious state. Then, at each time step, each infected node spreads the disease through each of its links
with probability Gif the link is contained in a layer and with probability vif the link connects nodes in different
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layers. Besides, each infected node recovers with probability /1 at each time step. The simulation runs until a
stationary state for the number of infected individuals is reached.

To determine the epidemic threshold we fix the value of 7yand run the simulation over multiple values of 3,
repeating 10° times the simulation for each of those values. The minimum value of (Batwhich, on average, the
number of infected individuals in the steady state is greater than one determines the value of the epidemic
threshold, 3,/ . This procedure is then repeated for several values of y to obtain the dependency of 3, with the
spreading across layers. Lastly, this dependency is evaluated for 10” realizations of each network considered in
the study and their 3.(7) curves are averaged.

2.1. General analytical derivation of the epidemic threshold
In order to obtain insights into the mechanisms driving the spreading process on directed multiplex networks,
we analytically derive the epidemic threshold for all the configurations considered in this work. To this end, we
extend the generating function formalism, which has been used previously in the context of directed monolayer
networks [24] and interdependent directed networks [25], to multiplex networks.

Within the generating function formalism, a node has an in-degree j, out-degree / and inter-degree m with
probability pj,,,, being the first two related to the links contained in each layer and the latter to links connecting
nodes in different layers. The generating function for the degree distribution of a node is then defined as

[o Sl ol o}

Gy, 2) =D 3 3 Py Xy'2" €]

j=01=0 m=0

so thatin order to describe a particular network it is sufficient to set pj,, to the degree distribution of the network.
Indeed, with this function it is possible to characterize several properties of the network such as the excess degree
which is the main quantity that is needed for the derivation of the epidemic threshold. The excess degree of a
node is defined as the number of links of a node reached by following a randomly chosen link, without including
the incoming link. Hence, the distribution of excess degree of a node that is reached by following a directed link
in its direction is generated by

Hy(x, y, z) = LG(I’O’O)(x, ¥V, 2), 2)
(ka)
where (k;) is the average directed degree and the superscript (1, 0, 0) refers to partial derivation with respect to
x. Similar expressions can be obtained for the excess degree of a node reached via the reverse direction of the
same directed link and via an undirected link (see appendix).

The size of an outbreak, as well as the epidemic threshold, can be obtained by computing the fraction of
occupied links in the network. In this context, occupied link refers to a link through which the disease was
transmitted. This can be accounted for by incorporating the transmissibility, i.e. the mean probability of
transmission between individuals [26], to the previous equations so that

G(x, Y 25 T, T,) =GA —-T+Tx,1 - T+ T)/) 1 — T, + Ty2), 3)

where Tand T, denote the transmissibility within a layer and across layers, respectively.

In the SIS epidemic model, an infected individual at time t might recover from the disease or might spread it
to its direct neighbors. We assume both the recovering process and the spreading process are independent
Poisson processes with rate prand 3, respectively. The time, denoted as 7;, that an infected node i remains
infected is a random variable, whose distribution follows an exponential distribution with rate .

The probability 1 — T;; that the disease will not transmit from an infected node i to a susceptible node j is
e/ As 7;is arandom variable, the probability T;; of disease transmission is also a random variable. When
assuming a homogeneous recovering rate for each node, the average of disease transmission probability between
infected and susceptible individuals is the average over the distribution of infectious time, which follows

o0 P
T=1- f e e rrdr 4)
0
from which we obtain
T=1- J’i - (5)

Analogously, the average transmission probability of individuals between different layers reads, given that the
spreading rate between layers is v,

Tp=1-—L— (6)
v+ u
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Hence, the generating function for the distribution of the size of an outbreak can be expressed as
g (W: T) Tuv) = WG(lr hl (W) Ta Tm/)a h12 (W) Ta Tuv)§ T: ’EN): (7)

where hy and hy, are recursive functions that generate the distribution of the size of an outbreak starting at a link
connecting nodes in layer 1 and atalink connecting nodes in layer 1 and 2 respectively. The average size of an
outbreak will be then given by the derivative with respect to w of g(w; T, T,,,) evaluated at w = 1. The said
derivative goes to infinity when its denominator equals 0, which characterizes a phase transition from a phase in
with only small size outbreaks to one characterized by the occurrence of macroscopic outbreaks. Thus, the
epidemic threshold can be obtained from the equality

0,1,0 0,0, 0,0, 0,1,0
[(l - Hl( ! ))H - Hl( 1)H1(2 1)I_Iz(ll )]
[(1 _ HZ(O,I,O))H o HZ(O,O,I)HZ((l),O,l)Hl(g,l,O)]
0,0,1 0,0,1 0,1,0 0,1,0) _
= HODHPOVHS O HR Y = 0, ®)

where H = 1 — H®*VH{P®" and H; refers to transmission within layer i and H;; to transmission from layer i
to layerj.

The above expression is general enough as to be used in the calculation of the epidemic threshold for each of
the cases considered in this work. To this end, the only step that is left is to substitute H; by H, if the links in layer i
are directed or, conversely, by H,, if they are undirected (see appendix).

3. Results

We first present results of numerical simulations of a stochastic SIS model. The SIS dynamics is implemented on
directed multiplex networks composed by two layers. As previously stated, we explore four different
configurations of directionality denoted as DUD, DDD, UDU and UUU. Furthermore, to define the degree
distribution in the layers we use power-law and Poisson distributions, which correspond respectively to Scale-
Free (SF) and Erd6s—Rényi (ER) network models. In figure 1 we show the evolution of the epidemic threshold,
B as afunction of y for the configurations with undirected interlinks, UUU and DUD, both for ER (1A) and SF
(1B) networks, for two different average degrees (k).

For the cases in which the interlinks are directed, we need to define how many links point from one layer u to
another layer v, either in the # — v direction or in the opposite one, # <+ v.Indeed, if we set all interlinks to
have the same direction, the epidemic threshold would be trivially the one of the source layer and thus the
multiplex structure would play no role. For this reason, for each directed link connecting layers u and v we set the
directionality to be u — v with probability p and u < v with probability (1 — p). Consequently, in networks
with directed interlinks the epidemic threshold will be given as a function of this probability p. We refer to this
procedure of generating interlinks as the p-model. The same dependence of the critical threshold depicted in
figure 1 is shown in figure 2 for DDD and UDU configurations built using the p-model. The dependency of the
results with the value of p is shown in figure 3.

Itis also possible to study scenarios in which each interlink does not only have one possible directionality,
either u — v or u < v,butinstead are bi-directional. This is achieved by setting two independent probabilities
—one for each direction—, thus allowing for the coexistence of single directionality and bi-directionality in the
interlinks. This situation, which we denote as the pg-model, is further analyzed in the supplementary material,
which is available online at stacks.iop.org/NJP/21/093026 /mmedia.

In what follows, we present the analytical results obtained for the thresholds after considering directionality
(or lack thereof) and different network topologies.

3.1. ER networks
In ER networks the degree distribution follows a Poisson distribution. If we consider an UUU network with
nodes in both layers following said degree distribution, the generating function, (1), is
© (kVie—(k)
G =3 R ©)
7!

j=0

Inserting this expression in (8), the epidemic threshold can be expressed as (the full derivation is presented in
supplementary material).

1-T,
L= (ER-UUU)
(k) +1— T
Henceforth, to facilitate readability and unless otherwise stated, we provide expressions for the epidemic
threshold in terms of the average transmission probability through intralinks, T, and the average transmission
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Figure 1. Epidemic threshold for the spread of a disease within layers, /3., as a function of the probability of interlayer contagion, 7.
Panels (A) and (B) show results for the UUU and DUD configurations with ER (A) and SF (B) degree distributions in the layers. In all
cases 1 = 0.1, the number of nodesis N = 2 x 10" and for each directionality configuration there are two sets of networks: in the ER
case one with (k) = 6 inboth layers and another one with (k) = 12 in both layers; in the SF case one with ky,;, = 4and o = 2.7
(average degree (k) = 7.85) and another one with ki, = 10and o = 2.8 (average degree (k) = 18.50). In panels (C) and (D) we
compare the analytical values of 3. with corresponding results from the numerical simulations for the same networks and
directionality configurations shown in panels (A) and (B).
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Figure 2. Critical value of the within-layer spreading rate, 3, as a function of the spreading rate across layers, 7, in DDD and UDU
configurations built up using the p-model with ER (A) and SF (B) degree distributions in the layers. In all cases p = 0.5, jx = 0.1, the
number of nodesis N = 2 x 10" and for each directionality configuration there are two sets of networks: in the ER case one with
(k) = 6 inboth layers and another one with (k) = 12 in both layers; in the SF case one with k., = 4and o = 2.7 (average degree
(k) = 7.85)and another one with k,;, = 10 and o = 2.8 (average degree (k) = 18.50).

probability through interlinks, T,,,. Nevertheless, the thresholds can be easily rewritten in terms of 5.in a
straightforward way using (5) and (6). For this case, we can rewrite the above equation and explicitly express the
value of 3, as,
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Figure 3. Epidemic threshold for two-layered multiplex networks for different values of p with: (A) directed layers with ER degree
distribution and directed interlinks; (B) directed layers with SF degree distribution and directed interlinks; (C) undirected layers with
ER degree distribution and directed interlinks; (D) undirected layers with SF degree distribution and directed interlinks. In both ER
cases the average degree is 12 and in the SF cases the minimum degree is 10 and the exponent is 2.8, resulting in an average degree of
18.50.

Pe - - — “w, (10)

Note thatif we set vy = 0in (6) so that the spreading from one layer to the other is completely removed,
T,, = 0and (10) is simplified to % = (k)~!, which is the classical value of the epidemic threshold in single layer
ER networks [27].

Ina DUD network with nodes in both layers following a Poisson degree distribution, with the same average
degree for both incoming and outgoing links, the generating function (1) is

00 00 je—(k) la—(k)
G,y 2) =3 <M? W; xiylz. (11)
=01 -

=0 J!

Again, by inserting this expression in (8) we obtain

T=—— (ER-DUD)

On the other hand, using the p-model previously described, the epidemic threshold in DDD configurations
asafunctionofpis

2
T. = (ER-DDD)
(k)2 + m + Jm(m + 8))
with m = p(1 — p)TZ andin the UDU configuration is
2(1 + (k F— m'(4 + 8(k !
g 20 k) ' — (4 B{K) 4 ) (ER.UDU)

2((1 + (k)* — m/(k))

with m’ = (k)p(1 — p) T2, In figure 4(A) we compare the behavior of these four configurations plotting 3, as a
function of .
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Figure 4. Comparison of the analytically derived epidemic thresholds for each network configuration UXU or DXD (X = Uor D) and
different degree distributions for the networks in the layers. (A) ER networks with (k) = 6 and p = 0.5. (B) SF networks with
kmin = 3, & = 2.6, resulting in the theoretical average degree (k) = 6.1andp = 0.5.

3.2. SFnetworks
In SF networks the degree distribution follows a power-law of the form P (k) ~ k~¢. Thus, the epidemic
thresholds are

<k> (1 - Tuv)

T = ]

for the UUU configuration,

1= (SF-DUD)

for the DUD configuration,

2
T, = SE-DDD
(kY2 + m+ ym(m + 8) ( )
with m = p(1 — p) T_, for the DDD configuration and
2 2 _ 2 2
o 2K + RPm = Jm @k + kP + m) SE-UDU)

2(((k5? — (ky*m)

with m = p(1 — p)T;, for the UDU configuration. The full derivation can be found in the supplementary
material. As in the ER case, the explicit dependence of 3, with «yis shown in figure 4(B).

4. Discussion

Our results show that directionality is a key factor in the spreading of epidemics in multiplex networks. Even
more, these findings suggest that its effects cannot be trivially generalized as the consequences of changing the
directionality of some links are completely different for Scale-Free and ER networks. In particular, in figure 1(A),
we can see that for networks with (k) = 6 the epidemic threshold is very similar in both UUU and DUD
configurations. This effect is again seen for denser networks, (k) = 12, implying that it is the directionality of the
interlinks, and not the one of the links contained within layers, the main driver of the epidemic in these
networks. On the other hand, in figure 1(B) we can see that this behavior is not replicated for SF networks.
Certainly, there is a large difference between the curves of the UUU and DUD configurations, implying that the
directionality of intralinks is much more important in this type of networks. In agreement with these
observations, when the interlinks are those that are directed, we found the same difference between ER and SF
networks. As can be observed in figure 2(A), the evolution of the epidemic threshold as a function of yis again
quantitatively similar for both DDD and UDU configurations. Conversely, in figure 2(B), a difference between
these configurations arises again for SF networks. Besides, in all the cases considered so far, figures 1 and 2, the
epidemic threshold is always lower for those configurations with undirected links within the layers, compared to
those in which those links are directed, given the same interlink directionality.
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Figure 5. Epidemic threshold measured in a multiplex network composed by users of two different social platforms: friendfeed and
twitter. The original network (A) has directed intralinks and undirected interlinks, thus it corresponds to the DUD configuration.
Nevertheless, to explore the effects of directionality, the four configurations studied in this paper are considered (B). For those
configurations with directed interlinks we used the p-model to generate them, setting p = 0.5.

To get further insights into the mechanisms driving the behavior observed previously, we rely on the
analytically derived thresholds and explore the evolution of (3. as a function of v for the whole range of possible
values of the latter parameter. Results are shown in figure 4. In this case, we can see that the value of the epidemic
threshold of the DUD configuration in SF networks tends to the value of the UUU case for large values of the
spreading probability across layers, mimicking the behavior of ER networks. Thus, when v — 1 we reach the
state in which both networks exhibit the same properties, namely: (i) the epidemic threshold in DUD and UUU
configurations is the same; (ii) XDX (X = U or D) configurations are almost not affected by the value of 7, except
for the weakly coupled regime (i.e. small values of ). Hence, in general, one can conclude that the directionality
(or lack of) of the interlinks is the main driver of the epidemic spreading process. The exception is the limit of
small spreading from layer to layer, as in this scenario, the directionality of interlinks makes SF networks much
more resilient, see the dashed—dotted line in figure 4(B). Altogether, the general conclusion is that directionality
reduces the impact of disease spreading in multilayer systems.

Itis important to note that these results are not only relevant for the situations described in the introduction
of this paper. First, because even though a system might be commonly presented as a monolayer network, it may
be possible to detect different types of links in the network that would allow for the construction of a multiplex
network. If this is done, as we have shown in this paper, the definition of the directionality of the interlinks is far
from trivial as it can have dramatic consequences on the dynamics. In particular, the epidemic threshold can
change by up to a factor of two depending on the directionality of the interlinks. Even more, these results are not
restricted only to epidemic modeling, as these kind of diffusion processes can be applied to a broad range of
systems. For example, the generating function approach has been proposed as a tool to identify influential
spreaders in social networks [28].

One particularly interesting and open challenge is to quantify the effects that the interplay between different
social networks could have on spreading dynamics. The theoretical framework developed here is particularly
suitable to study this and similar challenges related to the spreading of information in social networks. On the
one hand, because social relations are, by default, directed: a user is not necessarily followed by her followings,
i.e. social relations are not always reciprocal [29]. On the other hand, disease-like models have been widely used
to study information dissemination, or in other words, simple social contagion [30, 31]. We have analyzed the
dependence of the epidemic threshold with the inter-spreading rate in a real social network composed by two
layers, see figure 5(A). The first layer of the multilayer systems is made up by the directed set of interactions in a
subset of users of the now defunct FriendFeed platform, whereas the second layer is defined by the directed set of
interactions of those same users in Twitter. Even though this multiplex network originally corresponds to a
DUD configuration, we have also explored the other possible configurations for the directionality of the links.
Note that in contrast with the synthetic networks studied in the previous section, in this network the layers have
different average degrees. In particular, the FriendFeed layer has 4768 nodes and 29 501 directed links, resulting
in an average out-degree of 6.19, and the Twitter layer is composed by 4768 nodes and 40 168 directed links, with
an average out-degree of 8.42. Nevertheless, their degree distributions are both heavy tailed, although the
maximum degree in the FriendFeed network is much larger than in the Twitter network. For details on how this
network was obtained, we refer the reader to the original source of the data [32].

The results, figure 5(B), confirm our findings for synthetic networks. In particular, for the range of y under
consideration, the configurations with some directionality are always more resilient against the disease. These
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results would imply that information travels much more easily in undirected systems than in directed systems.
For instance, one could build up a directed multiplex network using Instagram and Twitter data, either ina DUD
configuration if it is assumed that the likelihood of someone sharing the information from one platform to the
other is independent of the source or in a DDD configuration if the likelihood of sending it from Instagram to
Twitter is deemed to be different than from Twitter to Instagram. On the other hand, undirected social
platforms such as Facebook and WhatsApp should be modeled using UDU or UUU configurations. According
to our results, information would spread more easily through these platforms, which could be worrisome as they
have recently been identified as one of the main sources of misinformation spreading [33].

Lastly, it would be possible to build similar directed multiplex networks in transportation systems [34]. In
these systems, the interlinks can be modeled as undirected or directed, depending on the purpose of the study. If
one s interested in taking into account the fact that, for example, a metro station can be overcrowded in the
incoming direction but not in the outgoing direction, such as during the morning peak time, or the other way
around, during the evening peak time, it would be necessary to use directed links. On the other hand, if
congestion is not relevant for the study, those links could be regarded as undirected.

In summary, we have developed a framework that allows studying disease-like processes in multilayer
networks. This represents an important step towards the characterization of diffusion and spreading processes
in interdependent multilevel complex systems. Our results show that directionality has a positive impact on the
system’s resistance to disease propagation and that the way in which interdependent (social) networks are
coupled could determine their ability to spread information. Our results could be applied to a plethora of
systems and show that more emphasis should be put in studying the role of interlinks in diffusion processes that
take place on top of them.
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Appendix. Full derivation of the epidemic threshold

Consider a directed multiplex network consisting of two layers interconnected by interlinks. The directed
contact between an infective individual to a susceptible individual can be within the same layer, or across
different layers or a mix of both. Depending on the directionality of links within layers and the directionality of
links interconnecting different layers, we analyze all possible combinations in which directionality is the same in
both layers, namely: (i) directed layers and undirected interlinks, denoted as DUD, (ii) directed layers and
directed interlinks, denoted as DDD, (iii) undirected layers and directed interlinks, denoted as UDU and (iv)
undirected layers and undirected interlinks, denoted as UUU.

For a general directed multilayer network, a node has an in-degree j, out-degree k and inter-degree m with
probability pj,,. The generating function for the degree distribution of a node is defined as

oo o0 o0

Gy, 2) =323 > Py e (A1)

=0 k=0 m=0

where G(1, 1, 1) = >, Py = 1 satisfying the probability property.
Another quantity related to the nodal degree distribution is called the excess degree distribution, which is the
distribution of degrees of nodes reached by following a randomly chosen link. The probability to reach a node is
biased by nodal degrees because nodes with a higher degree have a higher probability to be chosen. The
probability to reach a node by following the direction of a randomly chosen link, i.e. in-link of the reached node,
IPikm
2 ko Pitom
mreads

. The corresponding generating function for the excess in-degree j — 1, out-degree k and inter-degree
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oo 00 0 jp‘km
Hy(x, ,2) =37 30 D e
=0 k=0 m=0 ijozk:ozm:dpjkm

Analogously, the generating function for a node reached by following the reverse direction of a randomly chosen
directed link, i.e. out-link of the reached node, follows

1.,k m __ G(I’O,O)(x) )/) Z)

- -
X7y z GUOO (1, 1, 1). (A.2)

N o o Kbjt, , GOLO(x, 3, 2)
H,(x, Ve Z) = Z Z Z 0 00 - 59 xj)’k_lzm =227 (A3)
j=0 k=0 m=0 Zj:()Zk:oZm:Okpjkm GO0, 1, 1)
and similarly, the generating function for a node reached by following an undirected inter-link reads
o0 oo oo mp . G(0,0,l) , ,
Hoxy,2) =% % Y s ykzm=1— 1 2) ()

GO, 1, 1)

j=0 k=0 m=0 ZioZioZ::ompjkm

To account for the probability of a link being infected by a disease that is transmitted from an infective
individual to a susceptible individual, we further modify the generating functions. Denote T;, i € 1, 2 asthe
average probability that a susceptible individual will be infected by an infectious individual in the same layer.
Denote T, as the average probability that an infectious individual from layer u will transmit the disease to a
susceptible individual in layer v. We omit the subscript of T; when there is no ambiguity. The generating function
for the distribution of the number of infected links of a randomly chosen node is obtained by incorporating the
probability of disease transmission in the generating function of degree distribution, G(x, y, z, T, T,,,), which
reads

00 00 o0 ] ‘ k "
Z Z ijkm( )T“(l — T)Ju( )Tb(l _ T)k—b( )T,fv(l — )¢ |xybze
a,b,c| j=ak=bm=c a b c
=3 = T+ T = T+ Ty = Ty + Ty2)™
j=0 k=0 m=
=GA—-T+Tx,1—-T+ Ty, 1 — T,y + T,y2). (A.5)

Analogously, we derive the generating functions for the distribution of the number of infected links of a node
reached by following a randomly chosen directed link in the designed direction, as

Hi(x, 9,2, T, Ty,) =Hqs(1 —T+Tx,1 — T+ Ty,1 — T, + T,,2) (A.6)

and similarly of a node reached by following a randomly chosen undirected inter-link, as
Hyx 9,2 T, Ty)=H,(Q —-T+Tx,1 = T+ Ty, 1 — T, + T,p2). (A7)

A number of nodes can be infected starting from a single infected node within the directed multilayer
network. Due to the randomness of disease spreading and the variability of contacts, the size of a disease
outbreak is a random variable. To eventually determine the epidemic threshold, we first investigate the
distribution of the size of an outbreak starting from a single infected node and its corresponding generating
function.

Denote Pr[S = s]as the probability of the size s of an outbreak starting from a single infected node. The
generating function for the size distribution is defined as g (w, T, T,,) = >, Pr[S = s]w’. To solve the average
size of an outbreak, we further define the generating function for the size of an outbreak starting from a node
reached by arandomly chosen directed link in the designed direction, which denotes as
h(w, T, T,,) = >, Pr[S = t]w'. By adding subscript u or uv to the generating function h(w, T, T,,,), we
distinguish a randomly chosen link within a layer u, 4 = 1,2, and a randomly chosen interlink uv connecting
layers u and v.

Starting from a single infected node reached by following a randomly chosen intra-link (links within layers),
the possible ways of future transmission are: the disease spreads along an intra-link in the same layer, it spreads
along an inter-link to the opposite layer, it spreads along two intra-links, it spreads along one intra-link and one
inter-link, etc. The transmission diagram is shown in figure A 1. To account for all the transmission possibilities,
we construct a recursive relation in the generating functions. Without loss of generality, we assume the disease
spreading starting from an infected node in layer 1, the generating function satisfies a recursive relation

hl(W) T’ Tuv) = WH1(1) hl(w) T: Tuv): hlZ(W> T: Tuv): T) Tuv)- (AS)

The generating function for the distribution of the size of an outbreak w along a randomly chosen interlink
satisfies a recursive relation

hlZ(W) T) Tuv) = WI_IIZ(I) hZ(W) Tr Tuv)) th(W) T) Tuv)) T) Tuv)- (A9)
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a)

{o}
h,, }.} = /o + /H{.} + /<{.}+

Figure A1. Panel (a) shows the future transmission diagram starting from a single infected node reached by following the direction of a
randomly chosen link. Solid lines represent the disease transmission on directed links and dashed lines depict the bidirectional disease
transmission on undirected links. Panel (b) shows the recursive relation of generating functions for the size distribution of outbreaks
by following four types of links which are (i) intralink in layer 1, (ii) interlink pointing from layer 1 to layer 2, (iii) intralink in layer 2
and (iv) interlink pointing from layer 2 tolayer 1 .

Analogously, the spreading in layer 2 itself satisfies a recursive relation

ho(w, T, T) = wHy (1, ho(w, T, Ton), hor(w, T, Tow), T, T) (A.10)
and

hoy(w, T, Tuy) = wHa (1, li(w, T, Toy), hia(w, T, Tiw), T, Tn). (A.11)

The recursive relation of the generating functions is shown in figure A1. Similarly, the generating function for
the distribution of the size of an outbreak along a randomly chosen node in layer 1 reads

g(W) T) Tuv) = WG(l > hl(W, T) ’I;,tv)) hlZ(W) T) ’I;/lv)) T) Tuv)- (AIZ)
The average size E[S] of an outbreak starting from a randomly chosen node thus can be calculated by

N
E[S] = Y sPr[S =] = w
w

s=1 w=1

Performing the derivative with respect to w on both sides of equation (A.8)—(A.12), the derivatives for generating
functions h,,, h,,, and gread
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g'w, T, T) =G(, by, iy, T, Ty) + wGOM (1, by, hua, T, T by
+ wGOOD(1, hy, hyy, T, T,y)h,

h{(w, T> T) = Fy(L, hny g, T, To) + wH{* MO (1, hyy b, T, T by
+ wH "V, hy, by, T, Ty hi,

hiy(w, T, Ty) = Hia(1, by hony Ty Tow) + wHip (1, oy by, T, T) s
+ wHS*P(1, hy, by, T, Ty,

hy(w, T, T) = Hy(1, h, by, T, Tow) + wH (1, oy by, T, T)hy
+ wHOV(1, hy, byt T, T h3,

hy(w, T, Tp) = Hoy(1, hy, ha, T, T) + wHY PO (L, by, by, T, Tow) by
+ wHP*P (1, by, o, T, T) by (A.13)

Forw = 1, the derivatives of generating functions are simplified as
g, T, T,) =1+ GOLOR/ + GOODR/,

h(1, T, T,) =1 + H®"Oh! + H®*Dh/,

hiy(1, T, T) =1 4+ HY Phy + HY"Vh;,

hy(1, T, Tw) =1 4+ H*Ohy + H*Vhy,

h (L, T, Ty) =1 + HYPOh! + HY®Vh),, (A.14)
where the arguments of a function in the right side of the equation are omitted for readability, for example
GOLO(1, hy, hyy, T, T,y)is denoted as GOH?

Now, we can express the average size E[s] of an outbreak in terms of the generating functions as
GO0 (1  HOORY)
T HETHE
N (GOLO (1 — Hl(g,Oyl)Hz(?,O,l)) + G(O,O,I)Hl(g,o,l)Hz((l),1,0))h]/
TR

Els]=¢'(1, T, Ty) =1+

>

where
0,0,1 0,0,1) 77(0,0,1 0,0,1) 77(0,0,1 0,0,1) 77(0,1,0)7, /
h o— 1+ Hl( ) + Hf )HI(Z ) — HY )HZ(I ) + H )H1(2 'h, (A.15)
1= 0,1,0 0,0,1) 77(0,0,1 0,0,1) 77(0,0,1) 77(0,1,0 :
(1 = H"")A = HY"PHy*Y) — H**VHY "V H
and
0,0,1 0,0,1) 77(0,0,1 0,0,1) 77(0,0,1 0,0,1) 77(0,1,0)7, /
L HOYD § HOODHEOD  pOMDHGOD | OOV o
2 —_— .

0,1,0 0,0,1 0,0,1 0,0,1 0,0,1 0,1,0
(1 = H""N)(A = HY*PHE™Y) — BV HOVH

The expression for E[s] goes to infinity when the denominator equals zero, which characterizes a phase transition
from small size of outbreaks with tree-like structure to the occurrence of large-scale outbreaks. Therefore, the
critical equation that determines the epidemic threshold reads

0,1,0 0,0,1) 17(0,0,1 0,0,1) 17(0,0,1) 77(0,1,0
0=[(1 = H*")(A — HY"VH"") — H**VHG*VH]
[(a— HZ(O,I,O))(I _ Hl(g’o’l)Hé(f’O’l)) _ H§0,0>l)Hé(l)y(),l)Hl(g,l,O)]
_ HI(O’O’I)HZ(O’O’I)Hl(g’l’O)Hz(?’l’o). (A.17)

A.1. Epidemic threshold for ER networks
In this subsection, we elaborate on the derivation of epidemic threshold for coupled ER networks with DUD
configuration.

DUD: Consider a directed multilayer network consisting of two directed graphs that are interconnected by
undirected links. We employ Poisson degree distributions as an example to illustrate the derivation of the
epidemic threshold. If both the in-degree and out-degree follow a Poisson distribution with the same average
degree (k), the generating function for the excess degree H, follows

o0 oo (kye ® (kyke=(h) . Lk
D B Y A L
! ]<k> (A.18)

Hi(x, y, 2) =
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from which we derive the partial derivative with respect to y evaluated at the pointx = y = z = las
HPYO (1,1, 1) = (k). (A.19)
Since intralinks in the configuration of DUD are directed, the generation function H; for layer 1 is substituted by
H,which reads
HOMYO = gPY 1,1, 1, T, T,) = TH?MO (1, 1, 1). (A.20)
The derivatives of the generating function H, for layer 1, and similarly H, for layer 2, thus follow
HOW = gOLO = T (k)
HOM = H$YY = T (k). (A.21)
As two layers of graphs are connected by undirected or bidirected interlinks, the disease thus can be transmitted
with probability T,,, from layer 1 to layer 2 and, meanwhile, with probability T,,, to be transmitted from layer 2 to

layer 1. The bidirectionality for disease transmission of undirected interlinks is reflected by the generating
functions

HI(ZO’I,O) = H:EO’LO) (1) 1> ]-) T) Tuv)

HE"W =T, + H"P (1, 1, 1, T, T). (A.22)
The extraadded term T,,, incorporates the spreading from layer 2 to layer 1 due to the bi-directionality of an
undirected interlink. With H>"9 (1, 1, 1, T, T,,) = T (k) for a Poisson degree distribution and

H®%Y (1,1, 1, T, T,,) = 0 for zero extra undirected interlink (apart from the interlink we come along), we
arrive at

HYM = Hp"" = T (k)
Hy"D = H®V = T,,. (A.23)

Substituting generating functions (A.21) and (A.23) into the equation (A.17), which characterizes the critical
point of phase transition, we derive the epidemic threshold for DUD as

1 — Tuv
(k)

c =
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